The Arithmetic Complexity of Euler FUNCTION

Manindra Agrawal

IIT Kanpur
Computer Science Symposium in Russia, June 2011

Outline

(1) Euler Function and Permanent Polynomial
(2) Computing Euler Function
(3) Proof of First Theorem
(1) Proof of Second Theorem
(5) Black-box Derandomization of Identity Testing
© Open Questions and a Conjecture

Euler Function

$$
E(x)=\prod_{k>0}\left(1-x^{k}\right)
$$

Defined by Leonhard Euler.

Relation to Partition Numbers

Let p_{m} be the number of partitions of m. Then

$$
\frac{1}{E(x)}=\sum_{m \geq 0} p_{m} x^{m}
$$

Proof. Note that

$$
\frac{1}{E(x)}=\frac{1}{\prod_{k>0}\left(1-x^{k}\right)}=\prod_{k>0}\left(\sum_{t \geq 0} x^{k t}\right)
$$

Euler Identity

$$
E(x)=\sum_{m=-\infty}^{\infty}(-1)^{m} x^{\left(3 m^{2}-m\right) / 2}
$$

Proof. Set up an involution between terms of same degree and opposite signs. Only a few survive.

Shape Over Complex Plane

- Undefined outside unit disk.
- Zero at unit circle.
- Bounded inside the unit disk:
- Red represents value 4
- Black represents value 0

Image created by Linas Vepstas (linas@linas.org) and released under the Gnu Free Documentation License (GFDL). Borrowed from http://en.wikipedia.org/wiki/File:Q-euler.jpeg.

Capturing Symmetries

Dedekind Eta Function

$$
\eta(z)=e^{\frac{\pi i z}{12}} E\left(e^{2 \pi i z}\right) .
$$

$\eta(z)$ is defined on the upper half of the complex plane and satisfies many interesting properties:

- $\eta(z+1)=e^{\frac{\pi i}{12}} \eta(z)$.
- $\eta\left(-\frac{1}{z}\right)=\sqrt{-i z} \eta(z)$.

Proof. First part is trivial. Second part requires non-trivial complex analysis.

Permanent Polynomial

- For any $n>0$, let $X=\left[x_{i, j}\right]$ be a $n \times n$ matrix with variable elements.
- Then permanent polynomial of degree n is the permanent of X :

Permanent Polynomial

- For any $n>0$, let $X=\left[x_{i, j}\right]$ be a $n \times n$ matrix with variable elements.
- Then permanent polynomial of degree n is the permanent of X :

$$
\operatorname{per}_{n}(\bar{x})=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

- It is believed to be hard to compute.

Permanent Polynomial

- For any $n>0$, let $X=\left[x_{i, j}\right]$ be a $n \times n$ matrix with variable elements.
- Then permanent polynomial of degree n is the permanent of X :

$$
\operatorname{per}_{n}(\bar{x})=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)} .
$$

- It is believed to be hard to compute.

Outline

© Euler Function and Permanent Polynomial

(2) Computing Euler Function

(3) Proof of First Theorem
© Proof of Second Theorem
(5) Black-box Derandomization of Identity Testing
(0) Open Questions and a Conjecture

Two Families of Polynomials

- Let

$$
E_{\Sigma, n}(x)=\sum_{k=-n}^{n}(-1)^{k} x^{\left(3 k^{2}-k\right) / 2}
$$

and

$$
E_{\Pi, n}=\prod_{k=1}^{n}\left(1-x^{k}\right)
$$

- We have:
- A circuit family computing $E_{\Sigma, n}(x)$ or $E_{\Pi, n}(x)$ can be viewed as computing $E(x)$.
- We will consider arithmetic circuit families for computing $E_{\Sigma, n}(x)$ and $E_{\Pi, n}(x)$.

Two Families of Polynomials

- Let

$$
E_{\Sigma, n}(x)=\sum_{k=-n}^{n}(-1)^{k} x^{\left(3 k^{2}-k\right) / 2}
$$

and

$$
E_{\Pi, n}=\prod_{k=1}^{n}\left(1-x^{k}\right)
$$

- We have:
- $E(x)=\lim _{n \mapsto \infty} E_{\Sigma, n}(x)=\lim _{n \mapsto \infty} E_{\Pi, n}(x)$.
- $E_{\Sigma, n}(x)$ is a polynomial of degree $\frac{1}{2}\left(3 n^{2}+n\right)$ and $E_{\Pi, n}(x)$ is a polynomial of degree $\frac{1}{2}\left(n^{2}+n\right)$.
- A circuit family computing $E_{\sum, n}(x)$ or $E_{\Pi, n}(x)$ can be viewed as computing $E(x)$.
- We will consider arithmetic circuit families for computing $E_{\Sigma, n}(x)$ and $E_{\Pi, n}(x)$.

Two Families of Polynomials

- Let

$$
E_{\Sigma, n}(x)=\sum_{k=-n}^{n}(-1)^{k} x^{\left(3 k^{2}-k\right) / 2}
$$

and

$$
E_{\Pi, n}=\prod_{k=1}^{n}\left(1-x^{k}\right)
$$

- We have:
- $E(x)=\lim _{n \mapsto \infty} E_{\Sigma, n}(x)=\lim _{n \mapsto \infty} E_{\Pi, n}(x)$.
- $E_{\Sigma, n}(x)$ is a polynomial of degree $\frac{1}{2}\left(3 n^{2}+n\right)$ and $E_{\Pi, n}(x)$ is a polynomial of degree $\frac{1}{2}\left(n^{2}+n\right)$.
- A circuit family computing $E_{\Sigma, n}(x)$ or $E_{\Pi, n}(x)$ can be viewed as computing $E(x)$.
- We will consider arithmetic circuit families for computing $E_{\Sigma, n}(x)$ and $E_{\Pi, n}(x)$.

Arithmetic Circuits for Univariate Polynomials

- A circuit computing polynomial $P(x)$ over field F takes as input x and -1 ; and outputs $P(x)$.
- It is allowed to use addition and multiplication gates of arbitrary fanin over F.
- Size of a circuit is the number of wires in it.
- A depth two circuit family of size $O\left(n^{2}\right)$ can compute both $E_{\Sigma, n}(x)$ and $E_{\Pi, n}(x)$ over any field as they are polynomials of degree $O\left(n^{2}\right)$. - A depth three circuit family of size $O(n)$ can compute $E_{\Pi, n}(x)$ over any field: follows from definition.

Arithmetic Circuits for Univariate Polynomials

- A circuit computing polynomial $P(x)$ over field F takes as input x and -1 ; and outputs $P(x)$.
- It is allowed to use addition and multiplication gates of arbitrary fanin over F.
- Size of a circuit is the number of wires in it.
- A depth two circuit family of size $O\left(n^{2}\right)$ can compute both $E_{\Sigma, n}(x)$ and $E_{\Pi, n}(x)$ over any field as they are polynomials of degree $O\left(n^{2}\right)$.
- A depth three circuit family of size $O(n)$ can compute $E_{\Pi, n}(x)$ over any field: follows from definition.

Arithmetic Circuits for Univariate Polynomials

- A circuit computing polynomial $P(x)$ over field F takes as input x and -1 ; and outputs $P(x)$.
- It is allowed to use addition and multiplication gates of arbitrary fanin over F.
- Size of a circuit is the number of wires in it.
- A depth two circuit family of size $O\left(n^{2}\right)$ can compute both $E_{\Sigma, n}(x)$ and $E_{\Pi, n}(x)$ over any field as they are polynomials of degree $O\left(n^{2}\right)$.
- A depth three circuit family of size $O(n)$ can compute $E_{\Pi, n}(x)$ over any field: follows from definition.

Circuits for $E(x)$

- Can a higher depth circuit do significantly better?
- For some other polynomials, we can do substantially better. For example,

can be computed by a depth three circuit of size $O(\log n)$.
- However, it is not clear how to compute $E(x)$ with $n^{\circ(1)}$ sized circuits.

Circuits for $E(x)$

- Can a higher depth circuit do significantly better?
- For some other polynomials, we can do substantially better. For example,

$$
\prod_{j=0}^{\log n-1}\left(1+x^{2^{j}}\right)=\sum_{i=0}^{n-1} x^{i}
$$

can be computed by a depth three circuit of size $O(\log n)$.

- However, it is not clear how to compute $E(x)$ with $n^{o(1)}$ sized circuits.

Circuits for $E(x)$

- Can a higher depth circuit do significantly better?
- For some other polynomials, we can do substantially better. For example,

$$
\prod_{j=0}^{\log n-1}\left(1+x^{2^{j}}\right)=\sum_{i=0}^{n-1} x^{i}
$$

can be computed by a depth three circuit of size $O(\log n)$.

- However, it is not clear how to compute $E(x)$ with $n^{o(1)}$ sized circuits.

The Main Theorems

Theorem (First Theorem)

Suppose every circuit family computing $E_{\Sigma, n}(x)$ over $F, \operatorname{char}(F)>2$, has size $s\left(n^{\Omega(1)}\right)$ for some $s(m) \geq(\log m)^{2}$. Then permanent polynomial family requires arithmetic circuits of size $s\left(2^{\Omega(n)}\right)$ over F.

The Main Theorems

Theorem (First Theorem)

Suppose every circuit family computing $E_{\Sigma, n}(x)$ over F, char $(F)>2$, has size $s\left(n^{\Omega(1)}\right)$ for some $s(m) \geq(\log m)^{2}$. Then permanent polynomial family requires arithmetic circuits of size $s\left(2^{\Omega(n)}\right)$ over F.

Theorem (Second Theorem)

Suppose every circuit family computing $E_{\Pi, n}(x)$ over F, char $(F)>2$, has size $s\left(2^{\Omega\left(s\left(n^{O(1)}\right)\right)}\right)$ for some $s(m) \geq(\log m)^{2}$. Then permanent polynomial family requires arithmetic circuits of size $s\left(2^{\Omega(n)}\right)$ over \mathbb{Z}.

A weaker version of second theorem was recently shown by Pascal Koiran.

Outline

(1) Euler Function and Permanent Polynomial

(2) Computing Euler Function
(3) Proof of First Theorem
(4) Proof of Second Theorem
(5) Black-box Derandomization of Identity Testing

6 Open Questions and a Conjecture

Multilinear Version of $E_{\Sigma, n}(x)$

- Let $E_{\Sigma, n}(x)=\sum_{t=0}^{\left(3 n^{2}+n\right) / 2} c_{t} x^{t}$.
- Define

$$
M_{n}\left(z_{1}, z_{2}, \ldots, z_{u}\right)=\sum_{t=0}^{\left(3 n^{2}+n\right) / 2} c_{t} \prod_{j=1}^{u} z_{j}^{t[j]}
$$

where $u=\left\lceil\log \left(3 n^{2}+n\right)\right\rceil-1, t[j]$ is j th bit of t, and $c_{t} \in\{-1,0,1\}$ such that

$$
E_{\Sigma, n}(x)=M_{n}\left(x, x^{2}, x^{2^{2}}, \ldots, x^{2^{u-1}}\right)
$$

- The coefficient c_{t} is computable in polynomial time given t : check if $t=\frac{1}{2}\left(3 m^{2} \pm m\right)$ for some m; if it is, then $c_{t}= \pm 1$, else $c_{t}=0$.
- Using Valiant's result on hardness of permanent, we get that $2^{c \log n} M_{n}\left(z_{1}, z_{2}, \ldots, z_{u}\right)$ can be expressed as permanent of a matrix of size $O(\log n)$ for a suitable choice of constant $c>0$.

Multilinear Version of $E_{\Sigma, n}(x)$

- Let $E_{\Sigma, n}(x)=\sum_{t=0}^{\left(3 n^{2}+n\right) / 2} c_{t} x^{t}$.
- Define

$$
M_{n}\left(z_{1}, z_{2}, \ldots, z_{u}\right)=\sum_{t=0}^{\left(3 n^{2}+n\right) / 2} c_{t} \prod_{j=1}^{u} z_{j}^{t[j]}
$$

where $u=\left\lceil\log \left(3 n^{2}+n\right)\right\rceil-1, t[j]$ is j th bit of t, and $c_{t} \in\{-1,0,1\}$ such that

$$
E_{\Sigma, n}(x)=M_{n}\left(x, x^{2}, x^{2^{2}}, \ldots, x^{2^{u-1}}\right)
$$

- The coefficient c_{t} is computable in polynomial time given t : check if $t=\frac{1}{2}\left(3 m^{2} \pm m\right)$ for some m; if it is, then $c_{t}= \pm 1$, else $c_{t}=0$.

Multilinear Version of $E_{\Sigma, n}(x)$

- Let $E_{\Sigma, n}(x)=\sum_{t=0}^{\left(3 n^{2}+n\right) / 2} c_{t} x^{t}$.
- Define

$$
M_{n}\left(z_{1}, z_{2}, \ldots, z_{u}\right)=\sum_{t=0}^{\left(3 n^{2}+n\right) / 2} c_{t} \prod_{j=1}^{u} z_{j}^{t[j]}
$$

where $u=\left\lceil\log \left(3 n^{2}+n\right)\right\rceil-1, t[j]$ is j th bit of t, and $c_{t} \in\{-1,0,1\}$ such that

$$
E_{\Sigma, n}(x)=M_{n}\left(x, x^{2}, x^{2^{2}}, \ldots, x^{2^{u-1}}\right)
$$

- The coefficient c_{t} is computable in polynomial time given t : check if $t=\frac{1}{2}\left(3 m^{2} \pm m\right)$ for some m; if it is, then $c_{t}= \pm 1$, else $c_{t}=0$.
- Using Valiant's result on hardness of permanent, we get that $2^{c \log n} M_{n}\left(z_{1}, z_{2}, \ldots, z_{u}\right)$ can be expressed as permanent of a matrix of size $O(\log n)$ for a suitable choice of constant $c>0$.

Computing $E_{\Sigma, n}(x)$

- Suppose permanent family can be computed by a circuit family of size $s\left(2^{\circ(n)}\right)$ over F.
- Then, the polynomial family $2^{c \log n} M_{n}$ can be computed by a circuit family of size $s\left(n^{\circ(1)}\right)$.
- Let circuit C compute $2^{c \log n} M_{n}$.
- Modify C by replacing its input z_{j} by $x^{2^{j}}$
- This adds $O(\log n)$ multiplication gates to C
- Multiply the resulting circuit by $2^{-c \log n}$ in F (since char $(F)>2$, it always exists)
- The final circuit computes $E_{\sum, n}(x)$ and has size $s\left(n^{\circ(1)}\right)$, a contradiction.

Computing $E_{\Sigma, n}(x)$

- Suppose permanent family can be computed by a circuit family of size $s\left(2^{o(n)}\right)$ over F.
- Then, the polynomial family $2^{c \log n} M_{n}$ can be computed by a circuit family of size $s\left(n^{\circ(1)}\right)$.
- Let circuit C compute $2^{c \log n} M_{n}$.
- Modify C by replacing its input z_{j} by $x^{2^{j}}$.
- This adds $O(\log n)$ multiplication gates to C.
- Multiply the resulting circuit by $2^{-c \log n}$ in F (since $\operatorname{char}(F)>2$, it always exists)
- The final circuit computes $E_{\sum_{n}}(x)$ and has size $s\left(n^{0(1)}\right)$, a contradiction.

Computing $E_{\Sigma, n}(x)$

- Suppose permanent family can be computed by a circuit family of size $s\left(2^{o(n)}\right)$ over F.
- Then, the polynomial family $2^{\log n} M_{n}$ can be computed by a circuit family of size $s\left(n^{o(1)}\right)$.
- Let circuit C compute $2^{c \log n} M_{n}$.
- Modify C by replacing its input z_{j} by $x^{2^{j}}$.
- This adds $O(\log n)$ multiplication gates to C.
- Multiply the resulting circuit by $2^{-c \log n}$ in F (since $\operatorname{char}(F)>2$, it always exists).
- The final circuit computes $E_{\Sigma, n}(x)$ and has size $s\left(n^{\circ(1)}\right)$, a contradiction.

Computing $E_{\Sigma, n}(x)$

- Suppose permanent family can be computed by a circuit family of size $s\left(2^{o(n)}\right)$ over F.
- Then, the polynomial family $2^{c \log n} M_{n}$ can be computed by a circuit family of size $s\left(n^{o(1)}\right)$.
- Let circuit C compute $2^{c \log n} M_{n}$.
- Modify C by replacing its input z_{j} by $x^{2^{j}}$.
- This adds $O(\log n)$ multiplication gates to C.
- Multiply the resulting circuit by $2^{-c \log n}$ in F (since $\operatorname{char}(F)>2$, it always exists).
- The final circuit computes $E_{\Sigma, n}(x)$ and has size $s\left(n^{\circ(1)}\right)$, a contradiction.

Outline

(1) Euler Function and Permanent Polynomial

(2) Computing Euler Function
(3) Proof of First Theorem
(4) Proof of Second Theorem
(5) Black-box Derandomization of Identity Testing
(6) Open Questions and a Conjecture

Setup

- Assume that there is a circuit family of size $s\left(2^{o(n)}\right)$ computing permanent polynomial over \mathbb{Z}.
- Let $P(x)=E_{\Pi, n}(x)$ for some $n>1$.
- Degree of $P(x)$ equals $\frac{1}{2} n(n+1)<n^{2}$
- Let $\operatorname{char}(F)=p$. Since coefficients of $P(x)$ are in F_{p}, we can assume $F=F_{p}$.
- Let \hat{F} be an extension of F with $n^{2} \leq q=|\hat{F}|=O\left(n^{2}\right)$.

Setup

- Assume that there is a circuit family of size $s\left(2^{o(n)}\right)$ computing permanent polynomial over \mathbb{Z}.
- Let $P(x)=E_{\Pi, n}(x)$ for some $n>1$.
- Degree of $P(x)$ equals $\frac{1}{2} n(n+1)<n^{2}$.
- Let char $(F)=p$. Since coefficients of $P(x)$ are in F_{p}, we can assume - Let \hat{F} be an extension of F with $n^{2} \leq q=|\hat{F}|=O\left(n^{2}\right)$.

Setup

- Assume that there is a circuit family of size $s\left(2^{o(n)}\right)$ computing permanent polynomial over \mathbb{Z}.
- Let $P(x)=E_{\Pi, n}(x)$ for some $n>1$.
- Degree of $P(x)$ equals $\frac{1}{2} n(n+1)<n^{2}$.
- Let $\operatorname{char}(F)=p$. Since coefficients of $P(x)$ are in F_{p}, we can assume $F=F_{p}$.
- Let \hat{F} be an extension of F with $n^{2} \leq q=|\hat{F}|=O\left(n^{2}\right)$.

An Alternative Expression for $P(x)$

- By Langrange's interpolation formula, we have:

$$
P(x)=\sum_{\alpha \in \hat{F}} P(\alpha) \cdot \frac{\prod_{\beta \in \hat{F}, \beta \neq \alpha}(x-\beta)}{\prod_{\beta \in \hat{F}, \beta \neq \alpha}(\alpha-\beta)}
$$

- Observe that

An Alternative Expression for $P(x)$

- By Langrange's interpolation formula, we have:

$$
P(x)=\sum_{\alpha \in \hat{F}} P(\alpha) \cdot \frac{\prod_{\beta \in \hat{F}, \beta \neq \alpha}(x-\beta)}{\prod_{\beta \in \hat{F}, \beta \neq \alpha}(\alpha-\beta)}
$$

- Observe that

$$
\prod_{\in \hat{F}, \beta \neq \alpha}(\alpha-\beta)=\prod_{\beta \in \hat{F}^{*}} \beta=-1,
$$

and

$$
\begin{aligned}
\prod_{\beta \in \hat{F}, \beta \neq \alpha}(x-\beta) & =\frac{\prod_{\beta \in \hat{F}}(x-\beta)}{x-\alpha} \\
& =\frac{x^{q}-x}{x-\alpha}=\sum_{j=1}^{q-1} \alpha^{j-1} x^{q-j} .
\end{aligned}
$$

An Alternative Expression for $P(x)$

- Therefore,

$$
\begin{aligned}
P(x) & =-\sum_{\alpha \in \hat{F}} P(\alpha) \sum_{j=1}^{q-1} \alpha^{j-1} x^{q-j} \\
& =-\sum_{j=1}^{q-1}\left(\sum_{\alpha \in \hat{F}} P(\alpha) \alpha^{j-1}\right) x^{q-j}
\end{aligned}
$$

- Now if we can compute $P(\alpha)$ efficiently, we can compute $P(x)$ as permanent of a small size matrix.
- However, as

we cannot compute it directly.

An Alternative Expression for $P(x)$

- Therefore,

$$
\begin{aligned}
P(x) & =-\sum_{\alpha \in \hat{F}} P(\alpha) \sum_{j=1}^{q-1} \alpha^{j-1} x^{q-j} \\
& =-\sum_{j=1}^{q-1}\left(\sum_{\alpha \in \hat{F}} P(\alpha) \alpha^{j-1}\right) x^{q-j} .
\end{aligned}
$$

- Now if we can compute $P(\alpha)$ efficiently, we can compute $P(x)$ as permanent of a small size matrix.
- However, as

$$
P(\alpha)=\prod_{m=1}^{n}\left(1-\alpha^{m}\right)
$$

we cannot compute it directly.

Computing $P(\alpha)$

- Let g be a generator of \hat{F}^{*}.
- Define NTM N as: on input α, guess t and m with $0 \leq t<q$ and $1 \leq m \leq n$. Check if $g^{t}=1-\alpha^{m}$. If yes, output t on the part, else output 0 .
- N is a polynomial time TM, and

- Hence, $g^{\# N(\alpha)}=P(\alpha)$.
- Therefore, $P(\alpha)$ is computable in $P \# P$

Computing $P(\alpha)$

- Let g be a generator of \hat{F}^{*}.
- Define NTM N as: on input α, guess t and m with $0 \leq t<q$ and $1 \leq m \leq n$. Check if $g^{t}=1-\alpha^{m}$. If yes, output t on the part, else output 0 .
- N is a polynomial time TM, and

$$
\# N(\alpha)=\sum_{m=1}^{n} t_{m},
$$

where $g^{t_{m}}=1-\alpha^{m}$.

- Hence, $g^{\# N(\alpha)}=P(\alpha)$.
- Therefore, $P(\alpha)$ is computable in $\mathrm{P} \# \mathrm{P}$

Computing $P(\alpha)$

- Let g be a generator of \hat{F}^{*}.
- Define NTM N as: on input α, guess t and m with $0 \leq t<q$ and $1 \leq m \leq n$. Check if $g^{t}=1-\alpha^{m}$. If yes, output t on the part, else output 0 .
- N is a polynomial time TM, and

$$
\# N(\alpha)=\sum_{m=1}^{n} t_{m},
$$

where $g^{t_{m}}=1-\alpha^{m}$.

- Hence, $g^{\# N(\alpha)}=P(\alpha)$.
- Therefore, $P(\alpha)$ is computable in $\mathrm{P} \# \mathrm{P}$.

Computing $P(x)$

- Since permanent is complete for \#P, we get that $P(\alpha)$ can be computed by boolean circuits of size $s\left(n^{\circ(1)}\right)$.
- Therefore, $P(x)$ can be computed by arithmetic circuits of size $s\left(2^{o\left(s\left(n^{o(1)}\right)\right)}\right)$ over F.
- A Contradiction.

Computing $P(x)$

- Since permanent is complete for $\# \mathrm{P}$, we get that $P(\alpha)$ can be computed by boolean circuits of size $s\left(n^{\circ(1)}\right)$.
- Therefore, $P(x)$ can be computed by arithmetic circuits of size $s\left(2^{o\left(s\left(n^{o(1)}\right)\right.}\right)$ over F.
- A Contradiction.

Outline

(1) Euler Function and Permanent Polynomial
(2) Computing Euler Function
(3) Proof of First Theorem
(4) Proof of Second Theorem
(5) Black-box Derandomization of Identity Testing
(6) Open Questions and A Conjecture

Polynomial Identity Testing Problem

PIT over F

Given an arithmetic circuit over field F, determine if the polynomial computed by the circuit is identically zero.

- Admits a number of randomized polynomial time algorithms but no deterministic one is known.
- Has an interesting connection with hardness of computing $E_{\Pi, n}(x)$.

Polynomial Identity Testing Problem

PIT over F

Given an arithmetic circuit over field F, determine if the polynomial computed by the circuit is identically zero.

- Admits a number of randomized polynomial time algorithms but no deterministic one is known.
- Has an interesting connection with hardness of computing $E_{\Pi, n}(x)$.

Computing Multiples of $E_{\Pi, n}(x)$

Let $P_{m}(x)$ be a family of polynomials with $P_{m}(x)$ of degree $m^{O(1)}$. The family is an $n(m)$-multiple of the family $E_{\Pi, n}(x)$ if for every $m, E_{\Pi, n(m)}(x)$ divides $P_{m}(x)$.

- It is possible that $E_{\Pi, n}(x)$ requires circuit of size $n^{\Omega(1)}$ to compute.
- Does it also mean that every $n(m)$-multiple of $E_{\Pi, n}(x)$ also requires circuits of size $(n(m))^{\Omega(1)}$ to compute?
- If yes, we get a black-box derandomization of PIT

Computing Multiples of $E_{\Pi, n}(x)$

Let $P_{m}(x)$ be a family of polynomials with $P_{m}(x)$ of degree $m^{O(1)}$. The family is an $n(m)$-multiple of the family $E_{\Pi, n}(x)$ if for every $m, E_{\Pi, n(m)}(x)$ divides $P_{m}(x)$.

- It is possible that $E_{\Pi, n}(x)$ requires circuit of size $n^{\Omega(1)}$ to compute.
- Does it also mean that every $n(m)$-multiple of $E_{\Pi, n}(x)$ also requires circuits of size $(n(m))^{\Omega(1)}$ to compute?
- If yes, we get a black-box derandomization of PIT.

Derandomization of PIT

Theorem

If every $n(m)$-multiple of $E_{\Pi, n}(x)$, for every $n(m)=m^{O(1)}$, requires circuits of size $(n(m))^{\Omega(1)}$ to compute over field F, then there exists a polynomial-time black-box derandomization of PIT over F.

Proof

- Assume that every $n(m)$-multiple of $E_{\Pi, n}(x)$ requires circuits of size $(n(m))^{\delta}$ for some $\delta>0$.
- Let C be an arithmetic circuit of size m computing a polynomial $Q\left(y_{1}, \ldots, y_{m}\right)$ over F.
- The degree of Q is bounded by 2^{m}
- We give a polynomial time algorithm for checking if Q is identically zero.

Proof

- Assume that every $n(m)$-multiple of $E_{\Pi, n}(x)$ requires circuits of size $(n(m))^{\delta}$ for some $\delta>0$.
- Let C be an arithmetic circuit of size m computing a polynomial $Q\left(y_{1}, \ldots, y_{m}\right)$ over F.
- The degree of Q is bounded by 2^{m}.
- We give a polynomial time algorithm for checking if Q is identically zero.

Proof

- Assume that every $n(m)$-multiple of $E_{\Pi, n}(x)$ requires circuits of size $(n(m))^{\delta}$ for some $\delta>0$.
- Let C be an arithmetic circuit of size m computing a polynomial $Q\left(y_{1}, \ldots, y_{m}\right)$ over F.
- The degree of Q is bounded by 2^{m}.
- We give a polynomial time algorithm for checking if Q is identically zero.

The Algorithm

- Let $D=2^{m}+1$ and replace y^{i} by $x^{D^{i-1}}$ as input to C.
- This requires an additional $O\left(m^{2}\right)$ wires at the bottom of C.
- Let the resulting circuit be C, and $R(x)$ be the polynomial computed by it.
- The size of C is $O\left(m^{2}\right)$ and the degree of $R(x)$ is at most $2^{m^{2}}$
- It is easy to see that $R(x)$ is non-zero iff $Q\left(y_{1}, \ldots, y_{m}\right)$ is.
- Test if $R(x)=0\left(\bmod \left(x^{\ell}-1\right)^{k}\right)$ for $1 \leq \ell \leq n=m^{3 / \delta}$ and k is the largest number such that $\left(x^{\ell}-1\right)^{k}$ divides $E_{\Pi, n}(x)$.
- Output ZERO iff all the tests succeed.

The Algorithm

- Let $D=2^{m}+1$ and replace y^{i} by $x^{D^{i-1}}$ as input to C.
- This requires an additional $O\left(m^{2}\right)$ wires at the bottom of C.
- Let the resulting circuit be \hat{C}, and $R(x)$ be the polynomial computed by it.
- The size of \hat{C} is $O\left(m^{2}\right)$ and the degree of $R(x)$ is at most $2^{m^{2}}$.
- It is easy to see that $R(x)$ is non-zero iff $Q\left(y_{1}, \ldots, y_{m}\right)$ is.
- Test if $R(x)=0\left(\bmod \left(x^{\ell}-1\right)^{k}\right)$ for $1 \leq \ell \leq n=m^{3 / \delta}$ and k is the largest number such that $\left(x^{\ell}-1\right)^{k}$ divides $E_{\Pi, n}(x)$.
- Output ZERO iff all the tests succeed.

The Algorithm

- Let $D=2^{m}+1$ and replace y^{i} by $x^{D^{i-1}}$ as input to C.
- This requires an additional $O\left(m^{2}\right)$ wires at the bottom of C.
- Let the resulting circuit be \hat{C}, and $R(x)$ be the polynomial computed by it.
- The size of \hat{C} is $O\left(m^{2}\right)$ and the degree of $R(x)$ is at most $2^{m^{2}}$.
- It is easy to see that $R(x)$ is non-zero iff $Q\left(y_{1}, \ldots, y_{m}\right)$ is.
- Test if $R(x)=0\left(\bmod \left(x^{\ell}-1\right)^{k}\right)$ for $1 \leq \ell \leq n=m^{3 / \delta}$ and k is the largest number such that $\left(x^{\ell}-1\right)^{k}$ divides $E_{\Pi, n}(x)$.

The Algorithm

- Let $D=2^{m}+1$ and replace y^{i} by $x^{D^{i-1}}$ as input to C.
- This requires an additional $O\left(m^{2}\right)$ wires at the bottom of C.
- Let the resulting circuit be \hat{C}, and $R(x)$ be the polynomial computed by it.
- The size of \hat{C} is $O\left(m^{2}\right)$ and the degree of $R(x)$ is at most $2^{m^{2}}$.
- It is easy to see that $R(x)$ is non-zero iff $Q\left(y_{1}, \ldots, y_{m}\right)$ is.
- Test if $R(x)=0\left(\bmod \left(x^{\ell}-1\right)^{k}\right)$ for $1 \leq \ell \leq n=m^{3 / \delta}$ and k is the largest number such that $\left(x^{\ell}-1\right)^{k}$ divides $E_{\Pi, n}(x)$.
- Output ZERO iff all the tests succeed.

Correctness

- The algorithm is clearly deterministic, polynomial-time, and black-box.
- Observe that if all the tests succeed, it implies that $E_{\Pi, n}(x)$ divides $R(x)$.
- If $R(x)$ is non-zero then, by our assumption on n-multiples of $E_{\Pi, n}(x), R(x)$ requires a circuit of size $n^{\delta}=m^{3}$ to compute.
- However, circuit \hat{C}, of size $O\left(m^{2}\right)$, computes $R(x)$.
- A contradiction.

Correctness

- The algorithm is clearly deterministic, polynomial-time, and black-box.
- Observe that if all the tests succeed, it implies that $E_{\Pi, n}(x)$ divides $R(x)$.
- If $R(x)$ is non-zero then, by our assumption on n-multiples of $E_{\Pi, n}(x), R(x)$ requires a circuit of size $n^{\delta}=m^{3}$ to compute.
- However, circuit \hat{C}, of size $O\left(m^{2}\right)$, computes $R(x)$.
- A contradiction.

Correctness

- The algorithm is clearly deterministic, polynomial-time, and black-box.
- Observe that if all the tests succeed, it implies that $E_{\Pi, n}(x)$ divides $R(x)$.
- If $R(x)$ is non-zero then, by our assumption on n-multiples of $E_{\Pi, n}(x), R(x)$ requires a circuit of size $n^{\delta}=m^{3}$ to compute.
- However, circuit C, of size $O\left(m^{2}\right)$, computes $R(x)$
- A contradiction.

Correctness

- The algorithm is clearly deterministic, polynomial-time, and black-box.
- Observe that if all the tests succeed, it implies that $E_{\Pi, n}(x)$ divides $R(x)$.
- If $R(x)$ is non-zero then, by our assumption on n-multiples of $E_{\Pi, n}(x), R(x)$ requires a circuit of size $n^{\delta}=m^{3}$ to compute.
- However, circuit \hat{C}, of size $O\left(m^{2}\right)$, computes $R(x)$.
- A contradiction.

Outline

(1) Euler Function and Permanent Polynomial
(2) Computing Euler Function
(3) Proof of First Theorem
(4) Proof of Second Theorem
(5) Black-box Derandomization of Identity Testing
(6) Open Questions and a Conjecture

Open Questions

Several questions remain open:
(1) Is the polynomial $E_{\Pi, n}(x)$ computable over F_{p} in $\operatorname{Mod}_{p} P$?
(3) Does $E_{\Pi, n}(x)$ require circuits of size $n^{\Omega(1)}$?
(© Does every n-multiple of $E_{\Pi, n}(x)$ requires circuits of size $n^{\Omega(1)}$?

Open Questions

Several questions remain open:
(1) Is the polynomial $E_{\Pi, n}(x)$ computable over F_{p} in $\operatorname{Mod}_{p} P$?
(2) Does $E_{\Pi, n}(x)$ require circuits of size $n^{\Omega(1)}$?
(- Does every n-multiple of $E_{\Pi, n}(x)$ requires circuits of size $n^{\Omega(1)}$?

Open Questions

Several questions remain open:
(1) Is the polynomial $E_{\Pi, n}(x)$ computable over F_{p} in $\operatorname{Mod}_{p} P$?
(2) Does $E_{\Pi, n}(x)$ require circuits of size $n^{\Omega(1)}$?
(3) Does every n-multiple of $E_{\Pi, n}(x)$ requires circuits of size $n^{\Omega(1)}$?

A Conjecture

Conjecture

Answer to all three questions above is yes.

If the conjecture is true then an exponential lower bound on permanent polynomial follows.

A Conjecture

Conjecture

Answer to all three questions above is yes.

If the conjecture is true then an exponential lower bound on permanent polynomial follows.

Thoughts on the Conjecture

- The conjecture relates the size of an arithmetic circuit computing a polynomial to the number of distinct small roots of unity that the polynomial can have.
- It is similar in spirit to τ-conjecture of Shub-Smale that relates the size of an arithmetic circuit computing a polynomial to the number of integer roots the polynomial can have.

Thoughts on the Conjecture

- The conjecture relates the size of an arithmetic circuit computing a polynomial to the number of distinct small roots of unity that the polynomial can have.
- It is similar in spirit to τ-conjecture of Shub-Smale that relates the size of an arithmetic circuit computing a polynomial to the number of integer roots the polynomial can have.

