Improving the Space-Bounded Version of Muchnik's Conditional Complexity Theorem via "Naive" Derandomization

Daniil Musatov ${ }^{1}$
${ }^{1}$ Lomonosov Moscow State University,

St. Petersburg, June 14th, 2011

Some disclaimers

- This talk is in some sense a continuation of the previous one

Some disclaimers

- This talk is in some sense a continuation of the previous one
- A similar technique is used to obtain a different result

Some disclaimers

- This talk is in some sense a continuation of the previous one
- A similar technique is used to obtain a different result
- Why "naive"?

Some disclaimers

- This talk is in some sense a continuation of the previous one
- A similar technique is used to obtain a different result
- Why "naive"? Because we simply replace a random object by a pseudo-random one and it still does the job.

Kolmogorov complexity

- Kolmogorov complexity $C(a \mid b)$ of a string a conditional to b is the minimal length of a program p that produces a given b, i.e., $p(b)=a$

Kolmogorov complexity

- Kolmogorov complexity $C(a \mid b)$ of a string a conditional to b is the minimal length of a program p that produces a given b, i.e., $p(b)=a$
- Space-bounded version: $C^{s}(a \mid b)$ is the minimal length of a program p such that $p(b)=a$

Kolmogorov complexity

- Kolmogorov complexity $C(a \mid b)$ of a string a conditional to b is the minimal length of a program p that produces a given b, i.e., $p(b)=a$
- Space-bounded version: $C^{s}(a \mid b)$ is the minimal length of a program p such that $p(b)=a$ and the computation of $p(b)$ performs in space s.

Muchnik's theorem

- Muchnik's theorem (TCS'2002): For any a and b of length n there exists p of length $C(a \mid b)+O(\log n)$ such that $p(b)=a$

Muchnik's theorem

- Muchnik's theorem (TCS'2002): For any a and b of length n there exists p of length $C(a \mid b)+O(\log n)$ such that $p(b)=a$ and $C(p \mid a)=O(\log n)$.

Muchnik's theorem

- Muchnik's theorem (TCS'2002): For any a and b of length n there exists p of length $C(a \mid b)+O(\log n)$ such that $p(b)=a$ and $C(p \mid a)=O(\log n)$.
- Space-bounded version (M., Romashchenko, Shen, CSR'2009, ToCS'2011): For any a and b of length n and for any s there exists p of length $C^{s}(a \mid b)+O\left(\log ^{3} n\right)$ such that:

Muchnik's theorem

- Muchnik's theorem (TCS'2002): For any a and b of length n there exists p of length $C(a \mid b)+O(\log n)$ such that $p(b)=a$ and $C(p \mid a)=O(\log n)$.
- Space-bounded version (M., Romashchenko, Shen, CSR'2009, ToCS'2011): For any a and b of length n and for any s there exists p of length $C^{s}(a \mid b)+O\left(\log ^{3} n\right)$ such that:
- $p(b)=a$;
- the computation of $p(b)$ performs in space $O(s)+\operatorname{poly}(n)$
- and $C^{\text {poly }(n)}(p \mid a)=O\left(\log ^{3} n\right)$

Muchnik's theorem

- Muchnik's theorem (TCS'2002): For any a and b of length n there exists p of length $C(a \mid b)+O(\log n)$ such that $p(b)=a$ and $C(p \mid a)=O(\log n)$.
- Space-bounded version (M., Romashchenko, Shen, CSR'2009, ToCS'2011): For any a and b of length n and for any s there exists p of length $C^{s}(a \mid b)+O\left(\log ^{3} n\right)$ such that:
- $p(b)=a$;
- the computation of $p(b)$ performs in space $O(s)+\operatorname{poly}(n)$
- and $C^{\text {poly }(n)}(p \mid a)=O\left(\log ^{3} n\right)$
- In current work we get rid of polylogarithmic terms and make them again logarithmic

Proof of Muchnik's theorem: fingerprints

Proof of Muchnik's theorem: fingerprints

p is a fingerprint of a

Proof of Muchnik's theorem: fingerprints

p is a fingerprint of a
For $C(p \mid a)$ to be small, there should be few fingerprints for each a

Proof of Muchnik's theorem: fingerprints

p is a fingerprint of a
For $C(p \mid a)$ to be small, there should be few fingerprints for each a
For $C(a \mid p, b)$ to be small,

Proof of Muchnik's theorem: fingerprints

p is a fingerprint of a
For $C(p \mid a)$ to be small, there should be few fingerprints for each a
For $C(a \mid p, b)$ to be small, there should be few preimages of p in S

How to find fingerprints

- There is an underlying bipartite graph $G=(L, R, E)$ with $|L|=2^{n}$ and $|R|=2^{k}$

How to find fingerprints

- There is an underlying bipartite graph $G=(L, R, E)$ with $|L|=2^{n}$ and $|R|=2^{k}$
- Each left-part vertex has constant degree D

How to find fingerprints

- There is an underlying bipartite graph $G=(L, R, E)$ with $|L|=2^{n}$ and $|R|=2^{k}$
- Each left-part vertex has constant degree D
- The fingerprint p is chosen among neighbors of a

How to find fingerprints

- There is an underlying bipartite graph $G=(L, R, E)$ with $|L|=2^{n}$ and $|R|=2^{k}$
- Each left-part vertex has constant degree D
- The fingerprint p is chosen among neighbors of a
- This guarantees that $C(p \mid a, G)=O(\log D)$

How to find fingerprints

- There is an underlying bipartite graph $G=(L, R, E)$ with $|L|=2^{n}$ and $|R|=2^{k}$
- Each left-part vertex has constant degree D
- The fingerprint p is chosen among neighbors of a
- This guarantees that $C(p \mid a, G)=O(\log D)$
- The statement that $C(a \mid p, b, G)$ is small for some p follows from some enumerable graph property (see later)

How to find fingerprints

- There is an underlying bipartite graph $G=(L, R, E)$ with $|L|=2^{n}$ and $|R|=2^{k}$
- Each left-part vertex has constant degree D
- The fingerprint p is chosen among neighbors of a
- This guarantees that $C(p \mid a, G)=O(\log D)$
- The statement that $C(a \mid p, b, G)$ is small for some p follows from some enumerable graph property (see later)
- It is proven by the probabilistic method that this property is non-empty

How to find fingerprints

- There is an underlying bipartite graph $G=(L, R, E)$ with $|L|=2^{n}$ and $|R|=2^{k}$
- Each left-part vertex has constant degree D
- The fingerprint p is chosen among neighbors of a
- This guarantees that $C(p \mid a, G)=O(\log D)$
- The statement that $C(a \mid p, b, G)$ is small for some p follows from some enumerable graph property (see later)
- It is proven by the probabilistic method that this property is non-empty
- Hence, the first graph in the enumeration has small complexity

How to find fingerprints

- There is an underlying bipartite graph $G=(L, R, E)$ with $|L|=2^{n}$ and $|R|=2^{k}$
- Each left-part vertex has constant degree D
- The fingerprint p is chosen among neighbors of a
- This guarantees that $C(p \mid a, G)=O(\log D)$
- The statement that $C(a \mid p, b, G)$ is small for some p follows from some enumerable graph property (see later)
- It is proven by the probabilistic method that this property is non-empty
- Hence, the first graph in the enumeration has small complexity
- Hence, $C(p \mid a)$ and $C(a \mid p, b)$ are also small

What graph properties do we need?

Some graph properties leading to Muchnik's theorem:

- (Muchnik) Expander-like property

What graph properties do we need?

Some graph properties leading to Muchnik's theorem:

- (Muchnik) Expander-like property
- (MRS) Possibility of online matching

What graph properties do we need?

Some graph properties leading to Muchnik's theorem:

- (Muchnik) Expander-like property
- (MRS) Possibility of online matching
- (MRS) Extractor

What graph properties do we need?

Some graph properties leading to Muchnik's theorem:

- (Muchnik) Expander-like property
- (MRS) Possibility of online matching
- (MRS) Extractor
- (This paper) "Low-congesting"

The essential property: low-congesting graph

The essential property: low-congesting graph

- α-clot for S is the set of all vertices having more than αD neighbors in S.

The essential property: low-congesting graph

- α-clot for S is the set of all vertices having more than αD neighbors in S.
- A vertex is α-congested if all its neighbors lie in α-clot.

The essential property: low-congesting graph

- α-clot for S is the set of all vertices having more than αD neighbors in S.
- A vertex is α-congested if all its neighbors lie in α-clot.
- The set S is (α, β)-low-congested if it contains less than βK α-congested vertices.

The essential property: low-congesting graph

- α-clot for S is the set of all vertices having more than αD neighbors in S.
- A vertex is α-congested if all its neighbors lie in α-clot.
- The set S is (α, β)-low-congested if it contains less than βK α-congested vertices.
- We call a set relevant if it has the form $\left\{x \mid C^{s}(x \mid b)<k\right\}$.
- We call a graph (α, β)-low-congesting if all relevant sets are (α, β)-low-congested.

How to get a low-congesting graph

- A random graph with certain parameters is an extractor with positive probability.

How to get a low-congesting graph

- A random graph with certain parameters is an extractor with positive probability.
- Lemma. (Buhrman, Fortnow, Laplante '2002) In an (k, ϵ)-extractor graph any S is $(2,2 \epsilon)$-low-congested.
- Hence, in an extractor any relevant set is low-congested and the graph itself is low-congesting.

How to get a low-congesting graph

- A random graph with certain parameters is an extractor with positive probability.
- Lemma. (Buhrman, Fortnow, Laplante '2002) In an (k, ϵ)-extractor graph any S is $(2,2 \epsilon)$-low-congested.
- Hence, in an extractor any relevant set is low-congested and the graph itself is low-congesting.
- But even the description of the graph is exponential in size, so we cannot find it in polynomial space.

How to get a low-congesting graph

- A random graph with certain parameters is an extractor with positive probability.
- Lemma. (Buhrman, Fortnow, Laplante '2002) In an (k, ϵ)-extractor graph any S is ($2,2 \epsilon$)-low-congested.
- Hence, in an extractor any relevant set is low-congested and the graph itself is low-congesting.
- But even the description of the graph is exponential in size, so we cannot find it in polynomial space.
- Central idea: replace a random graph by a pseudorandom one
- To make this idea work, we need:

How to get a low-congesting graph

- A random graph with certain parameters is an extractor with positive probability.
- Lemma. (Buhrman, Fortnow, Laplante '2002) In an (k, ϵ)-extractor graph any S is $(2,2 \epsilon)$-low-congested.
- Hence, in an extractor any relevant set is low-congested and the graph itself is low-congesting.
- But even the description of the graph is exponential in size, so we cannot find it in polynomial space.
- Central idea: replace a random graph by a pseudorandom one
- To make this idea work, we need:
- to prove that a pseudorandom graph is low-congesting with positive probability

How to get a low-congesting graph

- A random graph with certain parameters is an extractor with positive probability.
- Lemma. (Buhrman, Fortnow, Laplante '2002) In an (k, ϵ)-extractor graph any S is ($2,2 \epsilon$)-low-congested.
- Hence, in an extractor any relevant set is low-congested and the graph itself is low-congesting.
- But even the description of the graph is exponential in size, so we cannot find it in polynomial space.
- Central idea: replace a random graph by a pseudorandom one
- To make this idea work, we need:
- to prove that a pseudorandom graph is low-congesting with positive probability
- to show that the seed this graph is generated from may be found in polynomial space

Why a pseudorandom graph fits

- We use the Nisan pseudorandom generator with polynomial seed length and exponential output.

Why a pseudorandom graph fits

- We use the Nisan pseudorandom generator with polynomial seed length and exponential output.
- It is well-known that this generator fools any circuit from $A C^{0}$

Why a pseudorandom graph fits

- We use the Nisan pseudorandom generator with polynomial seed length and exponential output.
- It is well-known that this generator fools any circuit from $A C^{0}$
- The size of a fooled circuit may be exponential since the size of output is exponential.

Why a pseudorandom graph fits

- We use the Nisan pseudorandom generator with polynomial seed length and exponential output.
- It is well-known that this generator fools any circuit from $A C^{0}$
- The size of a fooled circuit may be exponential since the size of output is exponential.
- We cannot check the low-congesting property literally, but using circuits for approximate counting we build a circuit C such that:

Why a pseudorandom graph fits

- We use the Nisan pseudorandom generator with polynomial seed length and exponential output.
- It is well-known that this generator fools any circuit from $A C^{0}$
- The size of a fooled circuit may be exponential since the size of output is exponential.
- We cannot check the low-congesting property literally, but using circuits for approximate counting we build a circuit C such that:
- If G is $(2,2 \epsilon)$-low-congesting then $C(G)=1$;

Why a pseudorandom graph fits

- We use the Nisan pseudorandom generator with polynomial seed length and exponential output.
- It is well-known that this generator fools any circuit from $A C^{0}$
- The size of a fooled circuit may be exponential since the size of output is exponential.
- We cannot check the low-congesting property literally, but using circuits for approximate counting we build a circuit C such that:
- If G is $(2,2 \epsilon)$-low-congesting then $C(G)=1$;
- If $C(G)=1$ then G is $(2.01,2.01 \epsilon)$-low-congesting.

Why a pseudorandom graph fits

- We use the Nisan pseudorandom generator with polynomial seed length and exponential output.
- It is well-known that this generator fools any circuit from $A C^{0}$
- The size of a fooled circuit may be exponential since the size of output is exponential.
- We cannot check the low-congesting property literally, but using circuits for approximate counting we build a circuit C such that:
- If G is $(2,2 \epsilon)$-low-congesting then $C(G)=1$;
- If $C(G)=1$ then G is $(2.01,2.01 \epsilon)$-low-congesting.
- This circuit accepts a random graph with sufficient probability, hence it does the same with a pseudorandom one.

The circuit

How to get Muchnik's theorem

- Firstly, we search for a good seed for the generator and fix it. This search needs only polynomial space.

How to get Muchnik's theorem

- Firstly, we search for a good seed for the generator and fix it. This search needs only polynomial space.
- If a is not congested in $\left\{x \mid C^{s}(x \mid b)<k\right\}$ then it has a neighbor p outside the clot.
- This p satisfies all requirements.

How to get Muchnik's theorem

How to get Muchnik's theorem

- Firstly, we search for a good seed for the generator and fix it. This search needs only polynomial space.
- If a is not congested in $\left\{x \mid C^{s}(x \mid b)<k\right\}$ then it has a neighbor p outside the clot.
- This p satisfies all requirements.
- If a is congested then we repeat the whole construction replacing the relevant sets by the sets of congested vertices in relevant sets.

How to get Muchnik's theorem

- Firstly, we search for a good seed for the generator and fix it. This search needs only polynomial space.
- If a is not congested in $\left\{x \mid C^{s}(x \mid b)<k\right\}$ then it has a neighbor p outside the clot.
- This p satisfies all requirements.
- If a is congested then we repeat the whole construction replacing the relevant sets by the sets of congested vertices in relevant sets.
- There may be several iterations but since the upper bound on the size of a relevant set decreases exponentially there is at most linear number of steps, hence all polynomial bounds remain.

The final formulation

For any a and b of length n and for any s there exists p of length $C^{s}(a \mid b)+O(\log \log s+\log n)$ such that:

- $p(b)=a$;
- the computation of $p(b)$ performs in space $O(s)+\operatorname{poly}(n)$
- and $C^{O(s)+\operatorname{poly}(n)}(p \mid a)=O(\log \log s+\log n)$

Summary of the technology

- Take some theorem about Kolmogorov complexity relying on the existence of some combinatorial object

Summary of the technology

- Take some theorem about Kolmogorov complexity relying on the existence of some combinatorial object
- Build a constant-depth circuit recognizing this object

Summary of the technology

- Take some theorem about Kolmogorov complexity relying on the existence of some combinatorial object
- Build a constant-depth circuit recognizing this object
- Replace a random object by a pseudorandom one

Summary of the technology

- Take some theorem about Kolmogorov complexity relying on the existence of some combinatorial object
- Build a constant-depth circuit recognizing this object
- Replace a random object by a pseudorandom one
- Obtain a space-bounded version of the theorem

Summary of the technology

- Take some theorem about Kolmogorov complexity relying on the existence of some combinatorial object
- Build a constant-depth circuit recognizing this object
- Replace a random object by a pseudorandom one
- Obtain a space-bounded version of the theorem
- ???????
- PROFIT

Thank you!
mailto:musatych@gmail.com
http://musatych.livejournal.com

