The Arithmetic Complexity of Euler Function

Manindra Agrawal

IIT Kanpur

Computer Science Symposium in Russia, June 2011

CSR 2011

1 / 33

MANINDRA AGRAWAL (IITK)

OUTLINE

1 Euler Function and Permanent Polynomial

- **2** Computing Euler Function
- **3** Proof of First Theorem
- **PROOF OF SECOND THEOREM**
- **BLACK-BOX DERANDOMIZATION OF IDENTITY TESTING**
- 6 Open Questions and a Conjecture

EULER FUNCTION

$$E(x) = \prod_{k>0} (1-x^k)$$

Defined by Leonhard Euler.

MANINDRA AGRAWAL (IITK)

< E > E - つへの CSR 2011 3 / 33

・ロト ・回ト ・ヨト ・ヨ

Relation to Partition Numbers

Let p_m be the number of partitions of m. Then

$$\frac{1}{E(x)} = \sum_{m \ge 0} p_m x^m.$$

Proof. Note that

$$\frac{1}{E(x)} = \frac{1}{\prod_{k>0}(1-x^k)} = \prod_{k>0} (\sum_{t\geq 0} x^{kt}).$$

(3)

EULER IDENTITY

$$E(x) = \sum_{m=-\infty}^{\infty} (-1)^m x^{(3m^2-m)/2}.$$

Proof. Set up an involution between terms of same degree and opposite signs. Only a few survive.

∃ ► 4

SHAPE OVER COMPLEX PLANE

- Undefined outside unit disk.
- Zero at unit circle.
- Bounded inside the unit disk:
 - Red represents value 4
 - Black represents value
 0

Image created by Linas Vepstas (linas@linas.org) and released under the Gnu Free Documentation License (GFDL). Borrowed from http://en.wikipedia.org/wiki/File:Q-euler.jpeg.

CAPTURING SYMMETRIES

DEDEKIND ETA FUNCTION

$$\eta(z)=e^{\frac{\pi iz}{12}}E(e^{2\pi iz}).$$

 $\eta(z)$ is defined on the upper half of the complex plane and satisfies many interesting properties:

• $\eta(z+1) = e^{\frac{\pi i}{12}}\eta(z).$ • $\eta(-\frac{1}{z}) = \sqrt{-iz}\eta(z).$

Proof. First part is trivial. Second part requires non-trivial complex analysis.

→ E → < E →</p>

PERMANENT POLYNOMIAL

• For any n > 0, let $X = [x_{i,j}]$ be a $n \times n$ matrix with variable elements.

• Then permanent polynomial of degree *n* is the permanent of *X*:

per
$$_{n}(\bar{x}) = \sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i,\sigma(i)}.$$

• It is believed to be hard to compute.

()) < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < (

PERMANENT POLYNOMIAL

- For any n > 0, let $X = [x_{i,j}]$ be a $n \times n$ matrix with variable elements.
- Then permanent polynomial of degree *n* is the permanent of *X*:

per
$$_n(\bar{x}) = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i,\sigma(i)}.$$

• It is believed to be hard to compute.

• 3 • • 3

PERMANENT POLYNOMIAL

- For any n > 0, let $X = [x_{i,j}]$ be a $n \times n$ matrix with variable elements.
- Then permanent polynomial of degree *n* is the permanent of *X*:

per
$$_n(\bar{x}) = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i,\sigma(i)}.$$

• It is believed to be hard to compute.

OUTLINE

1 Euler Function and Permanent Polynomial

2 Computing Euler Function

3 Proof of First Theorem

PROOF OF SECOND THEOREM

BLACK-BOX DERANDOMIZATION OF IDENTITY TESTING

6 Open Questions and a Conjecture

Two Families of Polynomials

Let

$$E_{\Sigma,n}(x) = \sum_{k=-n}^{n} (-1)^k x^{(3k^2-k)/2}$$

and

$$E_{\Pi,n}=\prod_{k=1}^n(1-x^k).$$

• We have:

- $\blacktriangleright E(x) = \lim_{n \to \infty} E_{\Sigma,n}(x) = \lim_{n \to \infty} E_{\Pi,n}(x).$
- E_{Σ,n}(x) is a polynomial of degree ¹/₂(3n² + n) and E_{Π,n}(x) is a polynomial of degree ¹/₂(n² + n).
- A circuit family computing E_{Σ,n}(x) or E_{Π,n}(x) can be viewed as computing E(x).
- We will consider arithmetic circuit families for computing $E_{\Sigma,n}(x)$ and $E_{\Pi,n}(x)$.

イロト イヨト イヨト イヨト

Two Families of Polynomials

Let

$$E_{\Sigma,n}(x) = \sum_{k=-n}^{n} (-1)^k x^{(3k^2-k)/2}$$

and

$$E_{\Pi,n} = \prod_{k=1}^n (1-x^k).$$

We have:

- $\blacktriangleright E(x) = \lim_{n \to \infty} E_{\Sigma,n}(x) = \lim_{n \to \infty} E_{\Pi,n}(x).$
- E_{Σ,n}(x) is a polynomial of degree ¹/₂(3n² + n) and E_{Π,n}(x) is a polynomial of degree ¹/₂(n² + n).
- A circuit family computing E_{Σ,n}(x) or E_{Π,n}(x) can be viewed as computing E(x).
- We will consider arithmetic circuit families for computing $E_{\Sigma,n}(x)$ and $E_{\Pi,n}(x)$.

・ 回 ト ・ ヨ ト ・ ヨ ト

Two Families of Polynomials

Let

$$E_{\Sigma,n}(x) = \sum_{k=-n}^{n} (-1)^k x^{(3k^2-k)/2}$$

and

$$E_{\Pi,n}=\prod_{k=1}^n(1-x^k).$$

We have:

- $\blacktriangleright E(x) = \lim_{n \to \infty} E_{\Sigma,n}(x) = \lim_{n \to \infty} E_{\Pi,n}(x).$
- E_{Σ,n}(x) is a polynomial of degree ¹/₂(3n² + n) and E_{Π,n}(x) is a polynomial of degree ¹/₂(n² + n).
- A circuit family computing E_{Σ,n}(x) or E_{Π,n}(x) can be viewed as computing E(x).
- We will consider arithmetic circuit families for computing $E_{\Sigma,n}(x)$ and $E_{\Pi,n}(x)$.

ARITHMETIC CIRCUITS FOR UNIVARIATE POLYNOMIALS

- A circuit computing polynomial P(x) over field F takes as input x and -1; and outputs P(x).
- It is allowed to use addition and multiplication gates of arbitrary fanin over *F*.
- Size of a circuit is the number of wires in it.
- A depth two circuit family of size O(n²) can compute both E_{Σ,n}(x) and E_{Π,n}(x) over any field as they are polynomials of degree O(n²).
- A depth three circuit family of size O(n) can compute E_{Π,n}(x) over any field: follows from definition.

イロト イポト イヨト イヨト

ARITHMETIC CIRCUITS FOR UNIVARIATE POLYNOMIALS

- A circuit computing polynomial P(x) over field F takes as input x and -1; and outputs P(x).
- It is allowed to use addition and multiplication gates of arbitrary fanin over *F*.
- Size of a circuit is the number of wires in it.
- A depth two circuit family of size O(n²) can compute both E_{Σ,n}(x) and E_{Π,n}(x) over any field as they are polynomials of degree O(n²).
- A depth three circuit family of size O(n) can compute E_{Π,n}(x) over any field: follows from definition.

(本間) (本語) (本語)

ARITHMETIC CIRCUITS FOR UNIVARIATE POLYNOMIALS

- A circuit computing polynomial P(x) over field F takes as input x and -1; and outputs P(x).
- It is allowed to use addition and multiplication gates of arbitrary fanin over *F*.
- Size of a circuit is the number of wires in it.
- A depth two circuit family of size O(n²) can compute both E_{Σ,n}(x) and E_{Π,n}(x) over any field as they are polynomials of degree O(n²).
- A depth three circuit family of size O(n) can compute E_{Π,n}(x) over any field: follows from definition.

・四・ ・ヨ・ ・ヨ・

CIRCUITS FOR E(x)

• Can a higher depth circuit do significantly better?

• For some other polynomials, we can do substantially better. For example,

$$\prod_{j=0}^{\log n-1} (1+x^{2^j}) = \sum_{i=0}^{n-1} x^i$$

can be computed by a depth three circuit of size $O(\log n)$.

• However, it is not clear how to compute E(x) with $n^{o(1)}$ sized circuits.

CIRCUITS FOR E(x)

• Can a higher depth circuit do significantly better?

ŀ

• For some other polynomials, we can do substantially better. For example,

$$\prod_{j=0}^{\log n-1} (1+x^{2^j}) = \sum_{i=0}^{n-1} x^i$$

can be computed by a depth three circuit of size $O(\log n)$.

• However, it is not clear how to compute E(x) with $n^{o(1)}$ sized circuits.

CIRCUITS FOR E(x)

• Can a higher depth circuit do significantly better?

ŀ

• For some other polynomials, we can do substantially better. For example,

$$\prod_{j=0}^{\log n-1} (1+x^{2^j}) = \sum_{i=0}^{n-1} x^i$$

can be computed by a depth three circuit of size $O(\log n)$.

• However, it is not clear how to compute E(x) with $n^{o(1)}$ sized circuits.

THE MAIN THEOREMS

THEOREM (FIRST THEOREM)

Suppose every circuit family computing $E_{\Sigma,n}(x)$ over F, char(F) > 2, has size $s(n^{\Omega(1)})$ for some $s(m) \ge (\log m)^2$. Then permanent polynomial family requires arithmetic circuits of size $s(2^{\Omega(n)})$ over F.

THEOREM (SECOND THEOREM)

Suppose every circuit family computing $E_{\Pi,n}(x)$ over F, char(F) > 2, has size $s(2^{\Omega(s(n^{O(1)}))})$ for some $s(m) \ge (\log m)^2$. Then permanent polynomial family requires arithmetic circuits of size $s(2^{\Omega(n)})$ over \mathbb{Z} .

A weaker version of second theorem was recently shown by Pascal Koiran.

・ロト ・四ト ・ヨト ・ヨト

THE MAIN THEOREMS

THEOREM (FIRST THEOREM)

Suppose every circuit family computing $E_{\Sigma,n}(x)$ over F, char(F) > 2, has size $s(n^{\Omega(1)})$ for some $s(m) \ge (\log m)^2$. Then permanent polynomial family requires arithmetic circuits of size $s(2^{\Omega(n)})$ over F.

THEOREM (SECOND THEOREM)

Suppose every circuit family computing $E_{\Pi,n}(x)$ over F, char(F) > 2, has size $s(2^{\Omega(s(n^{O(1)}))})$ for some $s(m) \ge (\log m)^2$. Then permanent polynomial family requires arithmetic circuits of size $s(2^{\Omega(n)})$ over \mathbb{Z} .

A weaker version of second theorem was recently shown by Pascal Koiran.

◆□> ◆□> ◆三> ◆三> ●三 のへの

OUTLINE

1 Euler Function and Permanent Polynomial

- **2** Computing Euler Function
- **3** Proof of First Theorem
- PROOF OF SECOND THEOREM
- **BLACK-BOX DERANDOMIZATION OF IDENTITY TESTING**
- 6 Open Questions and a Conjecture

MULTILINEAR VERSION OF $E_{\Sigma,n}(x)$

• Let
$$E_{\Sigma,n}(x) = \sum_{t=0}^{(3n^2+n)/2} c_t x^t$$
.

Define

$$M_n(z_1, z_2, \ldots, z_u) = \sum_{t=0}^{(3n^2+n)/2} c_t \prod_{j=1}^{u} z_j^{t[j]},$$

where $u = \lceil \log(3n^2 + n) \rceil - 1$, t[j] is jth bit of t, and $c_t \in \{-1, 0, 1\}$ such that

$$E_{\Sigma,n}(x) = M_n(x, x^2, x^{2^2}, \dots, x^{2^{u-1}}).$$

- The coefficient c_t is computable in polynomial time given t: check if $t = \frac{1}{2}(3m^2 \pm m)$ for some m; if it is, then $c_t = \pm 1$, else $c_t = 0$.
- Using Valiant's result on hardness of permanent, we get that $2^{c \log n} M_n(z_1, z_2, ..., z_u)$ can be expressed as permanent of a matrix of size $O(\log n)$ for a suitable choice of constant c > 0.

(日) (同) (目) (日) (日) (日)

MULTILINEAR VERSION OF $E_{\Sigma,n}(x)$

• Let
$$E_{\Sigma,n}(x) = \sum_{t=0}^{(3n^2+n)/2} c_t x^t$$
.

Define

$$M_n(z_1, z_2, \ldots, z_u) = \sum_{t=0}^{(3n^2+n)/2} c_t \prod_{j=1}^{u} z_j^{t[j]},$$

where $u = \lceil \log(3n^2 + n) \rceil - 1$, t[j] is jth bit of t, and $c_t \in \{-1, 0, 1\}$ such that

$$E_{\Sigma,n}(x) = M_n(x, x^2, x^{2^2}, \dots, x^{2^{u-1}}).$$

- The coefficient c_t is computable in polynomial time given t: check if $t = \frac{1}{2}(3m^2 \pm m)$ for some m; if it is, then $c_t = \pm 1$, else $c_t = 0$.
- Using Valiant's result on hardness of permanent, we get that 2^{c log n} M_n(z₁, z₂,..., z_u) can be expressed as permanent of a matrix of size O(log n) for a suitable choice of constant c > 0.

・ロト ・回ト ・ヨト ・ヨト 三日

MULTILINEAR VERSION OF $E_{\Sigma,n}(x)$

• Let
$$E_{\Sigma,n}(x) = \sum_{t=0}^{(3n^2+n)/2} c_t x^t$$
.

Define

$$M_n(z_1, z_2, \ldots, z_u) = \sum_{t=0}^{(3n^2+n)/2} c_t \prod_{j=1}^{u} z_j^{t[j]},$$

where $u = \lceil \log(3n^2 + n) \rceil - 1$, t[j] is jth bit of t, and $c_t \in \{-1, 0, 1\}$ such that

$$E_{\Sigma,n}(x) = M_n(x, x^2, x^{2^2}, \dots, x^{2^{u-1}}).$$

- The coefficient c_t is computable in polynomial time given t: check if $t = \frac{1}{2}(3m^2 \pm m)$ for some m; if it is, then $c_t = \pm 1$, else $c_t = 0$.
- Using Valiant's result on hardness of permanent, we get that $2^{c \log n} M_n(z_1, z_2, ..., z_u)$ can be expressed as permanent of a matrix of size $O(\log n)$ for a suitable choice of constant c > 0.

◆□ ▶ ◆□ ▶ ★ □ ▶ ★ □ ▶ → □ ● ● ● ● ●

- Suppose permanent family can be computed by a circuit family of size s(2^{o(n)}) over F.
- Then, the polynomial family $2^{c \log n} M_n$ can be computed by a circuit family of size $s(n^{o(1)})$.
- Let circuit C compute $2^{c \log n} M_n$.
- Modify C by replacing its input z_j by x^{2^j} .
- This adds $O(\log n)$ multiplication gates to C.
- Multiply the resulting circuit by 2^{-c log n} in F (since char(F) > 2, it always exists).

- 4 回 ト 4 ヨ ト 4 ヨ ト

CSR 2011

16 / 33

• The final circuit computes $E_{\Sigma,n}(x)$ and has size $s(n^{o(1)})$, a contradiction.

- Suppose permanent family can be computed by a circuit family of size s(2^{o(n)}) over F.
- Then, the polynomial family $2^{c \log n} M_n$ can be computed by a circuit family of size $s(n^{o(1)})$.
- Let circuit *C* compute $2^{c \log n} M_n$.
- Modify C by replacing its input z_j by x^{2^j} .
- This adds $O(\log n)$ multiplication gates to C.
- Multiply the resulting circuit by 2^{-c log n} in F (since char(F) > 2, it always exists).
- The final circuit computes $E_{\Sigma,n}(x)$ and has size $s(n^{o(1)})$, a contradiction.

イロト イポト イヨト イヨト

- Suppose permanent family can be computed by a circuit family of size s(2^{o(n)}) over F.
- Then, the polynomial family $2^{c \log n} M_n$ can be computed by a circuit family of size $s(n^{o(1)})$.
- Let circuit *C* compute $2^{c \log n} M_n$.
- Modify C by replacing its input z_j by x^{2^j} .
- This adds $O(\log n)$ multiplication gates to C.
- Multiply the resulting circuit by 2^{-clog n} in F (since char(F) > 2, it always exists).
- The final circuit computes E_{Σ,n}(x) and has size s(n^{o(1)}), a contradiction.

ヘロト 人間 とくほと くほど

- Suppose permanent family can be computed by a circuit family of size s(2^{o(n)}) over F.
- Then, the polynomial family $2^{c \log n} M_n$ can be computed by a circuit family of size $s(n^{o(1)})$.
- Let circuit *C* compute $2^{c \log n} M_n$.
- Modify C by replacing its input z_j by x^{2^j} .
- This adds $O(\log n)$ multiplication gates to C.
- Multiply the resulting circuit by 2^{-c log n} in F (since char(F) > 2, it always exists).

<ロ> (四) (四) (三) (三) (三) (三)

CSR 2011

16 / 33

• The final circuit computes $E_{\Sigma,n}(x)$ and has size $s(n^{o(1)})$, a contradiction.

OUTLINE

1 Euler Function and Permanent Polynomial

- **2** Computing Euler Function
- **3** Proof of First Theorem
- PROOF OF SECOND THEOREM
- **BLACK-BOX DERANDOMIZATION OF IDENTITY TESTING**
- 6 Open Questions and a Conjecture

Setup

- Assume that there is a circuit family of size s(2^{o(n)}) computing permanent polynomial over Z.
- Let $P(x) = E_{\prod,n}(x)$ for some n > 1.
- Degree of P(x) equals $\frac{1}{2}n(n+1) < n^2$.
- Let char(F) = p. Since coefficients of P(x) are in F_p , we can assume $F = F_p$.
- Let \hat{F} be an extension of F with $n^2 \leq q = |\hat{F}| = O(n^2)$.

イロト イポト イヨト イヨト

Setup

- Assume that there is a circuit family of size s(2^{o(n)}) computing permanent polynomial over Z.
- Let $P(x) = E_{\prod,n}(x)$ for some n > 1.
- Degree of P(x) equals $\frac{1}{2}n(n+1) < n^2$.
- Let char(F) = p. Since coefficients of P(x) are in F_p , we can assume $F = F_p$.
- Let \hat{F} be an extension of F with $n^2 \leq q = |\hat{F}| = O(n^2)$.

イロト イポト イヨト イヨト

Setup

- Assume that there is a circuit family of size $s(2^{o(n)})$ computing permanent polynomial over \mathbb{Z} .
- Let $P(x) = E_{\prod,n}(x)$ for some n > 1.
- Degree of P(x) equals $\frac{1}{2}n(n+1) < n^2$.
- Let char(F) = p. Since coefficients of P(x) are in F_p , we can assume $F = F_p$.
- Let \hat{F} be an extension of F with $n^2 \leq q = |\hat{F}| = O(n^2)$.

- 本部 とくき とくき とうき

AN ALTERNATIVE EXPRESSION FOR P(x)

• By Langrange's interpolation formula, we have:

$$P(x) = \sum_{\alpha \in \hat{F}} P(\alpha) \cdot \frac{\prod_{\beta \in \hat{F}, \beta \neq \alpha} (x - \beta)}{\prod_{\beta \in \hat{F}, \beta \neq \alpha} (\alpha - \beta)}.$$

Observe that

$$\prod_{\beta \in \hat{F}, \beta \neq \alpha} (\alpha - \beta) = \prod_{\beta \in \hat{F}^*} \beta = -1,$$

and

$$\prod_{\beta \in \hat{F}, \beta \neq \alpha} (x - \beta) = \frac{\prod_{\beta \in \hat{F}} (x - \beta)}{x - \alpha}$$

$$= \frac{x^{q} - x}{x - \alpha} = \sum_{j=1}^{q-1} \alpha^{j-1} x^{q-j}.$$

- AN ALTERNATIVE EXPRESSION FOR P(x)
 - By Langrange's interpolation formula, we have:

$$P(x) = \sum_{\alpha \in \hat{F}} P(\alpha) \cdot \frac{\prod_{\beta \in \hat{F}, \beta \neq \alpha} (x - \beta)}{\prod_{\beta \in \hat{F}, \beta \neq \alpha} (\alpha - \beta)}.$$

Observe that

$$\prod_{\beta\in\hat{F},\beta\neq\alpha}(\alpha-\beta)=\prod_{\beta\in\hat{F}^*}\beta=-1,$$

and

$$\prod_{\beta \in \hat{F}, \beta \neq \alpha} (x - \beta) = \frac{\prod_{\beta \in \hat{F}} (x - \beta)}{x - \alpha}$$
$$= \frac{x^q - x}{x - \alpha} = \sum_{j=1}^{q-1} \alpha^{j-1} x^{q-j}.$$

(< ≥) < ≥)</p>

AN ALTERNATIVE EXPRESSION FOR P(x)

• Therefore,

$$P(x) = -\sum_{\alpha \in \hat{F}} P(\alpha) \sum_{j=1}^{q-1} \alpha^{j-1} x^{q-j}$$
$$= -\sum_{j=1}^{q-1} (\sum_{\alpha \in \hat{F}} P(\alpha) \alpha^{j-1}) x^{q-j}.$$

 Now if we can compute P(α) efficiently, we can compute P(x) as permanent of a small size matrix.

• However, as

$$P(\alpha) = \prod_{m=1}^{n} (1 - \alpha^m),$$

we cannot compute it directly.

AN ALTERNATIVE EXPRESSION FOR P(x)

• Therefore,

$$P(x) = -\sum_{\alpha \in \hat{F}} P(\alpha) \sum_{j=1}^{q-1} \alpha^{j-1} x^{q-j}$$
$$= -\sum_{j=1}^{q-1} (\sum_{\alpha \in \hat{F}} P(\alpha) \alpha^{j-1}) x^{q-j}.$$

• Now if we can compute $P(\alpha)$ efficiently, we can compute P(x) as permanent of a small size matrix.

• However, as

$$P(\alpha) = \prod_{m=1}^{n} (1 - \alpha^m),$$

we cannot compute it directly.

Computing $P(\alpha)$

• Let g be a generator of \hat{F}^* .

• Define NTM *N* as: on input α , guess *t* and *m* with $0 \le t < q$ and $1 \le m \le n$. Check if $g^t = 1 - \alpha^m$. If yes, output *t* on the part, else output 0.

• N is a polynomial time TM, and

$$\#N(\alpha)=\sum_{m=1}^n t_m,$$

CSR 2011

21 / 33

where $g^{t_m} = 1 - \alpha^m$.

- Hence, $g^{\#N(\alpha)} = P(\alpha)$.
- Therefore, $P(\alpha)$ is computable in $P^{\#P}$.

Computing $P(\alpha)$

- Let g be a generator of \hat{F}^* .
- Define NTM *N* as: on input α , guess *t* and *m* with $0 \le t < q$ and $1 \le m \le n$. Check if $g^t = 1 \alpha^m$. If yes, output *t* on the part, else output 0.
- N is a polynomial time TM, and

$$\#N(\alpha)=\sum_{m=1}^n t_m,$$

向下 イヨト イヨト

CSR 2011

21 / 33

where $g^{t_m} = 1 - \alpha^m$.

• Hence, $g^{\#N(\alpha)} = P(\alpha)$.

• Therefore, $P(\alpha)$ is computable in $P^{\#P}$.

Computing $P(\alpha)$

- Let g be a generator of \hat{F}^* .
- Define NTM *N* as: on input α , guess *t* and *m* with $0 \le t < q$ and $1 \le m \le n$. Check if $g^t = 1 \alpha^m$. If yes, output *t* on the part, else output 0.
- N is a polynomial time TM, and

$$\#N(\alpha)=\sum_{m=1}^n t_m,$$

where $g^{t_m} = 1 - \alpha^m$.

- Hence, $g^{\#N(\alpha)} = P(\alpha)$.
- Therefore, $P(\alpha)$ is computable in $P^{\#P}$.

伺下 イヨト イヨト

COMPUTING P(x)

- Since permanent is complete for #P, we get that P(α) can be computed by *boolean* circuits of size s(n^{o(1)}).
- Therefore, P(x) can be computed by *arithmetic* circuits of size $s(2^{o(s(n^{o(1)}))})$ over F.
- A Contradiction.

- A IB IN IA IB

COMPUTING P(x)

- Since permanent is complete for #P, we get that P(α) can be computed by *boolean* circuits of size s(n^{o(1)}).
- Therefore, P(x) can be computed by arithmetic circuits of size s(2^{o(s(n^{o(1)}))}) over F.
- A Contradiction.

OUTLINE

1 Euler Function and Permanent Polynomial

- **2** Computing Euler Function
- **3** Proof of First Theorem
- PROOF OF SECOND THEOREM

6 Black-box Derandomization of Identity Testing

• 3 > 4

CSR 2011

23 / 33

6 Open Questions and a Conjecture

POLYNOMIAL IDENTITY TESTING PROBLEM

PIT OVER F

Given an arithmetic circuit over field F, determine if the polynomial computed by the circuit is identically zero.

- Admits a number of randomized polynomial time algorithms but no deterministic one is known.
- Has an interesting connection with hardness of computing $E_{\Pi,n}(x)$.

POLYNOMIAL IDENTITY TESTING PROBLEM

PIT OVER F

Given an arithmetic circuit over field F, determine if the polynomial computed by the circuit is identically zero.

- Admits a number of randomized polynomial time algorithms but no deterministic one is known.
- Has an interesting connection with hardness of computing $E_{\Pi,n}(x)$.

Computing Multiples of $E_{\Pi,n}(x)$

Let $P_m(x)$ be a family of polynomials with $P_m(x)$ of degree $m^{O(1)}$. The family is an n(m)-multiple of the family $E_{\prod,n}(x)$ if for every m, $E_{\prod,n(m)}(x)$ divides $P_m(x)$.

- It is possible that $E_{\Pi,n}(x)$ requires circuit of size $n^{\Omega(1)}$ to compute.
- Does it also mean that every n(m)-multiple of E_{Π,n}(x) also requires circuits of size (n(m))^{Ω(1)} to compute?

イロト イポト イヨト イヨト

CSR 2011

25 / 33

• If yes, we get a black-box derandomization of PIT.

Computing Multiples of $E_{\Pi,n}(x)$

Let $P_m(x)$ be a family of polynomials with $P_m(x)$ of degree $m^{O(1)}$. The family is an n(m)-multiple of the family $E_{\prod,n}(x)$ if for every m, $E_{\prod,n(m)}(x)$ divides $P_m(x)$.

- It is possible that $E_{\prod,n}(x)$ requires circuit of size $n^{\Omega(1)}$ to compute.
- Does it also mean that every n(m)-multiple of E_{Π,n}(x) also requires circuits of size (n(m))^{Ω(1)} to compute?

CSR 2011

25 / 33

• If yes, we get a black-box derandomization of PIT.

DERANDOMIZATION OF PIT

THEOREM

If every n(m)-multiple of $E_{\Pi,n}(x)$, for every $n(m) = m^{O(1)}$, requires circuits of size $(n(m))^{\Omega(1)}$ to compute over field F, then there exists a polynomial-time black-box derandomization of PIT over F.

(本間) ((日) (日) (日)

Proof

- Assume that every n(m)-multiple of E_{Π,n}(x) requires circuits of size (n(m))^δ for some δ > 0.
- Let C be an arithmetic circuit of size m computing a polynomial Q(y₁,..., y_m) over F.
- The degree of Q is bounded by 2^m .
- We give a polynomial time algorithm for checking if *Q* is identically zero.

• 3 > 4

Proof

- Assume that every n(m)-multiple of E_{Π,n}(x) requires circuits of size (n(m))^δ for some δ > 0.
- Let C be an arithmetic circuit of size m computing a polynomial Q(y₁,..., y_m) over F.
- The degree of Q is bounded by 2^m .
- We give a polynomial time algorithm for checking if *Q* is identically zero.

- - E > - E

Proof

- Assume that every n(m)-multiple of E_{Π,n}(x) requires circuits of size (n(m))^δ for some δ > 0.
- Let C be an arithmetic circuit of size m computing a polynomial Q(y₁,..., y_m) over F.
- The degree of Q is bounded by 2^m .
- We give a polynomial time algorithm for checking if *Q* is identically zero.

A B N A B N

- Let $D = 2^m + 1$ and replace y^i by $x^{D^{i-1}}$ as input to C.
- This requires an additional $O(m^2)$ wires at the bottom of C.
- Let the resulting circuit be \hat{C} , and R(x) be the polynomial computed by it.
- The size of \hat{C} is $O(m^2)$ and the degree of R(x) is at most 2^{m^2} .
- It is easy to see that R(x) is non-zero iff $Q(y_1, \ldots, y_m)$ is.
- Test if $R(x) = 0 \pmod{(x^{\ell} 1)^k}$ for $1 \le \ell \le n = m^{3/\delta}$ and k is the largest number such that $(x^{\ell} 1)^k$ divides $E_{\prod,n}(x)$.

CSR 2011

28 / 33

• Output ZERO iff all the tests succeed.

- Let $D = 2^m + 1$ and replace y^i by $x^{D^{i-1}}$ as input to C.
- This requires an additional $O(m^2)$ wires at the bottom of C.
- Let the resulting circuit be \hat{C} , and R(x) be the polynomial computed by it.
- The size of \hat{C} is $O(m^2)$ and the degree of R(x) is at most 2^{m^2} .
- It is easy to see that R(x) is non-zero iff $Q(y_1, \ldots, y_m)$ is.
- Test if $R(x) = 0 \pmod{(x^{\ell} 1)^k}$ for $1 \le \ell \le n = m^{3/\delta}$ and k is the largest number such that $(x^{\ell} 1)^k$ divides $E_{\prod,n}(x)$.
- Output ZERO iff all the tests succeed.

(1日) (1日) (1日)

- Let $D = 2^m + 1$ and replace y^i by $x^{D^{i-1}}$ as input to C.
- This requires an additional $O(m^2)$ wires at the bottom of C.
- Let the resulting circuit be \hat{C} , and R(x) be the polynomial computed by it.
- The size of \hat{C} is $O(m^2)$ and the degree of R(x) is at most 2^{m^2} .
- It is easy to see that R(x) is non-zero iff $Q(y_1, \ldots, y_m)$ is.
- Test if $R(x) = 0 \pmod{(x^{\ell} 1)^k}$ for $1 \le \ell \le n = m^{3/\delta}$ and k is the largest number such that $(x^{\ell} 1)^k$ divides $E_{\prod,n}(x)$.
- Output ZERO iff all the tests succeed.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let $D = 2^m + 1$ and replace y^i by $x^{D^{i-1}}$ as input to C.
- This requires an additional $O(m^2)$ wires at the bottom of C.
- Let the resulting circuit be \hat{C} , and R(x) be the polynomial computed by it.
- The size of \hat{C} is $O(m^2)$ and the degree of R(x) is at most 2^{m^2} .
- It is easy to see that R(x) is non-zero iff $Q(y_1, \ldots, y_m)$ is.
- Test if $R(x) = 0 \pmod{(x^{\ell} 1)^k}$ for $1 \le \ell \le n = m^{3/\delta}$ and k is the largest number such that $(x^{\ell} 1)^k$ divides $E_{\prod,n}(x)$.
- Output ZERO iff all the tests succeed.

CORRECTNESS

• The algorithm is clearly deterministic, polynomial-time, and black-box.

- Observe that if all the tests succeed, it implies that $E_{\Pi,n}(x)$ divides R(x).
- If R(x) is non-zero then, by our assumption on *n*-multiples of $E_{\prod,n}(x)$, R(x) requires a circuit of size $n^{\delta} = m^3$ to compute.
- However, circuit \hat{C} , of size $O(m^2)$, computes R(x).
- A contradiction.

- The algorithm is clearly deterministic, polynomial-time, and black-box.
- Observe that if all the tests succeed, it implies that $E_{\prod,n}(x)$ divides R(x).
- If R(x) is non-zero then, by our assumption on *n*-multiples of $E_{\prod,n}(x)$, R(x) requires a circuit of size $n^{\delta} = m^3$ to compute.
- However, circuit \hat{C} , of size $O(m^2)$, computes R(x).
- A contradiction.

(4) (3) (4) (4) (4)

- The algorithm is clearly deterministic, polynomial-time, and black-box.
- Observe that if all the tests succeed, it implies that $E_{\Pi,n}(x)$ divides R(x).
- If R(x) is non-zero then, by our assumption on *n*-multiples of $E_{\Pi,n}(x)$, R(x) requires a circuit of size $n^{\delta} = m^3$ to compute.
- However, circuit \hat{C} , of size $O(m^2)$, computes R(x).
- A contradiction.

- The algorithm is clearly deterministic, polynomial-time, and black-box.
- Observe that if all the tests succeed, it implies that $E_{\Pi,n}(x)$ divides R(x).
- If R(x) is non-zero then, by our assumption on *n*-multiples of $E_{\Pi,n}(x)$, R(x) requires a circuit of size $n^{\delta} = m^3$ to compute.
- However, circuit \hat{C} , of size $O(m^2)$, computes R(x).
- A contradiction.

OUTLINE

1 Euler Function and Permanent Polynomial

- **2** Computing Euler Function
- **3** Proof of First Theorem
- PROOF OF SECOND THEOREM
- **BLACK-BOX DERANDOMIZATION OF IDENTITY TESTING**
- 6 Open Questions and a Conjecture

A 3 > 4

Several questions remain open:

- Is the polynomial $E_{\Pi,n}(x)$ computable over F_p in Mod_pP ?
- (a) Does $E_{\Pi,n}(x)$ require circuits of size $n^{\Omega(1)}$?
- (1) Does every *n*-multiple of $E_{\Pi,n}(x)$ requires circuits of size $n^{\Omega(1)}$?

→ Ξ → → Ξ

Several questions remain open:

- Is the polynomial $E_{\Pi,n}(x)$ computable over F_p in Mod_pP ?
- **2** Does $E_{\Pi,n}(x)$ require circuits of size $n^{\Omega(1)}$?
- Opes every *n*-multiple of $E_{\Pi,n}(x)$ requires circuits of size $n^{\Omega(1)}$?

(▲ 글 ▶) ▲ 글

Several questions remain open:

- Is the polynomial $E_{\Pi,n}(x)$ computable over F_p in Mod_pP ?
- **2** Does $E_{\Pi,n}(x)$ require circuits of size $n^{\Omega(1)}$?
- **3** Does every *n*-multiple of $E_{\Pi,n}(x)$ requires circuits of size $n^{\Omega(1)}$?

★ E → ★ E →

A CONJECTURE

Conjecture

Answer to all three questions above is yes.

If the conjecture is true then an exponential lower bound on permanent polynomial follows.

・ロト ・回ト ・ヨト ・ヨ

A CONJECTURE

Conjecture

Answer to all three questions above is yes.

If the conjecture is true then an exponential lower bound on permanent polynomial follows.

- 신문 > - 신문

THOUGHTS ON THE CONJECTURE

- The conjecture relates the size of an arithmetic circuit computing a polynomial to the number of distinct small roots of unity that the polynomial can have.
- It is similar in spirit to *τ*-conjecture of Shub-Smale that relates the size of an arithmetic circuit computing a polynomial to the number of integer roots the polynomial can have.

THOUGHTS ON THE CONJECTURE

- The conjecture relates the size of an arithmetic circuit computing a polynomial to the number of distinct small roots of unity that the polynomial can have.
- It is similar in spirit to *τ*-conjecture of Shub-Smale that relates the size of an arithmetic circuit computing a polynomial to the number of integer roots the polynomial can have.