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Polynomial multiplication

Given
a(x) =ag+aix+---+ apx", b(x)=bg+ bix+ -+ byx",
Compute

c(x) = co+ cix + -+ + cx®" = a(x)b(x).




Polynomial multiplication

Given
a(x) =ag+aix+---+ apx", b(x)=bg+ bix+ -+ byx",
Compute

c(x) = co + cax + - - - + X" = a(x)b(x).

For all 0 </ < 2n, compute

o aobi + a1bji—1 + - - + ajbo, 0<i<n,
' Aj—nbn + aj—py1bp—1+ -+ anbi—p, n<i < 2n.



In what model?

» Arithmetic circuits with binary “+", “—",

» Each binary gate has unit cost

» No divisions

» Constants from the field available at no cost

> Inputs are the coefficients of the polynomials to be multiplied
» Qutputs are the coefficients of the product polynomial

> Interested in a circuit for degree n polynomial multiplication
of the minimal size



History and state of the art

School method: O(n?)

Karatsuba 1960: O(n'°&23) = O(n'-5%)

Toom 1963: n'+0(1/vicgn) — O(nl+€) for any fixed € > 0
> Over infinite fields
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History and state of the art

School method: O(n?)
Karatsuba 1960: O(n'°&23) = O(n'-5%)
Toom 1963: n'+0(1/vicgn) — O(nl+€) for any fixed € > 0
» Over infinite fields
Schonhage-Strassen 1971: O(nlog nloglog n)
» Didn’t work for fields of char =2
Schonhage 1977: O(nlog nloglog n), over field of char = 2

Kaminski 1988, Cantor-Kaltofen 1991: O(nlog nloglog n), over
arbitrary algebras

Over C or R: O(nlog n)
All general lower bounds: Q(n).



Multiplication in O(nlog n)

Given
a(x) =ap+aix+---+ an_1x"7L,

b(x) = bg + bix + -+ bp_1x"1,
Compute
c(x) = co+ cix+ -+ xpm1x™ 1 = a(x)b(x) (mod x" — 1).

(Can always choose a larger n and pad polynomials with zeroes to
reduce the ordinary polynomial multiplication to the product in

k[x]/(x" = 1).)



Multiplication in O(nlog n)
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Discrete Fourier transform
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Discrete Fourier transform

> Maps a degree n — 1 polynomial to its values at n distinct nth
roots of unity:

—a(w Zajw, 0<i<n-1

DFTL;; : (ao, al, ..., a,,_l) — (50, 51, ey 5,,_1)

(w is a primitive nth root of unity)

Linear transform: DFT}, : k[x] — k"
Isomorphism: DFT : k[x]/(x" — 1) — k"
Can be often computed in O(nlog n)

vV v v VY

The inverse isomorphism is almost a DFT again:

71 ~ ~ ~
- DFT‘,‘;H : (30, 31, .-+, 3n—1) — (@0, a1, -, an—1)



Discrete Fourier transform

ao a ... an—1 bO bl by

an—1 by % .
o a1 by " bp—
Co 1 Cn-1

w € kis
an nth /

. IDFTY
primitive
root of 1

Co o Cn—1



Discrete Fourier transform

> Li(n): the complexity of degree n polynomial multiplication
over a field k

» Dy(n): the complexity of computing length n DFT over k
Lx(n) < 3Dk(n) +2n = O(nlogn).

Note: we need roots of unity.




What if roots of unity are not available?
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» More precisely: take a (ring) extension A, of k of degree m
over k with a 2¢th root of unity w € A,:
» For example,
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> pm(x) € k[x] is a polynomial of degree m,
> pm(x) vanishes on woyy,

> (wy is a primitive 2{th root of unity in the algebraic closure of
the field k.)



What if roots of unity are not available?

Attach them!

» Switch from the field k to its algebraic extension A,, where
roots of unity of sufficiently large order exist.
» More precisely: take a (ring) extension A, of k of degree m
over k with a 2¢th root of unity w € A,:
» For example,
An = K[x]/pm().
> pm(x) € k[x] is a polynomial of degree m,
> pm(x) vanishes on woyy,
> (wy is a primitive 2{th root of unity in the algebraic closure of
the field .)

How can it help?



What if roots of unity are not available?

Attach them!

» Switch from the field k to its algebraic extension A,, where
roots of unity of sufficiently large order exist.
» More precisely: take a (ring) extension A, of k of degree m
over k with a 2¢th root of unity w € A,:
» For example,
An = K[x]/pm().
> pm(x) € k[x] is a polynomial of degree m,
> pm(x) vanishes on woyy,
> (wy is a primitive 2{th root of unity in the algebraic closure of
the field .)

How can it help? See next slide.



Fast polynomial multiplication
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Fast polynomial multiplication

In this case

Lk(n) < 2ka(m)
+ 3D 4,,(n) - complexity of aritrhmetics in Ap,
+ cost of embedding and unembedding in A,

Our contribution #1:
» Formalize this kind of algorithms

» The relation between m and 2/ is a barrier for the algorithm's
performance

» This relation depends heavily on the field properties
» The cost of the DFT can usually be made O(nlog n)

» Embedding and unembedding run usually in linear time, e.g.,
if pm(x) is sparse



Does it work?

Yes!!!

Schonhage-Strassen 1971: / = m

Schonhage 1977: 3¢ = 2m (+ a little trick)
Kaminski 1988: ¢ = ¢(m) (Euler’s totient function)

Cantor-Kaltofen 1991: ¢ = m (and A, is a little more complicated
than k[x]/pm(x))
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Slow fields

Recall:

Lk(n) < 2€Lk(m)
+ 3D 4,,(n) - complexity of arithmetics in Ay,
+ cost of embedding and unembedding in A,

Ideally we want m to be small and ¢ to be large.
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degree function of k.



Slow fields

Recall:

Lk(n) < 2ka(m)
+ 3D 4,,(n) - complexity of arithmetics in Ay,
+ cost of embedding and unembedding in A,,

Ideally we want m to be small and ¢ to be large.
Definition
For a field k, and n, s.t. chark { n, let fx(n) be [k(wy) : k], the
degree function of k.
Our contribution #2:
» If f(n) = o(loglog n) for some not too sparse set of n then k
is fast and Ly(n) = o(nlog nloglog n)
> If f(n) = Q(n*°) for any fixed € > 0, then k is slow and any
algorithm of that kind runs in Q(nlog nloglog n)



More details

» To attach an fth root of unity we need an extension of degree
at least 7 (¢)

» The degree of the polynomial is then ~ ¢ - f, ()
> For the least solution iy of i - f (i) > n, £/ (n) = fi(ip)

» The number of recursive steps is at least the number of
f(F (- £ (n)--+)), until the value becomes O(1)

» This superposition depth will be denoted (f,")*(n)

» The cost of all steps on a single recursion level is determined
by the complexity of the DFTs, and is ©(nlog n)



More details

» To attach an fth root of unity we need an extension of degree
at least 7 (¢)

» The degree of the polynomial is then ~ ¢ - f, ()
> For the least solution iy of i - f (i) > n, £/ (n) = fi(ip)

» The number of recursive steps is at least the number of
f(F (- £ (n)--+)), until the value becomes O(1)

» This superposition depth will be denoted (f,")*(n)

» The cost of all steps on a single recursion level is determined
by the complexity of the DFTs, and is ©(nlog n)

» The total cost is estimated as

Q(nlogn) - (£)"(n)



“Lower bound”

For the rational field Q, for all n

n

fo(n) = ¢(n) > ¢

“loglog n’

and
(fQ()*(n) = Q(log log n).



“Lower bound”

For the rational field Q, for all n

n

fo(n) = ¢(n) = c

“loglog n’

and
(fQ()*(n) = Q(log log n).
Complexity of any DFT-based multiplication algorithm is then

Q(nlog nloglog n).

It follows that over Q we need another kind of an algorithm.



Summary

» Uniform treatment of all known asymptotically fastest
polynomial multiplication algorithms w.r.t. the total
complexity

» A way to improve the total complexity upper bounds over
certain fields

» Impossibility to improve Schonhage-Strassen over any fields
(and rings or algebras) of characteristic 0

> In particular, no light at the end of the tunnel for polynomial
multiplication over Q



Summary

» Uniform treatment of all known asymptotically fastest
polynomial multiplication algorithms w.r.t. the total
complexity

» A way to improve the total complexity upper bounds over
certain fields

» Impossibility to improve Schonhage-Strassen over any fields
(and rings or algebras) of characteristic 0

> In particular, no light at the end of the tunnel for polynomial
multiplication over Q

» Over fields of positive characteristic,




Thank you for attention!




