
Pseudo-random graphs and bit probe schemes
with one-sided error

Andrei Romashchenko
CNRS, LIF de Marseille & IITP of RAS (Moscow)

CSR 2011, June 14

The problem under consideration:
bit probe scheme with one-sided error

Our technique:
pseudo-random graphs

The problem under consideration:
bit probe scheme with one-sided error

Our technique:
pseudo-random graphs

Bit probe scheme with one-sided error

Given: a set A from universe U

n = |A| � m = |U|,
e.g., n = m0.01, n = poly logm, etc.

To construct: a database B of size s such that

to answer a query

x ∈ A ?

we need to read one bit from the database

Goal: minimize s = |B|
Remark: s = Ω(n logm)

Bit probe scheme with one-sided error

Given: a set A from universe U

n = |A| � m = |U|,
e.g., n = m0.01, n = poly logm, etc.

To construct: a database B of size s such that

to answer a query

x ∈ A ?

we need to read one bit from the database

Goal: minimize s = |B|
Remark: s = Ω(n logm)

Bit probe scheme with one-sided error

Given: a set A from universe U

n = |A| � m = |U|,
e.g., n = m0.01, n = poly logm, etc.

To construct: a database B of size s such that

to answer a query

x ∈ A ?

we need to read one bit from the database

Goal: minimize s = |B|
Remark: s = Ω(n logm)

Bit probe scheme with one-sided error

Given: a set A from universe U

n = |A| � m = |U|,
e.g., n = m0.01, n = poly logm, etc.

To construct: a database B of size s such that

to answer a query

x ∈ A ?

we need to read one bit from the database

Goal: minimize s = |B|
Remark: s = Ω(n logm)

Bit probe scheme with one-sided error

Given: a set A from universe U

n = |A| � m = |U|,
e.g., n = m0.01, n = poly logm, etc.

To construct: a database B of size s such that

to answer a query

x ∈ A ?

we need to read one bit from the database

Goal: minimize s = |B|

Remark: s = Ω(n logm)

Bit probe scheme with one-sided error

Given: a set A from universe U

n = |A| � m = |U|,
e.g., n = m0.01, n = poly logm, etc.

To construct: a database B of size s such that

to answer a query

x ∈ A ?

we need to read one bit from the database

Goal: minimize s = |B|
Remark: s = Ω(n logm)

static structures for a set: standard solutions
Given: a set A from universe U
How to encode A?

1. bit vector of size m
I good news: read one bit for a query “x ∈ A ?”
I good news: no randomization
I bad news: too much memory

2. list of elements
I good news: memory n logm
I good news: no randomization
I bad news: read too many bits to answer a query

3. Fredman–Komlós–Szemerédi (double hashing):
I good news: database of size O(n logm) bits
I good news: randomization only to constructe the database
I bad news: need to read O(logm) bits to answer a query

static structures for a set: standard solutions
Given: a set A from universe U
How to encode A?
1. bit vector of size m

I good news: read one bit for a query “x ∈ A ?”
I good news: no randomization
I bad news: too much memory

2. list of elements
I good news: memory n logm
I good news: no randomization
I bad news: read too many bits to answer a query

3. Fredman–Komlós–Szemerédi (double hashing):
I good news: database of size O(n logm) bits
I good news: randomization only to constructe the database
I bad news: need to read O(logm) bits to answer a query

static structures for a set: standard solutions
Given: a set A from universe U
How to encode A?
1. bit vector of size m

I good news: read one bit for a query “x ∈ A ?”
I good news: no randomization
I bad news: too much memory

2. list of elements
I good news: memory n logm
I good news: no randomization
I bad news: read too many bits to answer a query

3. Fredman–Komlós–Szemerédi (double hashing):
I good news: database of size O(n logm) bits
I good news: randomization only to constructe the database
I bad news: need to read O(logm) bits to answer a query

static structures for a set: standard solutions
Given: a set A from universe U
How to encode A?
1. bit vector of size m

I good news: read one bit for a query “x ∈ A ?”
I good news: no randomization
I bad news: too much memory

2. list of elements

I good news: memory n logm
I good news: no randomization
I bad news: read too many bits to answer a query

3. Fredman–Komlós–Szemerédi (double hashing):
I good news: database of size O(n logm) bits
I good news: randomization only to constructe the database
I bad news: need to read O(logm) bits to answer a query

static structures for a set: standard solutions
Given: a set A from universe U
How to encode A?
1. bit vector of size m

I good news: read one bit for a query “x ∈ A ?”
I good news: no randomization
I bad news: too much memory

2. list of elements
I good news: memory n logm
I good news: no randomization
I bad news: read too many bits to answer a query

3. Fredman–Komlós–Szemerédi (double hashing):
I good news: database of size O(n logm) bits
I good news: randomization only to constructe the database
I bad news: need to read O(logm) bits to answer a query

static structures for a set: standard solutions
Given: a set A from universe U
How to encode A?
1. bit vector of size m

I good news: read one bit for a query “x ∈ A ?”
I good news: no randomization
I bad news: too much memory

2. list of elements
I good news: memory n logm
I good news: no randomization
I bad news: read too many bits to answer a query

3. Fredman–Komlós–Szemerédi (double hashing):

I good news: database of size O(n logm) bits
I good news: randomization only to constructe the database
I bad news: need to read O(logm) bits to answer a query

static structures for a set: standard solutions
Given: a set A from universe U
How to encode A?
1. bit vector of size m

I good news: read one bit for a query “x ∈ A ?”
I good news: no randomization
I bad news: too much memory

2. list of elements
I good news: memory n logm
I good news: no randomization
I bad news: read too many bits to answer a query

3. Fredman–Komlós–Szemerédi (double hashing):
I good news: database of size O(n logm) bits
I good news: randomization only to constructe the database
I bad news: need to read O(logm) bits to answer a query

Buhrman–Miltersen–Radhakrishnan–Venkatesh [2001]
Two features:
1. a randomized algorithm answers a query “x ∈ A?”
2. a scheme based on a highly unbalanced expander

I good news: read one bit to answer a query

I good news: memory = O(n logm)

I bad news: exponential computations

I some news: two-sided errors

I bad news: need Ω(n2 log m
log n) for a one-sided error

Buhrman–Miltersen–Radhakrishnan–Venkatesh [2001]
Two features:
1. a randomized algorithm answers a query “x ∈ A?”
2. a scheme based on a highly unbalanced expander

I good news: read one bit to answer a query

I good news: memory = O(n logm)

I bad news: exponential computations

I some news: two-sided errors

I bad news: need Ω(n2 log m
log n) for a one-sided error

Bit-probe scheme in this paper:

I read one bit to answer a query
I memory = O(n log2 m)

vs O(n logm) in [BMRV]
I computations in poly(m) vs exp{m} in [BMRV]
I one-sided error vs two-sided in [BMRV]
I memory = O(n log2 m) better than Ω(n2 logm

log n) !

Do we cheat ? Yes, we have changed the model !
We allow cached memory of size poly(logm).

Bit-probe scheme in this paper:

I read one bit to answer a query
I memory = O(n log2 m) vs O(n logm) in [BMRV]
I computations in poly(m)

vs exp{m} in [BMRV]
I one-sided error vs two-sided in [BMRV]
I memory = O(n log2 m) better than Ω(n2 logm

log n) !

Do we cheat ? Yes, we have changed the model !
We allow cached memory of size poly(logm).

Bit-probe scheme in this paper:

I read one bit to answer a query
I memory = O(n log2 m) vs O(n logm) in [BMRV]
I computations in poly(m) vs exp{m} in [BMRV]
I one-sided error

vs two-sided in [BMRV]
I memory = O(n log2 m) better than Ω(n2 logm

log n) !

Do we cheat ? Yes, we have changed the model !
We allow cached memory of size poly(logm).

Bit-probe scheme in this paper:

I read one bit to answer a query
I memory = O(n log2 m) vs O(n logm) in [BMRV]
I computations in poly(m) vs exp{m} in [BMRV]
I one-sided error vs two-sided in [BMRV]

I memory = O(n log2 m) better than Ω(n2 logm
log n) !

Do we cheat ? Yes, we have changed the model !
We allow cached memory of size poly(logm).

Bit-probe scheme in this paper:

I read one bit to answer a query
I memory = O(n log2 m) vs O(n logm) in [BMRV]
I computations in poly(m) vs exp{m} in [BMRV]
I one-sided error vs two-sided in [BMRV]
I memory = O(n log2 m) better than Ω(n2 logm

log n) !

Do we cheat ? Yes, we have changed the model !
We allow cached memory of size poly(logm).

Bit-probe scheme in this paper:

I read one bit to answer a query
I memory = O(n log2 m) vs O(n logm) in [BMRV]
I computations in poly(m) vs exp{m} in [BMRV]
I one-sided error vs two-sided in [BMRV]
I memory = O(n log2 m) better than Ω(n2 logm

log n) !

Do we cheat ?

Yes, we have changed the model !
We allow cached memory of size poly(logm).

Bit-probe scheme in this paper:

I read one bit to answer a query
I memory = O(n log2 m) vs O(n logm) in [BMRV]
I computations in poly(m) vs exp{m} in [BMRV]
I one-sided error vs two-sided in [BMRV]
I memory = O(n log2 m) better than Ω(n2 logm

log n) !

Do we cheat ? Yes, we have changed the model !
We allow cached memory of size poly(logm).

Randomized
Processor of Queries

2nd level memory
(database)

query: x
?
∈ A answer: yes/no

1st level memory
(cache)

read 1 bitread all bits

Theorem. For any n-element set A from an
m-element universe there exists a randomized
bit-probe scheme with one-sided error, with
cache of size O(logc m) and database of size
O(n log2 m).

Randomized
Processor of Queries

2nd level memory
(database)

query: x
?
∈ A answer: yes/no

1st level memory
(cache)

read 1 bitread all bits

Theorem. For any n-element set A from an
m-element universe there exists a randomized
bit-probe scheme with one-sided error, with
cache of size O(logc m) and database of size
O(n log2 m).

the left part: m vertices; degree d = O(logm)
the right part: s = O(n log2 m) vertices

universe database

1
2
3

m

1
2
3
4
6

s

in the left part: set A of n vertices
the right part: s = O(n log2 m) vertices

subset A database

1
2
3

m

1
2
3
4
6

s

1

3

m

A graph is suitable for A if
for every x 6∈ A most neighbors of x are blue

subset A
neighbors of
A are red

1
2
3

m

1
2
3
4
6

s

1

3

m

1

3

m

1

3

6

s

A graph is called suitable for A if for every x 6∈ A
most neighbors of x are blue

Good news: for every A most graphs are suitable.

Bad news: there is no graph suitable for every sets A.

1st idea: take a random graph and cache it

we cannot, a random graph is too large!

2nd idea: take a pseudo-random graph, cache the seed

We need a good PRG...

A graph is called suitable for A if for every x 6∈ A
most neighbors of x are blue

Good news: for every A most graphs are suitable.

Bad news: there is no graph suitable for every sets A.

1st idea: take a random graph and cache it

we cannot, a random graph is too large!

2nd idea: take a pseudo-random graph, cache the seed

We need a good PRG...

A graph is called suitable for A if for every x 6∈ A
most neighbors of x are blue

Good news: for every A most graphs are suitable.

Bad news: there is no graph suitable for every sets A.

1st idea: take a random graph and cache it

we cannot, a random graph is too large!

2nd idea: take a pseudo-random graph, cache the seed

We need a good PRG...

A graph is called suitable for A if for every x 6∈ A
most neighbors of x are blue

Good news: for every A most graphs are suitable.

Bad news: there is no graph suitable for every sets A.

1st idea: take a random graph and cache it

we cannot, a random graph is too large!

2nd idea: take a pseudo-random graph, cache the seed

We need a good PRG...

A graph is called suitable for A if for every x 6∈ A
most neighbors of x are blue

Good news: for every A most graphs are suitable.

Bad news: there is no graph suitable for every sets A.

1st idea: take a random graph and cache it

we cannot, a random graph is too large!

2nd idea: take a pseudo-random graph, cache the seed

We need a good PRG...

A graph is called suitable for A if for every x 6∈ A
most neighbors of x are blue

Good news: for every A most graphs are suitable.

Bad news: there is no graph suitable for every sets A.

1st idea: take a random graph and cache it

we cannot, a random graph is too large!

2nd idea: take a pseudo-random graph, cache the seed

We need a good PRG...

Fix a set A.
Testgraph G yes, if G is suitable for A

no, otherwise

Test
random
graph yes with probability > 0.99

Test
pseudo-
random
graph

yes with probability > 0.98 ?

Test is an AC0-circuit.
I Nisan–Wigderson generator is valid
I Braverman: every (poly logm)-independent
function is valid

Test is a FSM with small memory.
I Nisan’s generator is valid

Size of the seed = poly(logm).

Fix a set A.
Testgraph G yes, if G is suitable for A

no, otherwise

Test
random
graph yes with probability > 0.99

Test
pseudo-
random
graph

yes with probability > 0.98 ?

Test is an AC0-circuit.
I Nisan–Wigderson generator is valid
I Braverman: every (poly logm)-independent
function is valid

Test is a FSM with small memory.
I Nisan’s generator is valid

Size of the seed = poly(logm).

Fix a set A.
Testgraph G yes, if G is suitable for A

no, otherwise

Test
random
graph yes with probability > 0.99

Test
pseudo-
random
graph

yes with probability > 0.98 ?

Test is an AC0-circuit.
I Nisan–Wigderson generator is valid
I Braverman: every (poly logm)-independent
function is valid

Test is a FSM with small memory.
I Nisan’s generator is valid

Size of the seed = poly(logm).

Fix a set A.
Testgraph G yes, if G is suitable for A

no, otherwise

Test
random
graph yes with probability > 0.99

Test
pseudo-
random
graph

yes with probability > 0.98 ?

Test is an AC0-circuit.

I Nisan–Wigderson generator is valid
I Braverman: every (poly logm)-independent
function is valid

Test is a FSM with small memory.
I Nisan’s generator is valid

Size of the seed = poly(logm).

Fix a set A.
Testgraph G yes, if G is suitable for A

no, otherwise

Test
random
graph yes with probability > 0.99

Test
pseudo-
random
graph

yes with probability > 0.98 ?

Test is an AC0-circuit.
I Nisan–Wigderson generator is valid

I Braverman: every (poly logm)-independent
function is valid

Test is a FSM with small memory.
I Nisan’s generator is valid

Size of the seed = poly(logm).

Fix a set A.
Testgraph G yes, if G is suitable for A

no, otherwise

Test
random
graph yes with probability > 0.99

Test
pseudo-
random
graph

yes with probability > 0.98 ?

Test is an AC0-circuit.
I Nisan–Wigderson generator is valid
I Braverman: every (poly logm)-independent
function is valid

Test is a FSM with small memory.
I Nisan’s generator is valid

Size of the seed = poly(logm).

Fix a set A.
Testgraph G yes, if G is suitable for A

no, otherwise

Test
random
graph yes with probability > 0.99

Test
pseudo-
random
graph

yes with probability > 0.98 ?

Test is an AC0-circuit.
I Nisan–Wigderson generator is valid
I Braverman: every (poly logm)-independent
function is valid

Test is a FSM with small memory.
I Nisan’s generator is valid

Size of the seed = poly(logm).

Fix a set A.
Testgraph G yes, if G is suitable for A

no, otherwise

Test
random
graph yes with probability > 0.99

Test
pseudo-
random
graph

yes with probability > 0.98 ?

Test is an AC0-circuit.
I Nisan–Wigderson generator is valid
I Braverman: every (poly logm)-independent
function is valid

Test is a FSM with small memory.
I Nisan’s generator is valid

Size of the seed = poly(logm).

Fix a set A.
Testgraph G yes, if G is suitable for A

no, otherwise

Test
random
graph yes with probability > 0.99

Test
pseudo-
random
graph

yes with probability > 0.98 ?

Test is an AC0-circuit.
I Nisan–Wigderson generator is valid
I Braverman: every (poly logm)-independent
function is valid

Test is a FSM with small memory.
I Nisan’s generator is valid

Size of the seed = poly(logm).

Conclusion: a bit-probe scheme:
I read one bit to answer a query
I one-sided error
I 1-st level “cached” memory = poly logm
I 2-nd level memory = O(n log2 m)

I database is prepared in time poly(m)

Beyond this talk: combine our construction with
Guruswami–Umans–Vadhan

I read two bit to answer a query
I one-sided error
I 1-st level “cache” memory = poly logm
I 2-nd level memory = n1+δpoly logm
I computations in time poly(n, logm)

Conclusion: a bit-probe scheme:
I read one bit to answer a query
I one-sided error
I 1-st level “cached” memory = poly logm
I 2-nd level memory = O(n log2 m)
I database is prepared in time poly(m)

Beyond this talk: combine our construction with
Guruswami–Umans–Vadhan

I read two bit to answer a query
I one-sided error
I 1-st level “cache” memory = poly logm
I 2-nd level memory = n1+δpoly logm
I computations in time poly(n, logm)

Conclusion: a bit-probe scheme:
I read one bit to answer a query
I one-sided error
I 1-st level “cached” memory = poly logm
I 2-nd level memory = O(n log2 m)
I database is prepared in time poly(m)

Beyond this talk: combine our construction with
Guruswami–Umans–Vadhan

I read two bit to answer a query
I one-sided error
I 1-st level “cache” memory = poly logm
I 2-nd level memory = n1+δpoly logm
I computations in time poly(n, logm)

What this talk is about:

I a pseudo-random graph can be better than an
explicit one (better expansion parameters, etc.)

I a pseudo-random graph can be better than a
“truly random” graph (shorter description)

I a small “cache” may be useful in static structures

Thank you! Questions?

What this talk is about:

I a pseudo-random graph can be better than an
explicit one (better expansion parameters, etc.)

I a pseudo-random graph can be better than a
“truly random” graph (shorter description)

I a small “cache” may be useful in static structures

Thank you! Questions?

What this talk is about:

I a pseudo-random graph can be better than an
explicit one (better expansion parameters, etc.)

I a pseudo-random graph can be better than a
“truly random” graph (shorter description)

I a small “cache” may be useful in static structures

Thank you! Questions?

What this talk is about:

I a pseudo-random graph can be better than an
explicit one (better expansion parameters, etc.)

I a pseudo-random graph can be better than a
“truly random” graph (shorter description)

I a small “cache” may be useful in static structures

Thank you! Questions?

