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Goldreich’s function

f : f0; 1gn ! f0; 1gn
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G (X ;Y ;E ) is a bipartite
graph;
8y 2 Y deg(y) = d
d is a constant.

Goldreich’s conjecture:
P is a random predicate;
G is an expander;

then function f is a one-way.

f is computed by constant depth circuit;
[Applebaum, Ishai, Kushilevitz 2006] If one-way functions exist
then there is a one-way function that can be computed by
constant depth circuit.
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DPLL algorithms

�

�0

...

xj := c1

...

xj := 1� c1

xi := c

�00

...

xk := c2

...

xk := 1� c2

xi := 1� c

Heuristic A chooses a variable for splitting.
Heuristic B chooses first value.
Simplification rules:

unit clause elimination;
pure literal rule.
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Lower bounds for DPLL algorithms

Unsatisfiable formulas
Exponential lower bounds for resolution refutations of
unsatisfiable formulas translate to backtracking algorithms.
[Tseitin, 1968] ... [Pudlak, Implagliazzo, 2000].

Satisfiable formulas
If P = NP then there are no superpolynomial lower bounds for
backtracking algorithms since heuristic B may choose correct
value.
Inverting of functions corresponds to satisfiable formulas.
[Nikolenko 2002], [Achilioptas, Beame, Molloy 2003-2004]
exponential lower bound for specific backtracking algorithms.
[Alekhnovich, Hirsch, Itsykson 2005] Exponential lower bound
for myopic and drunken algorithms.
Exponential lower bound for inversion of Goldreich’s function
by myopic [J. Cook et al. 2009] and drunken [Itsykson 2010]
algorithms.
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Drunken and myopic algorithms

Definition
Drunken algorithms:

A: any;
B: random 50 : 50.

Definition
Myopic heuristic:

sees structure of the formula;
doesn’t see negation signs;

requests negations in K = n1�� clause.

(x1 _ x3 _ x5)

(x2 _ x3)

(x2 _ x4 _ x5)

(x1 _ x4 _ x6)

)

(x1 _ x3 _ x5)

(x2 _ :x3)

(x2 _ x4 _ x5)

(x1 _ :x4 _ x6)
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Myopic algorithms

Definition
Myopic algorithm:

A;B are myopic heuristics.

[Alekhnovich, Hirsch, Itsykson 2005]
P is a linear predicate.
G is a random graph.

[J. Cook, Etesami, Miller, Trevisan 2009]
P = x1 + x2 + � � � + xd�2 + xd�1xd .
In fact: P = x1 + x2 + � � � + xd�k + Q(xd�k+1; : : : ; xd).

Disadvantages:

G is a random graph.

K is a constant.

Too complicated
proof.

In our work:

G is based on
expander.

K = n1��.

“Simple” proof.
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G is a random graph.

K is a constant.

Too complicated
proof.

In our work:

G is based on
expander.

K = n1��.

“Simple” proof.
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Our results

P(x1; : : : ; xd ) = x1 � x2 � : : :� xd�k �Q(xd�k+1; : : : ; xd ), Q is an
arbitrary, k < d=4.

Theorem
There exists an explicit graph G such that every myopic or drunken
DPLL algorithm makes at least 2n
(1) steps on “f (x) = f (a)” for
almost all a 2 f0; 1gn.

G is based on expander instead of random graph.
For drunken algorithms the proof follows [Itsykson, CSR-2010]
For myopic

we simplify previous proof and
K = n1��
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Graph construction

P(x1; : : : ; xd ) = x1 � x2 � : : :� xd�k � Q(xd�k+1; : : : ; xd )

G

G is an expander;
G + T has full rank. 8y 2 Y � T ; deg(y) = 1;

G + T is an expander.
R contains nonlinear edges. jfx j x 2 X ; deg(x) 6= 0gj � n�.

G + T + R is an expander.
Size of preimages no more than 2n� .

We can invert fG+T+R;P in time poly(n)2n� , but this is still much!
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Plan of the proof

Lower bounds for unsatisfiable formulas.
G is an expander.
P is almost linear.
Lower bounds for resolution proofs

With probability 1� 2�
(n) after several steps current formula
becomes unsatisfiable.

G is an expander.
f is almost bijection.
Myopic algorithm can’t recognize different absolute terms.
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