
Faster Polynomial Multiplication via
Discrete Fourier Transforms

Alexey Pospelov

Computer Science Department, Saarland University

Cluster of Excellence Multimodal Computing and Interaction

June 14th, 2011

Polynomial multiplication

Given

a(x) = a0 + a1x + · · ·+ anx
n, b(x) = b0 + b1x + · · ·+ bnx

n,

Compute

c(x) = c0 + c1x + · · ·+ c2nx
2n = a(x)b(x).

For all 0 ≤ i ≤ 2n, compute

ci =

{
a0bi + a1bi−1 + · · ·+ aib0, 0 ≤ i ≤ n,

ai−nbn + ai−n+1bn−1 + · · ·+ anbi−n, n < i ≤ 2n.

Polynomial multiplication

Given

a(x) = a0 + a1x + · · ·+ anx
n, b(x) = b0 + b1x + · · ·+ bnx

n,

Compute

c(x) = c0 + c1x + · · ·+ c2nx
2n = a(x)b(x).

For all 0 ≤ i ≤ 2n, compute

ci =

{
a0bi + a1bi−1 + · · ·+ aib0, 0 ≤ i ≤ n,

ai−nbn + ai−n+1bn−1 + · · ·+ anbi−n, n < i ≤ 2n.

In what model?

I Arithmetic circuits with binary “+”, “−”, “·”
I Each binary gate has unit cost

I No divisions

I Constants from the field available at no cost

I Inputs are the coefficients of the polynomials to be multiplied

I Outputs are the coefficients of the product polynomial

I Interested in a circuit for degree n polynomial multiplication
of the minimal size

History and state of the art

School method: O(n2)

Karatsuba 1960: O(nlog2 3) = O(n1.585)

Toom 1963: n1+O(1/
√
log n) = O(n1+ε), for any fixed ε > 0

I Over infinite fields

Schönhage-Strassen 1971: O(n log n log log n)

I Didn’t work for fields of char = 2

Schönhage 1977: O(n log n log log n), over field of char = 2

Kaminski 1988, Cantor-Kaltofen 1991: O(n log n log log n), over
arbitrary algebras

Over C or R: O(n log n)

All general lower bounds: Ω(n).

History and state of the art

School method: O(n2)

Karatsuba 1960: O(nlog2 3) = O(n1.585)

Toom 1963: n1+O(1/
√
log n) = O(n1+ε), for any fixed ε > 0

I Over infinite fields

Schönhage-Strassen 1971: O(n log n log log n)

I Didn’t work for fields of char = 2

Schönhage 1977: O(n log n log log n), over field of char = 2

Kaminski 1988, Cantor-Kaltofen 1991: O(n log n log log n), over
arbitrary algebras

Over C or R: O(n log n)

All general lower bounds: Ω(n).

History and state of the art

School method: O(n2)

Karatsuba 1960: O(nlog2 3) = O(n1.585)

Toom 1963: n1+O(1/
√
log n) = O(n1+ε), for any fixed ε > 0

I Over infinite fields

Schönhage-Strassen 1971: O(n log n log log n)

I Didn’t work for fields of char = 2

Schönhage 1977: O(n log n log log n), over field of char = 2

Kaminski 1988, Cantor-Kaltofen 1991: O(n log n log log n), over
arbitrary algebras

Over C or R: O(n log n)

All general lower bounds: Ω(n).

Multiplication in O(n log n)

Given

a(x) = a0 + a1x + · · ·+ an−1x
n−1,

b(x) = b0 + b1x + · · ·+ bn−1x
n−1,

Compute

c(x) = c0 + c1x + · · ·+ xn−1x
n−1 = a(x)b(x) (mod xn − 1).

(Can always choose a larger n and pad polynomials with zeroes to
reduce the ordinary polynomial multiplication to the product in
k[x]/(xn − 1).)

Multiplication in O(n log n)

DFTωn

a0 a1 . . . an−1

&& �� xx
DFTωn

b0 b1 . . . bn−1

&& �� xx

ã0 ã1
. . . ãn−1�� ��

��

b̃n−1
. . .b̃1b̃0 ��

����

c̃0 c̃1 . . . c̃n−1

· · ·## {{ ## {{ ## {{

�� �� ��

IDFTωn
&& �� xx

c0
��

c1
��

. . . cn−1
��

ω ∈ k is
an nth

primitive
root of 1

Discrete Fourier transform

Discrete Fourier transform

I Maps a degree n − 1 polynomial to its values at n distinct nth
roots of unity:

ãi := a(ωi) =
n−1∑
j=0

ajω
ij , 0 ≤ i ≤ n − 1

DFTωn : (a0, a1, . . . , an−1) 7→ (ã0, ã1, . . . , ãn−1)

(ω is a primitive nth root of unity)

I Linear transform: DFTωn : k[x]→ kn

I Isomorphism: DFTωn : k[x]/(xn − 1)→ kn

I Can be often computed in O(n log n)

I The inverse isomorphism is almost a DFT again:

1

n
DFTω

n−1

n : (ã0, ã1, . . . , ãn−1) 7→ (a0, a1, . . . , an−1)

Discrete Fourier transform

DFTωn

a0 a1 . . . an−1

&& �� xx
DFTωn

b0 b1 . . . bn−1

&& �� xx

ã0 ã1
. . . ãn−1�� ��

��

b̃n−1
. . .b̃1b̃0 ��

����

c̃0 c̃1 . . . c̃n−1

· · ·## {{ ## {{ ## {{

�� �� ��

IDFTωn
&& �� xx

c0
��

c1
��

. . . cn−1
��

ω ∈ k is
an nth

primitive
root of 1

Discrete Fourier transform

I Lk(n): the complexity of degree n polynomial multiplication
over a field k

I Dk(n): the complexity of computing length n DFT over k

Lk(n) ≤ 3Dk(n) + 2n = O(n log n).

Note: we need roots of unity.

What if roots of unity are not available?

Attach them!

I Switch from the field k to its algebraic extension Am where
roots of unity of sufficiently large order exist.

I More precisely: take a (ring) extension Am of k of degree m
over k with a 2`th root of unity ω ∈ Am:

I For example,
Am = k[x]/pm(x),

I pm(x) ∈ k[x] is a polynomial of degree m,
I pm(x) vanishes on ω2`,
I (ω2` is a primitive 2`th root of unity in the algebraic closure of

the field k.)

How can it help? See next slide.

What if roots of unity are not available?

Attach them!

I Switch from the field k to its algebraic extension Am where
roots of unity of sufficiently large order exist.

I More precisely: take a (ring) extension Am of k of degree m
over k with a 2`th root of unity ω ∈ Am:

I For example,
Am = k[x]/pm(x),

I pm(x) ∈ k[x] is a polynomial of degree m,
I pm(x) vanishes on ω2`,
I (ω2` is a primitive 2`th root of unity in the algebraic closure of

the field k.)

How can it help? See next slide.

What if roots of unity are not available?

Attach them!

I Switch from the field k to its algebraic extension Am where
roots of unity of sufficiently large order exist.

I More precisely: take a (ring) extension Am of k of degree m
over k with a 2`th root of unity ω ∈ Am:

I For example,
Am = k[x]/pm(x),

I pm(x) ∈ k[x] is a polynomial of degree m,
I pm(x) vanishes on ω2`,
I (ω2` is a primitive 2`th root of unity in the algebraic closure of

the field k.)

How can it help? See next slide.

What if roots of unity are not available?

Attach them!

I Switch from the field k to its algebraic extension Am where
roots of unity of sufficiently large order exist.

I More precisely: take a (ring) extension Am of k of degree m
over k with a 2`th root of unity ω ∈ Am:

I For example,
Am = k[x]/pm(x),

I pm(x) ∈ k[x] is a polynomial of degree m,
I pm(x) vanishes on ω2`,
I (ω2` is a primitive 2`th root of unity in the algebraic closure of

the field k.)

How can it help? See next slide.

What if roots of unity are not available?

Attach them!

I Switch from the field k to its algebraic extension Am where
roots of unity of sufficiently large order exist.

I More precisely: take a (ring) extension Am of k of degree m
over k with a 2`th root of unity ω ∈ Am:

I For example,
Am = k[x]/pm(x),

I pm(x) ∈ k[x] is a polynomial of degree m,
I pm(x) vanishes on ω2`,
I (ω2` is a primitive 2`th root of unity in the algebraic closure of

the field k.)

How can it help?

See next slide.

What if roots of unity are not available?

Attach them!

I Switch from the field k to its algebraic extension Am where
roots of unity of sufficiently large order exist.

I More precisely: take a (ring) extension Am of k of degree m
over k with a 2`th root of unity ω ∈ Am:

I For example,
Am = k[x]/pm(x),

I pm(x) ∈ k[x] is a polynomial of degree m,
I pm(x) vanishes on ω2`,
I (ω2` is a primitive 2`th root of unity in the algebraic closure of

the field k.)

How can it help? See next slide.

Fast polynomial multiplication

a0 . . . am
2
−1 . . . an−1

↪→ Am

�� }}
↪→ Am

��
. . .

DFTω2`

A0 %% A2`−1yy

b0 . . . bm
2
−1 . . . bn−1

↪→ Am

�� }}
↪→ Am

��
. . .

DFTω2`

B0 %% B2`−1yy

·Ã0
##

B̃0

yy
. . . ·

Ã2`−1

%% B̃2`−1
{{

IDFTω2`

C̃0 %% C̃2`−1yy

←↩ Am

C0

��
. . . ←↩ Am

C2`−1

��

c0
��
. . . cm−1

!!
. . . cn−1

��		

2` ·m = n
Am = k[x]/pm(x)

ω ∈ Am
is a 2`th
primitive
root of 1

Fast polynomial multiplication

In this case

Lk(n) ≤ 2`Lk(m)

+ 3DAm(n) · complexity of aritrhmetics in Am

+ cost of embedding and unembedding in Am

Our contribution #1:

I Formalize this kind of algorithms

I The relation between m and 2` is a barrier for the algorithm’s
performance

I This relation depends heavily on the field properties

I The cost of the DFT can usually be made O(n log n)

I Embedding and unembedding run usually in linear time, e.g.,
if pm(x) is sparse

Does it work?

Yes!!!

Schönhage-Strassen 1971: ` = m

Schönhage 1977: 3` = 2m (+ a little trick)

Kaminski 1988: ` = φ(m) (Euler’s totient function)

Cantor-Kaltofen 1991: ` = m (and Am is a little more complicated
than k[x]/pm(x))

Slow fields

Slow fields

Recall:

Lk(n) ≤ 2`Lk(m)

+ 3DAm(n) · complexity of arithmetics in Am

+ cost of embedding and unembedding in Am

Ideally we want m to be small and ` to be large.

Definition
For a field k , and n, s.t. char k - n, let fk(n) be [k(ωn) : k], the
degree function of k .

Our contribution #2:

I If fk(n) = o(log log n) for some not too sparse set of n then k
is fast and Lk(n) = o(n log n log log n)

I If fk(n) = Ω(n1−ε) for any fixed ε > 0, then k is slow and any
algorithm of that kind runs in Ω(n log n log log n)

Slow fields

Recall:

Lk(n) ≤ 2`Lk(m)

+ 3DAm(n) · complexity of arithmetics in Am

+ cost of embedding and unembedding in Am

Ideally we want m to be small and ` to be large.

Definition
For a field k , and n, s.t. char k - n, let fk(n) be [k(ωn) : k], the
degree function of k .

Our contribution #2:

I If fk(n) = o(log log n) for some not too sparse set of n then k
is fast and Lk(n) = o(n log n log log n)

I If fk(n) = Ω(n1−ε) for any fixed ε > 0, then k is slow and any
algorithm of that kind runs in Ω(n log n log log n)

Slow fields

Recall:

Lk(n) ≤ 2`Lk(m)

+ 3DAm(n) · complexity of arithmetics in Am

+ cost of embedding and unembedding in Am

Ideally we want m to be small and ` to be large.

Definition
For a field k , and n, s.t. char k - n, let fk(n) be [k(ωn) : k], the
degree function of k .

Our contribution #2:

I If fk(n) = o(log log n) for some not too sparse set of n then k
is fast and Lk(n) = o(n log n log log n)

I If fk(n) = Ω(n1−ε) for any fixed ε > 0, then k is slow and any
algorithm of that kind runs in Ω(n log n log log n)

More details

I To attach an `th root of unity we need an extension of degree
at least fk(`)

I The degree of the polynomial is then ∼ ` · fk(`)

I For the least solution i0 of i · fk(i) ≥ n, f
√

k (n) := fk(i0)

I The number of recursive steps is at least the number of
f
√

k (f
√

k (· · · f
√

k (n) · · ·)), until the value becomes O(1)

I This superposition depth will be denoted (f
√

k)∗(n)

I The cost of all steps on a single recursion level is determined
by the complexity of the DFTs, and is Θ(n log n)

I The total cost is estimated as

Ω(n log n) · (f
√

k)∗(n)

More details

I To attach an `th root of unity we need an extension of degree
at least fk(`)

I The degree of the polynomial is then ∼ ` · fk(`)

I For the least solution i0 of i · fk(i) ≥ n, f
√

k (n) := fk(i0)

I The number of recursive steps is at least the number of
f
√

k (f
√

k (· · · f
√

k (n) · · ·)), until the value becomes O(1)

I This superposition depth will be denoted (f
√

k)∗(n)

I The cost of all steps on a single recursion level is determined
by the complexity of the DFTs, and is Θ(n log n)

I The total cost is estimated as

Ω(n log n) · (f
√

k)∗(n)

“Lower bound”

For the rational field Q, for all n

fQ(n) = φ(n) ≥ c · n

log log n
,

and
(f
√

Q)∗(n) = Ω(log log n).

Complexity of any DFT-based multiplication algorithm is then

Ω(n log n log log n).

It follows that over Q we need another kind of an algorithm.

“Lower bound”

For the rational field Q, for all n

fQ(n) = φ(n) ≥ c · n

log log n
,

and
(f
√

Q)∗(n) = Ω(log log n).

Complexity of any DFT-based multiplication algorithm is then

Ω(n log n log log n).

It follows that over Q we need another kind of an algorithm.

Summary
I Uniform treatment of all known asymptotically fastest

polynomial multiplication algorithms w.r.t. the total
complexity

I A way to improve the total complexity upper bounds over
certain fields

I Impossibility to improve Schönhage-Strassen over any fields
(and rings or algebras) of characteristic 0

I In particular, no light at the end of the tunnel for polynomial
multiplication over Q

I Over fields of positive characteristic,

Summary
I Uniform treatment of all known asymptotically fastest

polynomial multiplication algorithms w.r.t. the total
complexity

I A way to improve the total complexity upper bounds over
certain fields

I Impossibility to improve Schönhage-Strassen over any fields
(and rings or algebras) of characteristic 0

I In particular, no light at the end of the tunnel for polynomial
multiplication over Q

I Over fields of positive characteristic,

Thank you for attention!

