C|S[R[:

Faster Polynomial Multiplication via
Discrete Fourier Transforms

Alexey Pospelov

Computer Science Department, Saarland University
Cluster of Excellence Multimodal Computing and Interaction

SAARLAND
UNIVERSITY

I B —
COMPUTER SCIENCE CLUSTER OF EXCELLENCE

June 14th, 2011




Polynomial multiplication

Given
a(x) =ag+aix+---+ apx", b(x)=bg+ bix+ -+ byx",
Compute

c(x) = co+ cix + -+ + cx®" = a(x)b(x).




Polynomial multiplication

Given
a(x) =ag+aix+---+ apx", b(x)=bg+ bix+ -+ byx",
Compute

c(x) = co + cax + - - - + X" = a(x)b(x).

For all 0 </ < 2n, compute

o aobi + a1bji—1 + - - + ajbo, 0<i<n,
' Aj—nbn + aj—py1bp—1+ -+ anbi—p, n<i < 2n.



In what model?

» Arithmetic circuits with binary “+", “—",

» Each binary gate has unit cost

» No divisions

» Constants from the field available at no cost

> Inputs are the coefficients of the polynomials to be multiplied
» Qutputs are the coefficients of the product polynomial

> Interested in a circuit for degree n polynomial multiplication
of the minimal size



History and state of the art

School method: O(n?)

Karatsuba 1960: O(n'°&23) = O(n'-5%)

Toom 1963: n'+0(1/vicgn) — O(nl+€) for any fixed € > 0
> Over infinite fields



History and state of the art

School method: O(n?)

Karatsuba 1960: O(n log, 3 ) = 0(n1-585)

Toom 1963: nl+0(1/Viegn) — O(pl+€) for any fixed € > 0

» Over infinite fields
Schonhage-Strassen 1971: O(nlog nloglog n)
» Didn’t work for fields of char = 2



History and state of the art

School method: O(n?)
Karatsuba 1960: O(n'°&23) = O(n'-5%)
Toom 1963: n'+0(1/vicgn) — O(nl+€) for any fixed € > 0
» Over infinite fields
Schonhage-Strassen 1971: O(nlog nloglog n)
» Didn’t work for fields of char =2
Schonhage 1977: O(nlog nloglog n), over field of char = 2

Kaminski 1988, Cantor-Kaltofen 1991: O(nlog nloglog n), over
arbitrary algebras

Over C or R: O(nlog n)
All general lower bounds: Q(n).



Multiplication in O(nlog n)

Given
a(x) =ap+aix+---+ an_1x"7L,

b(x) = bg + bix + -+ bp_1x"1,
Compute
c(x) = co+ cix+ -+ xpm1x™ 1 = a(x)b(x) (mod x" — 1).

(Can always choose a larger n and pad polynomials with zeroes to
reduce the ordinary polynomial multiplication to the product in

k[x]/(x" = 1).)



Multiplication in O(nlog n)

ai

© o dn—1

a0

G <
w € kis
an nth /
. IDFTY
primitive
root of 1
<o

. Ch—1



Discrete Fourier transform

H;_; D(" Elﬁzabe']'h?
Yesh, uh... T accicentally 1ok
the Fg?urfer transfocm of @y cat ...

? Meaw




Discrete Fourier transform

> Maps a degree n — 1 polynomial to its values at n distinct nth
roots of unity:

—a(w Zajw, 0<i<n-1

DFTL;; : (ao, al, ..., a,,_l) — (50, 51, ey 5,,_1)

(w is a primitive nth root of unity)

Linear transform: DFT}, : k[x] — k"
Isomorphism: DFT : k[x]/(x" — 1) — k"
Can be often computed in O(nlog n)

vV v v VY

The inverse isomorphism is almost a DFT again:

71 ~ ~ ~
- DFT‘,‘;H : (30, 31, .-+, 3n—1) — (@0, a1, -, an—1)



Discrete Fourier transform

ao a ... an—1 bO bl by

an—1 by % .
o a1 by " bp—
Co 1 Cn-1

w € kis
an nth /

. IDFTY
primitive
root of 1

Co o Cn—1



Discrete Fourier transform

> Li(n): the complexity of degree n polynomial multiplication
over a field k

» Dy(n): the complexity of computing length n DFT over k
Lx(n) < 3Dk(n) +2n = O(nlogn).

Note: we need roots of unity.




What if roots of unity are not available?



What if roots of unity are not available?

Attach them!



What if roots of unity are not available?

Attach them!

» Switch from the field k to its algebraic extension A,, where
roots of unity of sufficiently large order exist.



What if roots of unity are not available?

Attach them!

» Switch from the field k to its algebraic extension A,, where
roots of unity of sufficiently large order exist.
» More precisely: take a (ring) extension A, of k of degree m
over k with a 2¢th root of unity w € A,:
» For example,
Am = k[X]/pm(x),
> pm(x) € k[x] is a polynomial of degree m,
> pm(x) vanishes on woyy,

> (wy is a primitive 2{th root of unity in the algebraic closure of
the field k.)



What if roots of unity are not available?

Attach them!

» Switch from the field k to its algebraic extension A,, where
roots of unity of sufficiently large order exist.
» More precisely: take a (ring) extension A, of k of degree m
over k with a 2¢th root of unity w € A,:
» For example,
An = K[x]/pm().
> pm(x) € k[x] is a polynomial of degree m,
> pm(x) vanishes on woyy,
> (wy is a primitive 2{th root of unity in the algebraic closure of
the field .)

How can it help?



What if roots of unity are not available?

Attach them!

» Switch from the field k to its algebraic extension A,, where
roots of unity of sufficiently large order exist.
» More precisely: take a (ring) extension A, of k of degree m
over k with a 2¢th root of unity w € A,:
» For example,
An = K[x]/pm().
> pm(x) € k[x] is a polynomial of degree m,
> pm(x) vanishes on woyy,
> (wy is a primitive 2{th root of unity in the algebraic closure of
the field .)

How can it help? See next slide.



Fast polynomial multiplication

20-m=n
Am = k[x]/pm(x)
w € An
is a 2/th
primitive
root of 1




Fast polynomial multiplication

In this case

Lk(n) < 2ka(m)
+ 3D 4,,(n) - complexity of aritrhmetics in Ap,
+ cost of embedding and unembedding in A,

Our contribution #1:
» Formalize this kind of algorithms

» The relation between m and 2/ is a barrier for the algorithm's
performance

» This relation depends heavily on the field properties
» The cost of the DFT can usually be made O(nlog n)

» Embedding and unembedding run usually in linear time, e.g.,
if pm(x) is sparse



Does it work?

Yes!!!

Schonhage-Strassen 1971: / = m

Schonhage 1977: 3¢ = 2m (+ a little trick)
Kaminski 1988: ¢ = ¢(m) (Euler’s totient function)

Cantor-Kaltofen 1991: ¢ = m (and A, is a little more complicated
than k[x]/pm(x))



wn
3

[}
2

=
e
(V)]




Slow fields

Recall:

Lk(n) < 2€Lk(m)
+ 3D 4,,(n) - complexity of arithmetics in Ay,
+ cost of embedding and unembedding in A,

Ideally we want m to be small and ¢ to be large.



Slow fields

Recall:

Lk(n) < 2€Lk(m)
+ 3D 4,,(n) - complexity of arithmetics in A,
+ cost of embedding and unembedding in A,

Ideally we want m to be small and ¢ to be large.

Definition
For a field k, and n, s.t. chark { n, let fx(n) be [k(wy) : k], the
degree function of k.



Slow fields

Recall:

Lk(n) < 2ka(m)
+ 3D 4,,(n) - complexity of arithmetics in Ay,
+ cost of embedding and unembedding in A,,

Ideally we want m to be small and ¢ to be large.
Definition
For a field k, and n, s.t. chark { n, let fx(n) be [k(wy) : k], the
degree function of k.
Our contribution #2:
» If f(n) = o(loglog n) for some not too sparse set of n then k
is fast and Ly(n) = o(nlog nloglog n)
> If f(n) = Q(n*°) for any fixed € > 0, then k is slow and any
algorithm of that kind runs in Q(nlog nloglog n)



More details

» To attach an fth root of unity we need an extension of degree
at least 7 (¢)

» The degree of the polynomial is then ~ ¢ - f, ()
> For the least solution iy of i - f (i) > n, £/ (n) = fi(ip)

» The number of recursive steps is at least the number of
f(F (- £ (n)--+)), until the value becomes O(1)

» This superposition depth will be denoted (f,")*(n)

» The cost of all steps on a single recursion level is determined
by the complexity of the DFTs, and is ©(nlog n)



More details

» To attach an fth root of unity we need an extension of degree
at least 7 (¢)

» The degree of the polynomial is then ~ ¢ - f, ()
> For the least solution iy of i - f (i) > n, £/ (n) = fi(ip)

» The number of recursive steps is at least the number of
f(F (- £ (n)--+)), until the value becomes O(1)

» This superposition depth will be denoted (f,")*(n)

» The cost of all steps on a single recursion level is determined
by the complexity of the DFTs, and is ©(nlog n)

» The total cost is estimated as

Q(nlogn) - (£)"(n)



“Lower bound”

For the rational field Q, for all n

n

fo(n) = ¢(n) > ¢

“loglog n’

and
(fQ()*(n) = Q(log log n).



“Lower bound”

For the rational field Q, for all n

n

fo(n) = ¢(n) = c

“loglog n’

and
(fQ()*(n) = Q(log log n).
Complexity of any DFT-based multiplication algorithm is then

Q(nlog nloglog n).

It follows that over Q we need another kind of an algorithm.



Summary

» Uniform treatment of all known asymptotically fastest
polynomial multiplication algorithms w.r.t. the total
complexity

» A way to improve the total complexity upper bounds over
certain fields

» Impossibility to improve Schonhage-Strassen over any fields
(and rings or algebras) of characteristic 0

> In particular, no light at the end of the tunnel for polynomial
multiplication over Q



Summary

» Uniform treatment of all known asymptotically fastest
polynomial multiplication algorithms w.r.t. the total
complexity

» A way to improve the total complexity upper bounds over
certain fields

» Impossibility to improve Schonhage-Strassen over any fields
(and rings or algebras) of characteristic 0

> In particular, no light at the end of the tunnel for polynomial
multiplication over Q

» Over fields of positive characteristic,




Thank you for attention!




