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Euler Function

E (x) =
∏
k>0

(1− xk)

Defined by Leonhard Euler.
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Relation to Partition Numbers

Let pm be the number of partitions of m. Then

1

E (x)
=

∑
m≥0

pmxm.

Proof. Note that

1

E (x)
=

1∏
k>0(1− xk)

=
∏
k>0

(
∑
t≥0

xkt).
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Euler Identity

E (x) =
∞∑

m=−∞
(−1)mx (3m2−m)/2.

Proof. Set up an involution between terms of same degree and opposite
signs. Only a few survive.
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Shape Over Complex Plane

Undefined outside unit
disk.

Zero at unit circle.

Bounded inside the unit
disk:

I Red represents value 4
I Black represents value

0

Image created by Linas Vepstas (linas@linas.org) and released under the
Gnu Free Documentation License (GFDL). Borrowed from
http://en.wikipedia.org/wiki/File:Q-euler.jpeg.
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Capturing Symmetries

Dedekind Eta Function

η(z) = e
πiz
12 E (e2πiz).

η(z) is defined on the upper half of the complex plane and satisfies many
interesting properties:

η(z + 1) = e
πi
12 η(z).

η(−1
z ) =

√
−izη(z).

Proof. First part is trivial. Second part requires non-trivial complex
analysis.
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Permanent Polynomial

For any n > 0, let X = [xi ,j ] be a n× n matrix with variable elements.

Then permanent polynomial of degree n is the permanent of X :

per n(x̄) =
∑
σ∈Sn

n∏
i=1

xi ,σ(i).

It is believed to be hard to compute.
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Two Families of Polynomials

Let

EΣ,n(x) =
n∑

k=−n
(−1)kx (3k2−k)/2

and

EΠ,n =
n∏

k=1

(1− xk).

We have:
I E (x) = limn 7→∞ EΣ,n(x) = limn 7→∞ EΠ,n(x).
I EΣ,n(x) is a polynomial of degree 1

2 (3n2 + n) and EΠ,n(x) is a
polynomial of degree 1

2 (n2 + n).

A circuit family computing EΣ,n(x) or EΠ,n(x) can be viewed as
computing E (x).

We will consider arithmetic circuit families for computing EΣ,n(x) and
EΠ,n(x).
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Arithmetic Circuits for Univariate
Polynomials

A circuit computing polynomial P(x) over field F takes as input x
and −1; and outputs P(x).

It is allowed to use addition and multiplication gates of arbitrary fanin
over F .

Size of a circuit is the number of wires in it.

A depth two circuit family of size O(n2) can compute both EΣ,n(x)
and EΠ,n(x) over any field as they are polynomials of degree O(n2).

A depth three circuit family of size O(n) can compute EΠ,n(x) over
any field: follows from definition.
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Circuits for E (x)

Can a higher depth circuit do significantly better?

For some other polynomials, we can do substantially better. For
example,

log n−1∏
j=0

(1 + x2j ) =
n−1∑
i=0

x i

can be computed by a depth three circuit of size O(log n).

However, it is not clear how to compute E (x) with no(1) sized circuits.
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The Main Theorems

Theorem (First Theorem)

Suppose every circuit family computing EΣ,n(x) over F , char(F ) > 2, has
size s(nΩ(1)) for some s(m) ≥ (log m)2. Then permanent polynomial
family requires arithmetic circuits of size s(2Ω(n)) over F .

Theorem (Second Theorem)

Suppose every circuit family computing EΠ,n(x) over F , char(F ) > 2, has

size s(2Ω(s(nO(1)))) for some s(m) ≥ (log m)2. Then permanent polynomial
family requires arithmetic circuits of size s(2Ω(n)) over Z.

A weaker version of second theorem was recently shown by Pascal Koiran.

Manindra Agrawal (IITK) CSR 2011 13 / 33



The Main Theorems

Theorem (First Theorem)

Suppose every circuit family computing EΣ,n(x) over F , char(F ) > 2, has
size s(nΩ(1)) for some s(m) ≥ (log m)2. Then permanent polynomial
family requires arithmetic circuits of size s(2Ω(n)) over F .

Theorem (Second Theorem)

Suppose every circuit family computing EΠ,n(x) over F , char(F ) > 2, has

size s(2Ω(s(nO(1)))) for some s(m) ≥ (log m)2. Then permanent polynomial
family requires arithmetic circuits of size s(2Ω(n)) over Z.

A weaker version of second theorem was recently shown by Pascal Koiran.

Manindra Agrawal (IITK) CSR 2011 13 / 33



Outline

1 Euler Function and Permanent Polynomial

2 Computing Euler Function

3 Proof of First Theorem

4 Proof of Second Theorem

5 Black-box Derandomization of Identity Testing

6 Open Questions and a Conjecture

Manindra Agrawal (IITK) CSR 2011 14 / 33



Multilinear Version of EΣ,n(x)

Let EΣ,n(x) =
∑(3n2+n)/2

t=0 ctx
t .

Define

Mn(z1, z2, . . . , zu) =

(3n2+n)/2∑
t=0

ct

u∏
j=1

z
t[j]
j ,

where u = dlog(3n2 + n)e − 1, t[j ] is jth bit of t, and ct ∈ {−1, 0, 1}
such that

EΣ,n(x) = Mn(x , x2, x22
, . . . , x2u−1

).

The coefficient ct is computable in polynomial time given t: check if
t = 1

2 (3m2 ±m) for some m; if it is, then ct = ±1, else ct = 0.

Using Valiant’s result on hardness of permanent, we get that
2c log nMn(z1, z2, . . . , zu) can be expressed as permanent of a matrix
of size O(log n) for a suitable choice of constant c > 0.
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Computing EΣ,n(x)

Suppose permanent family can be computed by a circuit family of size
s(2o(n)) over F .

Then, the polynomial family 2c log nMn can be computed by a circuit
family of size s(no(1)).

Let circuit C compute 2c log nMn.

Modify C by replacing its input zj by x2j .

This adds O(log n) multiplication gates to C .

Multiply the resulting circuit by 2−c log n in F (since char(F ) > 2, it
always exists).

The final circuit computes EΣ,n(x) and has size s(no(1)), a
contradiction.
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Setup

Assume that there is a circuit family of size s(2o(n)) computing
permanent polynomial over Z.

Let P(x) = EΠ,n(x) for some n > 1.

Degree of P(x) equals 1
2 n(n + 1) < n2.

Let char(F ) = p. Since coefficients of P(x) are in Fp, we can assume
F = Fp.

Let F̂ be an extension of F with n2 ≤ q = |F̂ | = O(n2).

Manindra Agrawal (IITK) CSR 2011 18 / 33



Setup

Assume that there is a circuit family of size s(2o(n)) computing
permanent polynomial over Z.

Let P(x) = EΠ,n(x) for some n > 1.

Degree of P(x) equals 1
2 n(n + 1) < n2.

Let char(F ) = p. Since coefficients of P(x) are in Fp, we can assume
F = Fp.

Let F̂ be an extension of F with n2 ≤ q = |F̂ | = O(n2).

Manindra Agrawal (IITK) CSR 2011 18 / 33



Setup

Assume that there is a circuit family of size s(2o(n)) computing
permanent polynomial over Z.

Let P(x) = EΠ,n(x) for some n > 1.

Degree of P(x) equals 1
2 n(n + 1) < n2.

Let char(F ) = p. Since coefficients of P(x) are in Fp, we can assume
F = Fp.

Let F̂ be an extension of F with n2 ≤ q = |F̂ | = O(n2).

Manindra Agrawal (IITK) CSR 2011 18 / 33



An Alternative Expression for P(x)

By Langrange’s interpolation formula, we have:

P(x) =
∑
α∈F̂

P(α) ·
∏
β∈F̂ ,β 6=α(x − β)∏
β∈F̂ ,β 6=α(α− β)

.

Observe that ∏
β∈F̂ ,β 6=α

(α− β) =
∏
β∈F̂∗

β = −1,

and ∏
β∈F̂ ,β 6=α

(x − β) =

∏
β∈F̂ (x − β)

x − α

=
xq − x

x − α
=

q−1∑
j=1

αj−1xq−j .

Manindra Agrawal (IITK) CSR 2011 19 / 33



An Alternative Expression for P(x)

By Langrange’s interpolation formula, we have:

P(x) =
∑
α∈F̂

P(α) ·
∏
β∈F̂ ,β 6=α(x − β)∏
β∈F̂ ,β 6=α(α− β)

.

Observe that ∏
β∈F̂ ,β 6=α

(α− β) =
∏
β∈F̂∗

β = −1,

and ∏
β∈F̂ ,β 6=α

(x − β) =

∏
β∈F̂ (x − β)

x − α

=
xq − x

x − α
=

q−1∑
j=1

αj−1xq−j .

Manindra Agrawal (IITK) CSR 2011 19 / 33



An Alternative Expression for P(x)

Therefore,

P(x) = −
∑
α∈F̂

P(α)

q−1∑
j=1

αj−1xq−j

= −
q−1∑
j=1

(
∑
α∈F̂

P(α)αj−1)xq−j .

Now if we can compute P(α) efficiently, we can compute P(x) as
permanent of a small size matrix.

However, as

P(α) =
n∏

m=1

(1− αm),

we cannot compute it directly.
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Computing P(α)

Let g be a generator of F̂ ∗.

Define NTM N as: on input α, guess t and m with 0 ≤ t < q and
1 ≤ m ≤ n. Check if g t = 1− αm. If yes, output t on the part, else
output 0.

N is a polynomial time TM, and

#N(α) =
n∑

m=1

tm,

where g tm = 1− αm.

Hence, g #N(α) = P(α).

Therefore, P(α) is computable in P#P.
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Computing P(x)

Since permanent is complete for #P, we get that P(α) can be
computed by boolean circuits of size s(no(1)).

Therefore, P(x) can be computed by arithmetic circuits of size

s(2o(s(no(1)))) over F .

A Contradiction.
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Polynomial Identity Testing Problem

PIT over F

Given an arithmetic circuit over field F , determine if the polynomial
computed by the circuit is identically zero.

Admits a number of randomized polynomial time algorithms but no
deterministic one is known.

Has an interesting connection with hardness of computing EΠ,n(x).
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Computing Multiples of EΠ,n(x)

Let Pm(x) be a family of polynomials with Pm(x) of degree mO(1). The
family is an n(m)-multiple of the family EΠ,n(x) if for every m, EΠ,n(m)(x)
divides Pm(x).

It is possible that EΠ,n(x) requires circuit of size nΩ(1) to compute.

Does it also mean that every n(m)-multiple of EΠ,n(x) also requires
circuits of size (n(m))Ω(1) to compute?

If yes, we get a black-box derandomization of PIT.
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Derandomization of PIT

Theorem

If every n(m)-multiple of EΠ,n(x), for every n(m) = mO(1), requires
circuits of size (n(m))Ω(1) to compute over field F , then there exists a
polynomial-time black-box derandomization of PIT over F .
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Proof

Assume that every n(m)-multiple of EΠ,n(x) requires circuits of size
(n(m))δ for some δ > 0.

Let C be an arithmetic circuit of size m computing a polynomial
Q(y1, . . . , ym) over F .

The degree of Q is bounded by 2m.

We give a polynomial time algorithm for checking if Q is identically
zero.

Manindra Agrawal (IITK) CSR 2011 27 / 33



Proof

Assume that every n(m)-multiple of EΠ,n(x) requires circuits of size
(n(m))δ for some δ > 0.

Let C be an arithmetic circuit of size m computing a polynomial
Q(y1, . . . , ym) over F .

The degree of Q is bounded by 2m.

We give a polynomial time algorithm for checking if Q is identically
zero.

Manindra Agrawal (IITK) CSR 2011 27 / 33



Proof

Assume that every n(m)-multiple of EΠ,n(x) requires circuits of size
(n(m))δ for some δ > 0.

Let C be an arithmetic circuit of size m computing a polynomial
Q(y1, . . . , ym) over F .

The degree of Q is bounded by 2m.

We give a polynomial time algorithm for checking if Q is identically
zero.
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The Algorithm

Let D = 2m + 1 and replace y i by xD i−1
as input to C .

This requires an additional O(m2) wires at the bottom of C .

Let the resulting circuit be Ĉ , and R(x) be the polynomial computed
by it.

The size of Ĉ is O(m2) and the degree of R(x) is at most 2m
2
.

It is easy to see that R(x) is non-zero iff Q(y1, . . . , ym) is.

Test if R(x) = 0 (mod (x` − 1)k) for 1 ≤ ` ≤ n = m3/δ and k is the
largest number such that (x` − 1)k divides EΠ,n(x).

Output ZERO iff all the tests succeed.
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Correctness

The algorithm is clearly deterministic, polynomial-time, and black-box.

Observe that if all the tests succeed, it implies that EΠ,n(x) divides
R(x).

If R(x) is non-zero then, by our assumption on n-multiples of
EΠ,n(x), R(x) requires a circuit of size nδ = m3 to compute.

However, circuit Ĉ , of size O(m2), computes R(x).

A contradiction.
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Open Questions

Several questions remain open:

1 Is the polynomial EΠ,n(x) computable over Fp in ModpP?

2 Does EΠ,n(x) require circuits of size nΩ(1)?

3 Does every n-multiple of EΠ,n(x) requires circuits of size nΩ(1)?
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A Conjecture

Conjecture

Answer to all three questions above is yes.

If the conjecture is true then an exponential lower bound on permanent
polynomial follows.

Manindra Agrawal (IITK) CSR 2011 32 / 33



A Conjecture

Conjecture

Answer to all three questions above is yes.

If the conjecture is true then an exponential lower bound on permanent
polynomial follows.

Manindra Agrawal (IITK) CSR 2011 32 / 33



Thoughts on the Conjecture

The conjecture relates the size of an arithmetic circuit computing a
polynomial to the number of distinct small roots of unity that the
polynomial can have.

It is similar in spirit to τ -conjecture of Shub-Smale that relates the
size of an arithmetic circuit computing a polynomial to the number of
integer roots the polynomial can have.
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