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Given: a set A from universe U

n=|Al < m=|U|

e.g., n=m"% n=polylogm, etc.

To construct: a database B of size s such that

to answer a query

xXEA?
we need to read one bit from the database
Goal: minimize s = |B|

Remark: s = Q(nlog m)
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static structures for a set: standard solutions
Given: a set A from universe U

How to encode A?

1. bit vector of size m
» good news: read one bit for a query “x € A ?"
» good news: no randomization
» bad news: too much memory

2. list of elements

» good news: memory nlogm
» good news: no randomization
» bad news: read too many bits to answer a query

3. Fredman—Komlés—Szemerédi (double hashing):

» good news: database of size O(nlog m) bits
» good news: randomization only to constructe the database
» bad news: need to read O(log m) bits to answer a query
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Two features:

1. a randomized algorithm answers a query “x € A?"

2. a scheme based on a highly unbalanced expander

v

good news: read one bit to answer a query

v

good news: memory = O(nlog m)

v

bad news: exponential computations

» some news: two-sided errors

v

2
bad news: need Q("lgfg’gn"’) for a one-sided error
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Bit-probe scheme in this paper:

» read one bit to answer a query

» memory = O(nlog® m) vs O(nlog m) in [BMRV]
» computations in poly(m) vs exp{m} in [BMRV|
» one-sided error vs two-sided in [BMRV/]

» memory = O(nlog® m) better than Q(" IC’gm) !

Do we cheat 7 Yes, we have changed the model !
We allow cached memory of size poly(log m).
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query: X é A FENCEITEE: answer: yes/no
: — U :
Processor of QUel’IeS

read all bits read 1 bit

1st level memory

2nd level memory
(cache)

(database)

Theorem. For any n-element set A from an
m-element universe there exists a randomized
bit-probe scheme with one-sided error, with

cache of size O(log® m) and database of size
O(nlog® m).



the left part: m vertices; degree d = O(log m)
the right part: s = O(nlog® m) vertices
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in the left pa

rt: set A of n vertices

the right part: s = O(nlog® m) vertices

subset A <
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A graph is called suitable for A if for every x ¢ A
most neighbors of x are blue

Good news: for every A most graphs are suitable.
Bad news: there is no graph suitable for every sets A.
Ist idea: take a random graph and cache it

we cannot, a random graph is too large!

2nd idea: take a pseudo-random graph, cache the seed

We need a good PRG...
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Fix a set A.

yes, if G is suitable for A
graph G Test no, otherwise
;arzgﬁm —>| Test l—) yes with probability > 0.99
pseudo-
random —)| Test |—> yes with probability > 0.98 ?

graph

Test is an AC?-circuit.
» Nisan—Wigderson generator is valid
» Braverman: every (poly log m)-independent
function is valid

Test is a FSM with small memory.
» Nisan's generator is valid

Size of the seed = poly(log m).
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Conclusion: a bit-probe scheme:

» read one bit to answer a query

» one-sided error

» 1-st level “cached” memory = polylog m
» 2-nd level memory = O(nlog® m)

» database is prepared in time poly(m)

Beyond this talk: combine our construction with
Guruswami—Umans—Vadhan

v

read two bit to answer a query
one-sided error

v

1-st level “cache” memory = polylogm
1+0p0ly log m
computations in time poly(n, log m)

v

v

2-nd level memory = n

v
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What this talk is about:
» a pseudo-random graph can be better than an
explicit one (better expansion parameters, etc.)

» a pseudo-random graph can be better than a
“truly random” graph (shorter description)

» a small “cache” may be useful in static structures

Thank youl Questions?



