Pseudo-random graphs and bit probe schemes with one-sided error

Andrei Romashchenko
CNRS, LIF de Marseille \& IITP of RAS (Moscow)

CSR 2011, June 14

The problem under consideration: bit probe scheme with one-sided error

The problem under consideration: bit probe scheme with one-sided error

Our technique: pseudo-random graphs

Bit probe scheme with one-sided error

Bit probe scheme with one-sided error

 Given: a set A from universe U
Bit probe scheme with one-sided error

Given: a set A from universe U
$n=|A| \ll m=|U|$,
e.g., $n=m^{0.01}, n=$ poly $\log m$, etc.

Bit probe scheme with one-sided error

Given: a set A from universe U
$n=|A| \ll m=|U|$,
e.g., $n=m^{0.01}, n=$ poly $\log m$, etc.

To construct: a database B of size s such that to answer a query

$$
x \in A ?
$$

we need to read one bit from the database

Bit probe scheme with one-sided error

Given: a set A from universe U
$n=|A| \ll m=|U|$,
e.g., $n=m^{0.01}, n=$ poly $\log m$, etc.

To construct: a database B of size s such that to answer a query

$$
x \in A ?
$$

we need to read one bit from the database
Goal: minimize $s=|B|$

Bit probe scheme with one-sided error

Given: a set A from universe U
$n=|A| \ll m=|U|$,
e.g., $n=m^{0.01}, n=$ poly $\log m$, etc.

To construct: a database B of size s such that to answer a query

$$
x \in A ?
$$

we need to read one bit from the database
Goal: minimize $s=|B|$
Remark: $s=\Omega(n \log m)$
static structures for a set: standard solutions Given: a set A from universe U
How to encode A ?
static structures for a set: standard solutions Given: a set A from universe U
How to encode A ?

1. bit vector of size m

static structures for a set: standard solutions

Given: a set A from universe U
How to encode A ?

1. bit vector of size m

- good news: read one bit for a query " $x \in A$?"
- good news: no randomization
- bad news: too much memory

static structures for a set: standard solutions

Given: a set A from universe U
How to encode A ?

1. bit vector of size m

- good news: read one bit for a query " $x \in A$?"
- good news: no randomization
- bad news: too much memory

2. list of elements

static structures for a set: standard solutions

Given: a set A from universe U
How to encode A ?

1. bit vector of size m

- good news: read one bit for a query " $x \in A$?"
- good news: no randomization
- bad news: too much memory

2. list of elements

- good news: memory $n \log m$
- good news: no randomization
- bad news: read too many bits to answer a query

static structures for a set: standard solutions

Given: a set A from universe U
How to encode A ?

1. bit vector of size m

- good news: read one bit for a query " $x \in A$?"
- good news: no randomization
- bad news: too much memory

2. list of elements

- good news: memory $n \log m$
- good news: no randomization
- bad news: read too many bits to answer a query

3. Fredman-Komlós-Szemerédi (double hashing):

static structures for a set: standard solutions

Given: a set A from universe U
How to encode A ?

1. bit vector of size m

- good news: read one bit for a query " $x \in A$?"
- good news: no randomization
- bad news: too much memory

2. list of elements

- good news: memory $n \log m$
- good news: no randomization
- bad news: read too many bits to answer a query

3. Fredman-Komlós-Szemerédi (double hashing):

- good news: database of size $O(n \log m)$ bits
- good news: randomization only to constructe the database
- bad news: need to read $O(\log m)$ bits to answer a query

Buhrman-Miltersen-Radhakrishnan-Venkatesh [2001]

Two features:

1. a randomized algorithm answers a query " $x \in A$?"
2. a scheme based on a highly unbalanced expander

Buhrman-Miltersen-Radhakrishnan-Venkatesh [2001]

Two features:

1. a randomized algorithm answers a query " $x \in A$?"
2. a scheme based on a highly unbalanced expander

- good news: read one bit to answer a query
- good news: memory $=O(n \log m)$
- bad news: exponential computations
- some news: two-sided errors
- bad news: need $\Omega\left(\frac{n^{2} \log m}{\log n}\right)$ for a one-sided error

Bit-probe scheme in this paper:

- read one bit to answer a query
- memory $=O\left(n \log ^{2} m\right)$

Bit-probe scheme in this paper:

- read one bit to answer a query
- memory $=O\left(n \log ^{2} m\right)$ vs $O(n \log m)$ in [BMRV]
- computations in poly (m)

Bit-probe scheme in this paper:

- read one bit to answer a query
- memory $=O\left(n \log ^{2} m\right)$ vs $O(n \log m)$ in [BMRV]
- computations in $\operatorname{poly}(m)$ vs $\exp \{m\}$ in [BMRV]
- one-sided error

Bit-probe scheme in this paper:

- read one bit to answer a query
- memory $=O\left(n \log ^{2} m\right)$ vs $O(n \log m)$ in [BMRV]
- computations in poly (m) vs $\exp \{m\}$ in [BMRV]
- one-sided error vs two-sided in [BMRV]

Bit-probe scheme in this paper:

- read one bit to answer a query
- memory $=O\left(n \log ^{2} m\right)$ vs $O(n \log m)$ in [BMRV]
- computations in poly (m) vs $\exp \{m\}$ in [BMRV]
- one-sided error vs two-sided in [BMRV]
- memory $=O\left(n \log ^{2} m\right)$ better than $\Omega\left(\frac{n^{2} \log m}{\log n}\right)$!

Bit-probe scheme in this paper:

- read one bit to answer a query
- memory $=O\left(n \log ^{2} m\right)$ vs $O(n \log m)$ in [BMRV]
- computations in $\operatorname{poly}(m)$ vs $\exp \{m\}$ in [BMRV]
- one-sided error vs two-sided in [BMRV]
- memory $=O\left(n \log ^{2} m\right)$ better than $\Omega\left(\frac{n^{2} \log m}{\log n}\right)$!

Do we cheat ?

Bit-probe scheme in this paper:

- read one bit to answer a query
- memory $=O\left(n \log ^{2} m\right)$ vs $O(n \log m)$ in [BMRV]
- computations in poly (m) vs $\exp \{m\}$ in [BMRV]
- one-sided error vs two-sided in [BMRV]
- memory $=O\left(n \log ^{2} m\right)$ better than $\Omega\left(\frac{n^{2} \log m}{\log n}\right)$!

Do we cheat? Yes, we have changed the model!
We allow cached memory of size poly $(\log m)$.

Theorem. For any n-element set A from an m-element universe there exists a randomized bit-probe scheme with one-sided error, with cache of size $O\left(\log ^{c} m\right)$ and database of size $O\left(n \log ^{2} m\right)$.
the left part: m vertices; degree $d=O(\log m)$ the right part: $s=O\left(n \log ^{2} m\right)$ vertices

in the left part: set A of n vertices
the right part: $s=O\left(n \log ^{2} m\right)$ vertices

A graph is suitable for A if for every $x \notin A$ most neighbors of x are blue

A graph is called suitable for A if for every $x \notin A$ most neighbors of x are blue

A graph is called suitable for A if for every $x \notin A$ most neighbors of x are blue

Good news: for every A most graphs are suitable.
Bad news: there is no graph suitable for every sets A.

A graph is called suitable for A if for every $x \notin A$ most neighbors of x are blue

Good news: for every A most graphs are suitable.
Bad news: there is no graph suitable for every sets A.
1st idea: take a random graph and cache it

A graph is called suitable for A if for every $x \notin A$ most neighbors of x are blue

Good news: for every A most graphs are suitable.
Bad news: there is no graph suitable for every sets A.
1st idea: take a random graph and cache it
we cannot, a random graph is too large!

A graph is called suitable for A if for every $x \notin A$ most neighbors of x are blue

Good news: for every A most graphs are suitable.
Bad news: there is no graph suitable for every sets A.
1st idea: take a random graph and cache it we cannot, a random graph is too large!
2nd idea: take a pseudo-random graph, cache the seed

A graph is called suitable for A if for every $x \notin A$ most neighbors of x are blue

Good news: for every A most graphs are suitable.
Bad news: there is no graph suitable for every sets A.
1st idea: take a random graph and cache it we cannot, a random graph is too large!
2nd idea: take a pseudo-random graph, cache the seed
We need a good PRG...

Fix a set A.
graph $G \longrightarrow \quad$ Test $\longrightarrow \begin{aligned} & \text { yes, if } G \text { is suitable for } A \\ & \text { no, otherwise }\end{aligned}$

Fix a set A.

Fix a set A.

Fix a set A.

pseudorandom graph

Test is an AC^{0}-circuit.

Fix a set A.

pseudorandom graph

Test is an AC^{0}-circuit.

- Nisan-Wigderson generator is valid

Fix a set A.

pseudorandom graph

Test is an AC^{0}-circuit.

- Nisan-Wigderson generator is valid
- Braverman: every (poly log m)-independent function is valid

Fix a set A.

Test is an AC^{0}-circuit.

- Nisan-Wigderson generator is valid
- Braverman: every (poly log m)-independent function is valid

Test is a FSM with small memory.

- Nisan's generator is valid

Fix a set A.

Test is an AC^{0}-circuit.

- Nisan-Wigderson generator is valid
- Braverman: every (poly log m)-independent function is valid

Test is a FSM with small memory.

- Nisan's generator is valid

Fix a set A.

Test is an AC^{0}-circuit.

- Nisan-Wigderson generator is valid
- Braverman: every (poly log m)-independent function is valid

Test is a FSM with small memory.

- Nisan's generator is valid

Size of the seed $=$ poly $(\log m)$.

Conclusion: a bit-probe scheme:

- read one bit to answer a query
- one-sided error
- 1-st level "cached" memory = poly log m
- 2-nd level memory $=O\left(n \log ^{2} m\right)$

Conclusion: a bit-probe scheme:

- read one bit to answer a query
- one-sided error
- 1-st level "cached" memory = poly log m
- 2-nd level memory $=O\left(n \log ^{2} m\right)$
- database is prepared in time $\operatorname{poly}(m)$

Conclusion: a bit-probe scheme:

- read one bit to answer a query
- one-sided error
- 1-st level "cached" memory = poly log m
- 2-nd level memory $=O\left(n \log ^{2} m\right)$
- database is prepared in time poly (m)

Beyond this talk: combine our construction with Guruswami-Umans-Vadhan

- read two bit to answer a query
- one-sided error
- 1-st level "cache" memory = poly log m
- 2-nd level memory $=n^{1+\delta}$ poly log m
- computations in time poly $(n, \log m)$

What this talk is about:

- a pseudo-random graph can be better than an explicit one (better expansion parameters, etc.)

What this talk is about:

- a pseudo-random graph can be better than an explicit one (better expansion parameters, etc.)
- a pseudo-random graph can be better than a "truly random" graph (shorter description)

What this talk is about:

- a pseudo-random graph can be better than an explicit one (better expansion parameters, etc.)
- a pseudo-random graph can be better than a "truly random" graph (shorter description)
- a small "cache" may be useful in static structures

What this talk is about:

- a pseudo-random graph can be better than an explicit one (better expansion parameters, etc.)
- a pseudo-random graph can be better than a "truly random" graph (shorter description)
- a small "cache" may be useful in static structures

Thank you! Questions?

