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� ...easy to implement,

� ...very flexible, 

� ...need little a priori knowledge about problem at hand,

� ...can deal with many constraints and nonlinearities,

� and thus, frequently applied in practice.

� Some theoretical results exist.

� Typical result: runtime analysis for 

� a particular algorithm 

� on a particular problem.

Comparable to 
the “early days”

of Computer 
Science
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Our Motivation

� In classical theoretical computer science:

� first results: runtime analysis for 

� a particular algorithm 

� on a particular problem.

� general lower bounds (“tractability of a problem”)

� complexity theory

How to create a 
complexity theory for 
randomized search 

heuristics?
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Our Motivation

� In classical theoretical computer science:

� first results: runtime analysis for 

� a particular algorithm 

� on a particular problem.

� general lower bounds (“tractability of a problem”)

� complexity theory

� Our aim: to understand the tractability of a problem
for general-purpose (randomized) search heuristics 

“Towards a Complexity Theory for 
Randomized Search Heuristics”
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A General View on Search Heuristics
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Black-Box 
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A General View on Search Heuristics

Search 
Heuristic

Black-Box 
= “Oracle”

xxxx

ffff(xxxx)

ffff

Typical cost measure: number of function evaluations
until an optimal solution is queried for the first time

Classical Query Complexity Model
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A Theory for (Randomized) Search Heuristics

� Part 1: Classical query complexity model

� Game theoretic view

� Example: Mastermind

� Part 2: Refinement: ranking-based query complexity

“Towards a Complexity Theory for 
Randomized Search Heuristics: 

The Ranking-Based Black-Box Model”
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� Carole (=oracle) chooses a binary string of length n:
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� “Paul, our strings coincide in 3 bits”
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� Carole (=oracle) chooses a binary string of length n:

� Paul (=algo.) tries to find it. He may ask any string of length n:

� Carole computes in how many positions the strings coincide:

� “Paul, our strings coincide in 3 bits”

1 1 0 1 0 0 1 1

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

We say that the 
“fitness” of 

Paul’s string is 
3
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Example: A Mastermind Problem
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Example: A Mastermind Problem

� Carole chooses a binary string of length n:

� Paul tries to find it. He may ask any string of length n:

1 1 0 1 0 0 1 1

1 0 1 0 1 0 1 0 3

4

...

How many queries does Paul need, on average, 
until he has identified Carole’s string?

1 0 1 1 0 1 0 1
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Reminder

� Our aim: To understand tractability of a problem

for general-purpose (randomized) search heuristics 

� Measure: number of function evaluations until 
an optimal solution is queried for the first time

� Our main interest: good lower bounds
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The Master Mind Problem: What Search Heuristics Do

� Paul tries to find Carole’s binary string of length n:
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The Master Mind Problem: What Search Heuristics Do

� Paul tries to find Carole’s binary string of length n:

� First query is arbitrary:

� Then flip exactly one bit (chosen u.a.r.):

� And it continues with the better of the two:

1 1 0 1 0 0 1 1

1 0 1 0 1 0 1 0 3

1 1 1 0 1 0 1 0 4

1 1 1 0 1 1 1 0
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The Master Mind Problem: What Search Heuristics Do

� Paul tries to find Carole’s binary string of length n:

� First query is arbitrary:

� Then flip exactly one bit (chosen u.a.r.):

1 1 0 1 0 0 1 1

1 0 1 0 1 0 1 0 3

1 1 1 0 1 0 1 0 4

Random Local Search algorithm:

Θ(n logn)
Coupon Collector [Folklore]



B. Doerr/C. Winzen: Ranking-Based Black-Box Model CSR, June 14, 2011

The Master Mind Problem: What Search Heuristics Do

� Paul tries to find Carole’s binary string of length n:

� First query is arbitrary:

1 1 0 1 0 0 1 1

1 0 1 0 1 0 1 0



B. Doerr/C. Winzen: Ranking-Based Black-Box Model CSR, June 14, 2011

The Master Mind Problem: What Search Heuristics Do

� Paul tries to find Carole’s binary string of length n:

� First query is arbitrary:

� Flip each bit with probability 1/n:

1 1 0 1 0 0 1 1

1 0 1 0 1 0 1 0 3
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The Master Mind Problem: What Search Heuristics Do

� Paul tries to find Carole’s binary string of length n:

� First query is arbitrary:

� Flip each bit with probability 1/n:

� And it continues with the better of the two
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The Master Mind Problem: What Search Heuristics Do

� Paul tries to find Carole’s binary string of length n:

� First query is arbitrary:

� Flip each bit with probability 1/n:

1 1 0 1 0 0 1 1

1 0 1 0 1 0 1 0 3

0 0 1 0 1 1 1 0 1

(1+1) Evolutionary Algorithm:

Θ(n logn) [Mühlenbein 92] 
[Droste/Jansen/Wegener 02]
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The Master Mind Problem: Optimal Strategies (1/2)

� Paul tries to find Carole’s binary string of length n:

1 0 0 1 0 0 1 1



B. Doerr/C. Winzen: Ranking-Based Black-Box Model CSR, June 14, 2011

The Master Mind Problem: Optimal Strategies (1/2)

� Paul tries to find Carole’s binary string of length n:

� He can go through the string bit by bit:

1 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 4
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� Paul tries to find Carole’s binary string of length n:

� He can go through the string bit by bit:

1 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 4
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� He can go through the string bit by bit:
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The Master Mind Problem: Optimal Strategies (1/2)

� Paul tries to find Carole’s binary string of length n:
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The Master Mind Problem: Optimal Strategies (1/2)

� Paul tries to find Carole’s binary string of length n:

� He can go through the string bit by bit:

1 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 4

1 0 0 0 0 0 0 0 5

1 1 0 0 0 0 0 0 4

...

1 0 0 1 0 0 1 1 8

O(n)
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The Master Mind Problem: Optimal Strategies (1/2)

� Paul tries to find Carole’s binary string of length n:

� He can go through the string bit by bit:

1 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 4

1 0 0 0 0 0 0 0 5

1 1 0 0 0 0 0 0 4

...

1 0 0 1 0 0 1 1 8

O(n)

Can we do 
even 

better?
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The Master Mind Problem: Optimal Strategies (2/2)

1 1 0 1 0 0 1 1
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The Master Mind Problem: Optimal Strategies (2/2)
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Optimal Strategies (2/2)
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Optimal Strategies (2/2)
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Optimal Strategies (2/2)
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Fitness elimination 

technique

[Anil/Wiegand 09], see also [D./Johannsen/Kötzing/Lehre/Wagner/W. 11]

O( n
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Fitness elimination 

technique

[Anil/Wiegand 09], see also [D./Johannsen/Kötzing/Lehre/Wagner/W. 11]
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Intermediate Summary 

� Want to understand tractability of a problem for general-

purpose (randomized) search heuristics 

� Query complexity as such is not a sufficient measure:

Mastermind problem

1 1 0 1 0 0 1 1

Query Complexity

Θ( n

logn
)

Search Heuristics

Θ(n logn)
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The Ranking-Based Black-Box Model

� Observation: many randomized search heuristics use fitness

values only to compare
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The Ranking-Based Black-Box Model

� Observation: many randomized search heuristics use fitness

values only to compare

(1+1) EARLS
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...

The Ranking-Based Black-Box Model

� Observation: many randomized search heuristics use fitness

values only to compare

RLS (1+1) EA
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The Ranking-Based Black-Box Model

Does not reveal absolute fitness values:

Algorithm

Black-Box 
= “Oracle”

ffff
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The Ranking-Based Black-Box Model
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Black-Box 
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The Ranking-Based Black-Box Model

Does not reveal absolute fitness values:

Algorithm

Black-Box 
= “Oracle”

Rank 1

Rank 2

Rank 2

xxxx

xxxx

ffff

xxxx
xxxx

Rank 4 xxxx
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The Ranking-Based Black-Box Model

Algorithm

Black-Box 
= “Oracle”

xxxx

gggg(ffff(xxxx))

ffff

Equivalent formulation: Let be a strictly monotone functiong : R→ R

gggg
g(f(x))=127 � Rank 1

g(f(x))=125 � Rank 2

g(f(x))=125 � Rank 2

g(f(x))=27   � Rank 4
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� Want to understand tractability of a problem

for general-purpose (randomized) search heuristics 

� Query complexity as such is not a sufficient measure

� (Many) Randomized search heuristics do selection based on 

relative fitness values only, not on absolute values:
Ranking-Based Black-Box Model

Intermediate Summary

Mastermind problem

1 1 0 1 0 0 1 1
Does it 

help?
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The Ranking-Based BBC of Mastermind is ΘΘΘΘ(nnnn / log nnnn)

Mastermind problem

1 1 0 1 0 0 1 1

Ranking-Based
Query Complexity

Θ( n

logn
)

Search Heuristics

Θ(n logn)

Classical
Query Complexity

Θ( n

logn
)
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� Carole chooses a binary string of length n and a permutation σ

� Paul wants to find it. He may ask any string of length n:

� Carole computes the weighted fitness value:

� “Paul, your string has a score of 336 (=24+28+26)”

Example: BinaryValue //Weighted Mastermind

1 1 0 1 0 0 1 1

1 0 1 0 1 0 1 0

24 22 21 23 25 28 26 27 σ=(4 2 1 3 5 8 6 7)

1 0 1 0 1 0 1 0
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Paul can do a binary search (parallel for each i≤n):

The Query Complexity of BinaryValue is O(log n)

1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 0 1 0 0 1 1

24 22 21 23 25 28 26 27

24+22+23+26+27

24+22+23+25+28

24+22+21

24+28+26
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Paul can do a binary search (parallel for each i≤n):

Binary Search not Possible in Ranking-Based Model

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 0 1 0 0 1 1

24 22 21 23 25 28 26 27

28
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Paul can do a binary search (parallel for each i≤n):

Binary Search not Possible in Ranking-Based Model

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 0 1 0 0 1 1

24 22 21 23 25 28 26 27

28

317

-29

29

In fact, 
RBBBC(BinaryValue)=Θ(n)
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The Ranking-Based Black-Box Complexity of BinaryValue is ΘΘΘΘ(nnnn)

Limited 
Learning 

t=2

If Algorithm queries two strings xxxx and yyyy, 

it can learn at most 1 bit of the target string zzzz.

Example:

x =100000

y =000000

g(BVz,σ(x)) > g(BVz,σ(y))
⇔

z1 = x1 = 1
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The Ranking-Based Black-Box Complexity of BinaryValue is ΘΘΘΘ(nnnn)

Limited 
Learning 
tttt=2

If Algorithm queries two strings xxxx and yyyy, 

it can learn at most 1 bit of the target string zzzz.

Limited 

Learning 
general tttt

If Algorithm queries tttt strings xxxx1,...,xxxxtttt, 
it can learn at most tttt-1 bit of the target string zzzz.
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Learning 
general tttt

If Algorithm queries tttt strings xxxx1,...,xxxxtttt, 
it can learn at most tttt-1 bit of the target string zzzz.

There is no deterministic algorithm which 

optimizes BinaryValue in sublinear time.
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ΩΩΩΩ(n)

deterministic 

lower bound

The Ranking-Based Black-Box Complexity of BinaryValue is ΘΘΘΘ(nnnn)

Limited 
Learning 
tttt=2

If Algorithm queries two strings xxxx and yyyy, 

it can learn at most 1 bit of the target string zzzz.

Limited 

Learning 
general tttt

If Algorithm queries tttt strings xxxx1,...,xxxxtttt, 
it can learn at most tttt-1 bit of the target string zzzz.

There is no deterministic algorithm which 

optimizes BinaryValue in sublinear time.

ΩΩΩΩ(n)

randomized 
lower bound

Follows from deterministic lower bound and 
Yao’s minimax principle
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� Want to understand tractability of different problems 
for (randomized) search heuristics

� Measure: number of function evaluations

� Our main interest are good lower bounds

� Classical query complexity: often too weak lower bounds

� Ranking-Based Black-Box Model:

� only relative, not absolute fitness values are given

Summary

BinaryValue problem

1 1 0 1 0 0 1 1

Ranking-Based
Query Complexity

Search Heuristics

Classical
Query Complexity

Θ(n logn)

Θ(log n)

Θ(n)
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� Want to understand tractability of different problems 
for (randomized) search heuristics

� Measure: number of function evaluations

� Our main interest are good lower bounds

� Classical query complexity: often too weak lower bounds

� Ranking-Based Black-Box Model:

� only relative, not absolute fitness values are given

Summary

BinaryValue problem

1 1 0 1 0 0 1 1

Ranking-Based
Query Complexity

Search Heuristics

Classical
Query Complexity

Θ(n logn)

Mastermind problem

1 1 0 1 0 0 1 1

Ranking-Based
Query Complexity

Search Heuristics

Classical
Query Complexity

Θ(n logn)

Θ( n

logn
)

Θ( n

log n
)

Θ(log n)

Θ(n)
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Plenty!

� Other black-box models:

� restricted memory models

� unbiased sampling strategies

� combinations thereof

� ...

� Combinatorial problems:

� MST, SSSP problems

� partition problem

� ...

� ...

Future Work

10

4
7

3
6

2
5

1

98

How often do you need to use the 

balance to find a perfect partition 
of the balls?

Almost equivalent problem:

n distinguishable balls of unknown weight


