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OUTLINE

© EULER FUNCTION AND PERMANENT POLYNOMIAL
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EULER FUNCTION

E()=JJ@-xH

k>0

Defined by Leonhard Euler.
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RELATION TO PARTITION NUMBERS

Let p,, be the number of partitions of m. Then

Proof. Note that

1 1 ,
E0) ~ Moo= — LI

k>0 t>0

MANINDRA AGRAWAL (IITK)



EULER IDENTITY

E(X): i (_1)mX(3m2—m)/2.

m=—0o0

Proof. Set up an involution between terms of same degree and opposite
signs. Only a few survive.
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SHAPE OVER COMPLEX PLANE

o Undefined outside unit
disk.
@ Zero at unit circle.
@ Bounded inside the unit
disk:
» Red represents value 4

» Black represents value
0

Image created by Linas Vepstas (linas@linas.org) and released under the
Gnu Free Documentation License (GFDL). Borrowed from
http://en.wikipedia.org/wiki/File:Q-euler.jpeg.
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CAPTURING SYMMETRIES

DEDEKIND ETA FUNCTION
n(z) = e E(e2™7).

1(z) is defined on the upper half of the complex plane and satisfies many
interesting properties:

o 5z +1) = eB(z).

o n(~1) = V=7zn(z).

Proof. First part is trivial. Second part requires non-trivial complex
analysis.
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PERMANENT POLYNOMIAL

e Forany n >0, let X = [x;;] be a n x n matrix with variable elements.
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PERMANENT POLYNOMIAL

e Forany n >0, let X = [x; ] be a n x n matrix with variable elements.

@ Then permanent polynomial of degree n is the permanent of X:

per n()_() = Z HXi,U(i)'

c€eS, i=1
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PERMANENT POLYNOMIAL

e Forany n >0, let X = [x; ] be a n x n matrix with variable elements.

@ Then permanent polynomial of degree n is the permanent of X:

per n()_() = Z HXi,U(i)'

c€eS, i=1

@ It is believed to be hard to compute.
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Two FAMILIES OF POLYNOMIALS

o Let

n

E):,-,(X) _ Z (_1)kX(3k2_k)/2
k=—n

and

n
Enn=[J(1—xY).
k=1
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Two FAMILIES OF POLYNOMIALS

o Let N
E);,-,(X) _ Z (_1)kX(3k2_k)/2
k=—n
and .
Enn=[J(1—xY).
k=1
o We have:

» E(x) = limpsoo Ex n(x) = limpsoo Enn(X).
» Es n(x) is a polynomial of degree 2(3n® + n) and En ,(x) is a
polynomial of degree 1(n* -+ n).
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Two FAMILIES OF POLYNOMIALS

o Let .
E):,n(X) _ Z (_1)kX(3k2_k)/2
k=—n
and .
Enn=[J(1—xY).
k=1
o We have:

» E(x) = limpsoo Ex n(x) = limpsoo Enn(X).
» Es n(x) is a polynomial of degree 2(3n® + n) and En ,(x) is a
polynomial of degree 1(n* -+ n).
o A circuit family computing Es ,(x) or En »(x) can be viewed as
computing E(x).

e We will consider arithmetic circuit families for computing Es ,(x) and
En,n(X).
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ARITHMETIC CIRCUITS FOR UNIVARIATE
POLYNOMIALS

e A circuit computing polynomial P(x) over field F takes as input x
and —1; and outputs P(x).

@ It is allowed to use addition and multiplication gates of arbitrary fanin
over F.

o Size of a circuit is the number of wires in it.
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ARITHMETIC CIRCUITS FOR UNIVARIATE
POLYNOMIALS

e A circuit computing polynomial P(x) over field F takes as input x
and —1; and outputs P(x).

@ It is allowed to use addition and multiplication gates of arbitrary fanin
over F.

Size of a circuit is the number of wires in it.

A depth two circuit family of size O(n?) can compute both Es ,(x)
and Ep ,(x) over any field as they are polynomials of degree O(n?).
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ARITHMETIC CIRCUITS FOR UNIVARIATE
POLYNOMIALS

e A circuit computing polynomial P(x) over field F takes as input x
and —1; and outputs P(x).

@ It is allowed to use addition and multiplication gates of arbitrary fanin
over F.

o Size of a circuit is the number of wires in it.

o A depth two circuit family of size O(n?) can compute both Es ,(x)
and Ep ,(x) over any field as they are polynomials of degree O(n?).

o A depth three circuit family of size O(n) can compute Ep ,(x) over
any field: follows from definition.
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CIRCUITS FOR E(x)

o Can a higher depth circuit do significantly better?
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CIRCUITS FOR E(x)

o Can a higher depth circuit do significantly better?

@ For some other polynomials, we can do substantially better. For

example,
log n—1

H 1+X Zx
j=0

can be computed by a depth three circuit of size O(log n).
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CIRCUITS FOR E(x)

o Can a higher depth circuit do significantly better?

@ For some other polynomials, we can do substantially better. For

example,
log n—1

H 1+X Zx
j=0

can be computed by a depth three circuit of size O(log n).

o However, it is not clear how to compute E(x) with n°() sized circuits.
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THE MAIN THEOREMS

THEOREM (FIRST THEOREM )

Suppose every circuit family computing Es ,(x) over F, char(F) > 2, has
size s(n?(M) for some s(m) > (log m)?. Then permanent polynomial
family requires arithmetic circuits of size s(2(")) over F.
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THE MAIN THEOREMS

THEOREM (FIRST THEOREM )

Suppose every circuit family computing Es ,(x) over F, char(F) > 2, has
size s(n?(M) for some s(m) > (log m)?. Then permanent polynomial
family requires arithmetic circuits of size s(2°{") over F.

THEOREM (SECOND THEOREM)
Suppose every circuit family computing En n(x) over F, char(F) > 2, has

size 5(29(5(”0(1)))) for some s(m) > (log m)2. Then permanent polynomial
family requires arithmetic circuits of size s(2°4") over Z.

A weaker version of second theorem was recently shown by Pascal Koiran.
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OUTLINE

© Proor ofF FIRST THEOREM
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MULTILINEAR VERSION OF Ey ,(x)

o Let Ex n(x) = 03m+m/2

@ Define
(3n°+n)/

Mp(z1, 22, ..., 24) = Z ctHzL’]

where u = [log(3n® + n)] — 1, t[j] is jth bit of ¢, and ¢; € {—1,0,1}
such that

2 -1
Es n(x) = Ma(x,x*, x>, ..., x* ).
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MULTILINEAR VERSION OF Ey ,(x)

o Let Ex n(x) = 03m+m/2

@ Define
(3n°+n)/

Mp(z1, 22, ..., 24) = Z ctHzL’]

where u = [log(3n® + n)] — 1, t[j] is jth bit of ¢, and ¢; € {—1,0,1}
such that

2 -1
Es n(x) = Ma(x,x*, x>, ..., x* ).

@ The coefficient ¢; is computable in polynomial time given t: check if
t = 3(3m? & m) for some m; if it is, then ¢; = £1, else ¢; = 0.
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MULTILINEAR VERSION OF Ey ,(x)

o Let Ex n(x) = 03m+m/2

@ Define
(3n°+n)/

Mp(z1, 22, ..., 24) = Z ctHzL’]

where u = [log(3n® + n)] — 1, t[j] is jth bit of ¢, and ¢; € {—1,0,1}
such that , X
Es n(x) = Ma(x,x*, x>, ..., x* ).

@ The coefficient ¢; is computable in polynomial time given t: check if
t = 3(3m? & m) for some m; if it is, then ¢; = £1, else ¢; = 0.

@ Using Valiant's result on hardness of permanent, we get that
26'°g”l\/ln(zl,22, ..., Zy) can be expressed as permanent of a matrix
of size O(log n) for a suitable choice of constant ¢ > 0.
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COMPUTING Ey p(x)

@ Suppose permanent family can be computed by a circuit family of size
s(2°(") over F.

@ Then, the polynomial family 2€'°€6" M, can be computed by a circuit
family of size s(n°(1)).
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COMPUTING Ey p(x)

Suppose permanent family can be computed by a circuit family of size
s(2°(") over F.

Then, the polynomial family 2'°¢"M,, can be computed by a circuit
family of size s(n°(1)).

Let circuit C compute 298"\,

Modify C by replacing its input z; by x2.

This adds O(log n) multiplication gates to C.

MANINDRA AGRAWAL (IITK) CSR 2011 16 / 33



COMPUTING Ey p(x)

@ Suppose permanent family can be computed by a circuit family of size
s(2°(") over F.

Then, the polynomial family 2'°¢"M,, can be computed by a circuit
family of size s(n°(1)).

Let circuit C compute 298"\,

Modify C by replacing its input z; by x2.

This adds O(log n) multiplication gates to C.

Multiply the resulting circuit by 27<'°¢" in F (since char(F) > 2, it
always exists).
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COMPUTING Ey p(x)

Suppose permanent family can be computed by a circuit family of size
s(2°(") over F.

@ Then, the polynomial family 2¢'°6" M, can be computed by a circuit
family of size s(n°().

o Let circuit C compute 2987\,
e Modify C by replacing its input z; by x?
e This adds O(log n) multiplication gates to C.

o Multiply the resulting circuit by 27<'°€" in F (since char(F) > 2, it
always exists).

o The final circuit computes Es ,(x) and has size s(n°()), a
contradiction.
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@ PRrooF OF SECOND THEOREM
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SETUP

@ Assume that there is a circuit family of size 5(20(”)) computing
permanent polynomial over Z.
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SETUP

@ Assume that there is a circuit family of size 5(2"(”)) computing
permanent polynomial over Z.

o Let P(x) = En »(x) for some n > 1.
o Degree of P(x) equals $n(n+1) < n?.
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SETUP

Assume that there is a circuit family of size 5(20(”)) computing
permanent polynomial over Z.

Let P(x) = Ep n(x) for some n > 1.

Degree of P(x) equals 1n(n+ 1) < n?.

Let char(F) = p. Since coefficients of P(x) are in F,, we can assume
F=F,
Let F be an extension of F with n? < g = |F| = O(n?).
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AN ALTERNATIVE EXPRESSION FOR P(x)

e By Langrange's interpolation formula, we have:

‘ Hﬁeﬁ,g;éa(x - B)
[ser prale = B)

P(x) =) P(a)

acf
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AN ALTERNATIVE EXPRESSION FOR P(x)

e By Langrange's interpolation formula, we have:

. Hﬁef—‘”ﬁ;ﬁa(x - B)
H/ggﬁ,g;ﬁa(a - B)

P() =3 P(a)

o Observe that

BEF,f#a BeF*
and
[T c-p) — o=
X — o
BEF pa
q—1
= T x = o Ix9,
X — ‘
j=1
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AN ALTERNATIVE EXPRESSION FOR P(x)

@ Therefore,

q—1

P(x) = =) Pla)) o/ 'x97

acF Jj=1

q—1
= > (O Pla)ad HxT.

J=1 acF
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AN ALTERNATIVE EXPRESSION FOR P(x)

@ Therefore,

g—1
P(x) = =Y P(a) Z o/ "1x9

aef-‘

= =S Pl e

J=1 aeF

o Now if we can compute P(«) efficiently, we can compute P(x) as
permanent of a small size matrix.

@ However, as

we cannot compute it directly.
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COMPUTING P(«)

o Let g be a generator of F*.

@ Define NTM N as: on input «, guess t and m with 0 <t < g and
1< m< n. Check if gt =1—a™. If yes, output t on the part, else
output 0.
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COMPUTING P(«)

o Let g be a generator of F*.

@ Define NTM N as: on input «, guess t and m with 0 <t < g and
1< m< n. Check if gt =1—a™. If yes, output t on the part, else
output 0.

e N is a polynomial time TM, and

#N(a) =D tm,
m=1

where gtm =1 — ™.
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COMPUTING P(«)

Let g be a generator of F*.

Define NTM N as: on input «, guess t and m with 0 < t < g and
1< m< n. Check if gt =1—a™. If yes, output t on the part, else
output 0.

N is a polynomial time TM, and

#N(a) =D tm,
m=1

where gim =1 — ™.
Hence, g#N(®) = P(a).
Therefore, P(«) is computable in p#P.
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COMPUTING P(x)

e Since permanent is complete for #P, we get that P(«) can be
computed by boolean circuits of size s(n°(1)).
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COMPUTING P(x)

e Since permanent is complete for #P, we get that P(«) can be
computed by boolean circuits of size s(n°(1)).

@ Therefore, P(x) can be computed by arithmetic circuits of size
5(20(5(”0(1)))) over F.

@ A Contradiction.
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PoLyNOMIAL IDENTITY TESTING PROBLEM

PIT OVER F

Given an arithmetic circuit over field F, determine if the polynomial
computed by the circuit is identically zero.

o Admits a number of randomized polynomial time algorithms but no
deterministic one is known.
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PoLyNOMIAL IDENTITY TESTING PROBLEM

PIT OVER F

Given an arithmetic circuit over field F, determine if the polynomial
computed by the circuit is identically zero.

o Admits a number of randomized polynomial time algorithms but no
deterministic one is known.

@ Has an interesting connection with hardness of computing Ep »(x).
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COMPUTING MULTIPLES OF Ep ,(x)

Let P,(x) be a family of polynomials with P,,(x) of degree m®™1). The
family is an n(m)-multiple of the family En ,(x) if for every m, Ep n(m)(x)
divides P, (x).

Q(1)

e It is possible that Ep ,(x) requires circuit of size n to compute.
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COMPUTING MULTIPLES OF Ep ,(x)

Let P.,(x) be a family of polynomials with P,,(x) of degree m®(1). The
family is an n(m)-multiple of the family En ,(x) if for every m, Ep n(m)(x)
divides P, (x).

Q(1)

e It is possible that Ep ,(x) requires circuit of size n to compute.

@ Does it also mean that every n(m)-multiple of Ep ,(x) also requires
circuits of size (n(m))?() to compute?

o If yes, we get a black-box derandomization of PIT.
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DERANDOMIZATION OF PIT

THEOREM

If every n(m)-multiple of En ,(x), for every n(m) = m°®), requires
circuits of size (n(m))*(Y) to compute over field F, then there exists a
polynomial-time black-box derandomization of PIT over F.
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PRrROOF

e Assume that every n(m)-multiple of Ep ,(x) requires circuits of size
(n(m))? for some § > 0.
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Proor

e Assume that every n(m)-multiple of Ep ,(x) requires circuits of size
(n(m))°® for some & > 0.

o Let C be an arithmetic circuit of size m computing a polynomial
Q(yi,...,ym) over F.

@ The degree of Q is bounded by 2™.
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Proor

e Assume that every n(m)-multiple of Ep ,(x) requires circuits of size
(n(m))°® for some & > 0.

o Let C be an arithmetic circuit of size m computing a polynomial
Q(yi,...,ym) over F.
@ The degree of Q is bounded by 2™.

o We give a polynomial time algorithm for checking if @ is identically
zero.
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THE ALGORITHM

o Let D =2"+1 and replace y' by xP'™" as input to C.

o This requires an additional O(m?) wires at the bottom of C.
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THE ALGORITHM

Let D = 2" + 1 and replace y' by xP'™" as input to C.

This requires an additional O(m?) wires at the bottom of C.

Let the resulting circuit be C, and R(x) be the polynomial computed
by it.

The size of C is O(m?) and the degree of R(x) is at most 2™ .

It is easy to see that R(x) is non-zero iff Q(yi,...,ym) is.
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THE ALGORITHM

o Let D =2"+1 and replace y' by xP'™" as input to C.
o This requires an additional O(m?) wires at the bottom of C.
o Let the resulting circuit be C, and R(x) be the polynomial computed

by it.
o The size of C is O(m?) and the degree of R(x) is at most 2™
@ It is easy to see that R(x) is non-zero iff Q(y1,...,ym) is

¢ ))for1<€<n—m3/5andk|sthe
(x* — 1) divides En ,(x).

e Test if R(x) =0 (mod (x" —
largest number such that
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THE ALGORITHM

o Let D =2"+1 and replace y' by xP'™" as input to C.
o This requires an additional O(m?) wires at the bottom of C.

o Let the resulting circuit be C, and R(x) be the polynomial computed

by it.
o The size of C is O(m?) and the degree of R(x) is at most 2™
@ It is easy to see that R(x) is non-zero iff Q(y1,...,ym) is.

o Test if R(x) =0 (mod (x* — 1)¥) for 1 < £ < n=m>*" and k is the
largest number such that (x* — 1) divides En ,(x).

o Output ZERO iff all the tests succeed.
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CORRECTNESS

@ The algorithm is clearly deterministic, polynomial-time, and black-box.

MANINDRA AGRAWAL (IITK)



CORRECTNESS

@ The algorithm is clearly deterministic, polynomial-time, and black-box.

o Observe that if all the tests succeed, it implies that Ep ,(x) divides
R(x).
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CORRECTNESS

@ The algorithm is clearly deterministic, polynomial-time, and black-box.
o Observe that if all the tests succeed, it implies that Ep ,(x) divides
R(x).

e If R(x) is non-zero then, by our assumption on n-multiples of
En.»(x), R(x) requires a circuit of size n° = m® to compute.
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CORRECTNESS

@ The algorithm is clearly deterministic, polynomial-time, and black-box.

o Observe that if all the tests succeed, it implies that Ep ,(x) divides
R(x).

e If R(x) is non-zero then, by our assumption on n-multiples of
En.»(x), R(x) requires a circuit of size n° = m® to compute.

o However, circuit C, of size O(m?), computes R(x).

e A contradiction.
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OPEN QUESTIONS

Several questions remain open:

@ Is the polynomial Ep ,(x) computable over F, in Mod,P?
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OPEN QUESTIONS

Several questions remain open:

@ Is the polynomial Ep ,(x) computable over F, in Mod,P?

@ Does Ep ,(x) require circuits of size n(1)?
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OPEN QUESTIONS

Several questions remain open:
@ Is the polynomial Ep ,(x) computable over F, in Mod,P?
@ Does Ep ,(x) require circuits of size n(1)?

@ Does every n-multiple of En ,(x) requires circuits of size nf(1)?
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A CONJECTURE

CONJECTURE
Answer to all three questions above is yes. J
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A CONJECTURE

CONJECTURE
Answer to all three questions above is yes. J

If the conjecture is true then an exponential lower bound on permanent
polynomial follows.
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THOUGHTS ON THE CONJECTURE

@ The conjecture relates the size of an arithmetic circuit computing a
polynomial to the number of distinct small roots of unity that the
polynomial can have.
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THOUGHTS ON THE CONJECTURE

@ The conjecture relates the size of an arithmetic circuit computing a
polynomial to the number of distinct small roots of unity that the
polynomial can have.

@ It is similar in spirit to T-conjecture of Shub-Smale that relates the
size of an arithmetic circuit computing a polynomial to the number of
integer roots the polynomial can have.
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