The complexity of inversion of explicit Goldreich's function by DPLL algorithms

Dmitry Itsykson, Dmitry Sokolov

Steklov Institute of Mathematics at St. Petersburg,
Academic University

CSR 2011, Saint-Petersburg June 15

Goldreich's function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

Goldreich's function

Goldreich's function

Goldreich's function

Goldreich's function

- $G(X, Y, E)$ is a bipartite graph;
- $\forall y \in Y \quad \operatorname{deg}(y)=d$

Goldreich's function

- $G(X, Y, E)$ is a bipartite graph;
- $\forall y \in Y \quad \operatorname{deg}(y)=d$
- d is a constant.

Goldreich's function

- $G(X, Y, E)$ is a bipartite graph;
- $\forall y \in Y \quad \operatorname{deg}(y)=d$
- d is a constant.

Goldreich's conjecture:

- P is a random predicate;
- G is an expander; then function f is a one-way.

Goldreich's function

- $G(X, Y, E)$ is a bipartite graph;
- $\forall y \in Y \quad \operatorname{deg}(y)=d$
- d is a constant.

Goldreich's conjecture:

- P is a random predicate;
- G is an expander; then function f is a one-way.
- f is computed by constant depth circuit;

Goldreich's function

- $G(X, Y, E)$ is a bipartite graph;
- $\forall y \in Y \quad \operatorname{deg}(y)=d$
- d is a constant.

Goldreich's conjecture:

- P is a random predicate;
- G is an expander;
then function f is a one-way.
- f is computed by constant depth circuit;
- [Applebaum, Ishai, Kushilevitz 2006] If one-way functions exist then there is a one-way function that can be computed by constant depth circuit.

DPLL algorithms

ϕ

DPLL algorithms

- Heuristic A chooses a variable for splitting.

DPLL algorithms

- Heuristic A chooses a variable for splitting.
- Heuristic B chooses first value.

DPLL algorithms

- Heuristic A chooses a variable for splitting.
- Heuristic B chooses first value.
- Simplification rules:
- unit clause elimination;
- pure literal rule.

Lower bounds for DPLL algorithms

Lower bounds for DPLL algorithms

- Unsatisfiable formulas
- Exponential lower bounds for resolution refutations of unsatisfiable formulas translate to backtracking algorithms.
- [Tseitin, 1968] ... [Pudlak, Implagliazzo, 2000].

Lower bounds for DPLL algorithms

- Unsatisfiable formulas
- Exponential lower bounds for resolution refutations of unsatisfiable formulas translate to backtracking algorithms.
- [Tseitin, 1968] ... [Pudlak, Implagliazzo, 2000].
- Satisfiable formulas
- If $\mathbf{P}=\mathbf{N P}$ then there are no superpolynomial lower bounds for backtracking algorithms since heuristic B may choose correct value.

Lower bounds for DPLL algorithms

- Unsatisfiable formulas
- Exponential lower bounds for resolution refutations of unsatisfiable formulas translate to backtracking algorithms.
- [Tseitin, 1968] ... [Pudlak, Implagliazzo, 2000].
- Satisfiable formulas
- If $\mathbf{P}=\mathbf{N P}$ then there are no superpolynomial lower bounds for backtracking algorithms since heuristic B may choose correct value.
- Inverting of functions corresponds to satisfiable formulas.

Lower bounds for DPLL algorithms

- Unsatisfiable formulas
- Exponential lower bounds for resolution refutations of unsatisfiable formulas translate to backtracking algorithms.
- [Tseitin, 1968] ... [Pudlak, Implagliazzo, 2000].
- Satisfiable formulas
- If $\mathbf{P}=\mathbf{N P}$ then there are no superpolynomial lower bounds for backtracking algorithms since heuristic B may choose correct value.
- Inverting of functions corresponds to satisfiable formulas.
- [Nikolenko 2002], [Achilioptas, Beame, Molloy 2003-2004] exponential lower bound for specific backtracking algorithms.
- [Alekhnovich, Hirsch, Itsykson 2005] Exponential lower bound for myopic and drunken algorithms.

Lower bounds for DPLL algorithms

- Unsatisfiable formulas
- Exponential lower bounds for resolution refutations of unsatisfiable formulas translate to backtracking algorithms.
- [Tseitin, 1968] ... [Pudlak, Implagliazzo, 2000].
- Satisfiable formulas
- If $\mathbf{P}=\mathbf{N P}$ then there are no superpolynomial lower bounds for backtracking algorithms since heuristic B may choose correct value.
- Inverting of functions corresponds to satisfiable formulas.
- [Nikolenko 2002], [Achilioptas, Beame, Molloy 2003-2004] exponential lower bound for specific backtracking algorithms.
- [Alekhnovich, Hirsch, Itsykson 2005] Exponential lower bound for myopic and drunken algorithms.
- Exponential lower bound for inversion of Goldreich's function by myopic [J. Cook et al. 2009] and drunken [Itsykson 2010] algorithms.

Drunken and myopic algorithms

Drunken and myopic algorithms

Definition

Drunken algorithms:

- A: any;
- B: random 50 : 50.

Drunken and myopic algorithms

Definition

Drunken algorithms:

- A: any;
- B: random 50 : 50.

Definition

Myopic heuristic:

Drunken and myopic algorithms

Definition

Drunken algorithms:

- A: any;
- B: random 50 : 50.

Definition

Myopic heuristic:

- sees structure of the formula;

Drunken and myopic algorithms

Definition

Drunken algorithms:

- A: any;
- B: random 50 : 50.

Definition

Myopic heuristic:

- sees structure of the formula;
- doesn't see negation signs;

Drunken and myopic algorithms

Definition

Drunken algorithms:

- A: any;
- B: random 50 : 50.

Definition

Myopic heuristic:

- sees structure of the formula;
- doesn't see negation signs;
- requests negations in $K=n^{1-\epsilon}$ clause.

$$
\begin{aligned}
& \left(x_{1} \vee x_{3} \vee x_{5}\right) \\
& \left(x_{2} \vee x_{3}\right) \\
& \left(x_{2} \vee x_{4} \vee x_{5}\right) \\
& \left(x_{1} \vee x_{4} \vee x_{6}\right)
\end{aligned}
$$

Drunken and myopic algorithms

Definition

Drunken algorithms:

- A: any;
- B: random 50 : 50.

Definition

Myopic heuristic:

- sees structure of the formula;
- doesn't see negation signs;
- requests negations in $K=n^{1-\epsilon}$ clause.

$$
\begin{aligned}
& \left(x_{1} \vee x_{3} \vee x_{5}\right) \\
& \left(x_{2} \vee x_{3}\right) \\
& \left(x_{2} \vee x_{4} \vee x_{5}\right) \\
& \left(x_{1} \vee x_{4} \vee x_{6}\right)
\end{aligned}
$$

Drunken and myopic algorithms

Definition

Drunken algorithms:

- A: any;
- B: random 50 : 50.

Definition

Myopic heuristic:

- sees structure of the formula;
- doesn't see negation signs;
- requests negations in $K=n^{1-\epsilon}$ clause.

$$
\begin{aligned}
& \left(x_{1} \vee x_{3} \vee x_{5}\right) \\
& \left(x_{2} \vee x_{3}\right) \\
& \left(x_{2} \vee x_{4} \vee x_{5}\right) \\
& \left(x_{1} \vee x_{4} \vee x_{6}\right)
\end{aligned}
$$

Drunken and myopic algorithms

Definition

Drunken algorithms:

- A: any;
- B: random 50 : 50.

Definition

Myopic heuristic:

- sees structure of the formula;
- doesn't see negation signs;
- requests negations in $K=n^{1-\epsilon}$ clause.

$$
\begin{array}{ll}
\left(x_{1} \vee x_{3} \vee x_{5}\right) \\
\left(x_{2} \vee x_{3}\right) \\
\left(x_{2} \vee x_{4} \vee x_{5}\right) \\
\left(x_{1} \vee x_{4} \vee x_{6}\right)
\end{array} \Rightarrow \begin{array}{ll}
\left(x_{1} \vee x_{3} \vee x_{5}\right) \\
\left(x_{2} \vee \neg x_{3}\right) \\
\left(x_{2} \vee x_{4} \vee x_{5}\right) \\
& \left(x_{1} \vee \neg x_{4} \vee x_{6}\right)
\end{array}
$$

Myopic algorithms

Definition

Myopic algorithm:

- A,B are myopic heuristics.

Myopic algorithms

Definition

Myopic algorithm:

- A, B are myopic heuristics.
- [Alekhnovich, Hirsch, Itsykson 2005]
- P is a linear predicate.
- G is a random graph.

Myopic algorithms

Definition

Myopic algorithm:

- A, B are myopic heuristics.
- [Alekhnovich, Hirsch, Itsykson 2005]
- P is a linear predicate.
- G is a random graph.
- [J. Cook, Etesami, Miller, Trevisan 2009]

Myopic algorithms

Definition

Myopic algorithm:

- A, B are myopic heuristics.
- [Alekhnovich, Hirsch, Itsykson 2005]
- P is a linear predicate.
- G is a random graph.
- [J. Cook, Etesami, Miller, Trevisan 2009]
- $P=x_{1}+x_{2}+\cdots+x_{d-2}+x_{d-1} x_{d}$.
- In fact: $P=x_{1}+x_{2}+\cdots+x_{d-k}+Q\left(x_{d-k+1}, \ldots, x_{d}\right)$.

Myopic algorithms

Definition

Myopic algorithm:

- A, B are myopic heuristics.
- [Alekhnovich, Hirsch, Itsykson 2005]
- P is a linear predicate.
- G is a random graph.
- [J. Cook, Etesami, Miller, Trevisan 2009]
- $P=x_{1}+x_{2}+\cdots+x_{d-2}+x_{d-1} x_{d}$.
- In fact: $P=x_{1}+x_{2}+\cdots+x_{d-k}+Q\left(x_{d-k+1}, \ldots, x_{d}\right)$.

Disadvantages:

Myopic algorithms

Definition

Myopic algorithm:

- A, B are myopic heuristics.
- [Alekhnovich, Hirsch, Itsykson 2005]
- P is a linear predicate.
- G is a random graph.
- [J. Cook, Etesami, Miller, Trevisan 2009]
- $P=x_{1}+x_{2}+\cdots+x_{d-2}+x_{d-1} x_{d}$.
- In fact: $P=x_{1}+x_{2}+\cdots+x_{d-k}+Q\left(x_{d-k+1}, \ldots, x_{d}\right)$.

Disadvantages:

- G is a random graph.

Myopic algorithms

Definition

Myopic algorithm:

- A, B are myopic heuristics.
- [Alekhnovich, Hirsch, Itsykson 2005]
- P is a linear predicate.
- G is a random graph.
- [J. Cook, Etesami, Miller, Trevisan 2009]
- $P=x_{1}+x_{2}+\cdots+x_{d-2}+x_{d-1} x_{d}$.
- In fact: $P=x_{1}+x_{2}+\cdots+x_{d-k}+Q\left(x_{d-k+1}, \ldots, x_{d}\right)$.

Disadvantages:

- G is a random graph.
- K is a constant.

Myopic algorithms

Definition

Myopic algorithm:

- A, B are myopic heuristics.
- [Alekhnovich, Hirsch, Itsykson 2005]
- P is a linear predicate.
- G is a random graph.
- [J. Cook, Etesami, Miller, Trevisan 2009]
- $P=x_{1}+x_{2}+\cdots+x_{d-2}+x_{d-1} x_{d}$.
- In fact: $P=x_{1}+x_{2}+\cdots+x_{d-k}+Q\left(x_{d-k+1}, \ldots, x_{d}\right)$.

Disadvantages:
In our work:

- G is a random graph.
- K is a constant.
- Too complicated proof.

Myopic algorithms

Definition

Myopic algorithm:

- A, B are myopic heuristics.
- [Alekhnovich, Hirsch, Itsykson 2005]
- P is a linear predicate.
- G is a random graph.
- [J. Cook, Etesami, Miller, Trevisan 2009]
- $P=x_{1}+x_{2}+\cdots+x_{d-2}+x_{d-1} x_{d}$.
- In fact: $P=x_{1}+x_{2}+\cdots+x_{d-k}+Q\left(x_{d-k+1}, \ldots, x_{d}\right)$.

Disadvantages:
In our work:

- G is a random graph.
- K is a constant.
- G is based on expander.
- Too complicated proof.

Myopic algorithms

Definition

Myopic algorithm:

- A, B are myopic heuristics.
- [Alekhnovich, Hirsch, Itsykson 2005]
- P is a linear predicate.
- G is a random graph.
- [J. Cook, Etesami, Miller, Trevisan 2009]
- $P=x_{1}+x_{2}+\cdots+x_{d-2}+x_{d-1} x_{d}$.
- In fact: $P=x_{1}+x_{2}+\cdots+x_{d-k}+Q\left(x_{d-k+1}, \ldots, x_{d}\right)$.

Disadvantages:
In our work:

- G is a random graph.
- K is a constant.
- G is based on expander.
- $K=n^{1-\epsilon}$.
- Too complicated proof.

Myopic algorithms

Definition

Myopic algorithm:

- A, B are myopic heuristics.
- [Alekhnovich, Hirsch, Itsykson 2005]
- P is a linear predicate.
- G is a random graph.
- [J. Cook, Etesami, Miller, Trevisan 2009]
- $P=x_{1}+x_{2}+\cdots+x_{d-2}+x_{d-1} x_{d}$.
- In fact: $P=x_{1}+x_{2}+\cdots+x_{d-k}+Q\left(x_{d-k+1}, \ldots, x_{d}\right)$.

Disadvantages:
In our work:

- G is a random graph.
- K is a constant.
- Too complicated proof.
- G is based on expander.
- $K=n^{1-\epsilon}$.
- "Simple" proof.

Our results

$P\left(x_{1}, \ldots, x_{d}\right)=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{d-k} \oplus Q\left(x_{d-k+1}, \ldots, x_{d}\right), Q$ is an arbitrary, $k<d / 4$.

Our results

$P\left(x_{1}, \ldots, x_{d}\right)=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{d-k} \oplus Q\left(x_{d-k+1}, \ldots, x_{d}\right), Q$ is an arbitrary, $k<d / 4$.

Theorem

There exists an explicit graph G such that every myopic or drunken DPLL algorithm makes at least $2^{n^{\Omega(1)}}$ steps on " $f(x)=f(a)$ " for almost all $a \in\{0,1\}^{n}$.

Our results

$P\left(x_{1}, \ldots, x_{d}\right)=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{d-k} \oplus Q\left(x_{d-k+1}, \ldots, x_{d}\right), Q$ is an arbitrary, $k<d / 4$.

Theorem

There exists an explicit graph G such that every myopic or drunken DPLL algorithm makes at least $2^{n^{\Omega(1)}}$ steps on " $f(x)=f(a)$ " for almost all $a \in\{0,1\}^{n}$.

- G is based on expander instead of random graph.

Our results

$P\left(x_{1}, \ldots, x_{d}\right)=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{d-k} \oplus Q\left(x_{d-k+1}, \ldots, x_{d}\right), Q$ is an arbitrary, $k<d / 4$.

Theorem

There exists an explicit graph G such that every myopic or drunken DPLL algorithm makes at least $2^{n^{\Omega(1)}}$ steps on " $f(x)=f(a)$ " for almost all $a \in\{0,1\}^{n}$.

- G is based on expander instead of random graph.
- For drunken algorithms the proof follows [Itsykson, CSR-2010]

Our results

$P\left(x_{1}, \ldots, x_{d}\right)=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{d-k} \oplus Q\left(x_{d-k+1}, \ldots, x_{d}\right), Q$ is an arbitrary, $k<d / 4$.

Theorem

There exists an explicit graph G such that every myopic or drunken DPLL algorithm makes at least $2^{n^{2(1)}}$ steps on " $f(x)=f(a)$ " for almost all $a \in\{0,1\}^{n}$.

- G is based on expander instead of random graph.
- For drunken algorithms the proof follows [Itsykson, CSR-2010]
- For myopic
- we simplify previous proof and
- $K=n^{1-\epsilon}$

Graph construction

$$
P\left(x_{1}, \ldots, x_{d}\right)=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{d-k} \oplus Q\left(x_{d-k+1}, \ldots, x_{d}\right)
$$

Graph construction

- G is an expander;

Graph construction

- G is an expander;

Graph construction

- G is an expander;
- $G+T$ has full rank. $\forall y \in Y \subset T, \operatorname{deg}(y)=1$;

Graph construction

- G is an expander;
- $G+T$ has full rank. $\forall y \in Y \subset T, \operatorname{deg}(y)=1$;
- $G+T$ is an expander.

Graph construction

- G is an expander;
- $G+T$ has full rank. $\forall y \in Y \subset T, \operatorname{deg}(y)=1$;
- $G+T$ is an expander.
- R contains nonlinear edges. $|\{x \mid x \in X, \operatorname{deg}(x) \neq 0\}| \leq n^{\epsilon}$.
- $G+T+R$ is an expander.

Graph construction

- G is an expander;
- $G+T$ has full rank. $\forall y \in Y \subset T, \operatorname{deg}(y)=1$;
- $G+T$ is an expander.
- R contains nonlinear edges. $|\{x \mid x \in X, \operatorname{deg}(x) \neq 0\}| \leq n^{\epsilon}$.
- $G+T+R$ is an expander.
- Size of preimages no more than $2^{n^{\epsilon}}$.

We can invert $f_{G+T+R, P}$ in time poly $(n) 2^{n^{\epsilon}}$, but this is still much!

Plan of the proof

- Lower bounds for unsatisfiable formulas.

Plan of the proof

- Lower bounds for unsatisfiable formulas.
- G is an expander.
- P is almost linear.
- Lower bounds for resolution proofs

Plan of the proof

- Lower bounds for unsatisfiable formulas.
- G is an expander.
- P is almost linear.
- Lower bounds for resolution proofs
- With probability $1-2^{-\Omega(n)}$ after several steps current formula becomes unsatisfiable.

Plan of the proof

- Lower bounds for unsatisfiable formulas.
- G is an expander.
- P is almost linear.
- Lower bounds for resolution proofs
- With probability $1-2^{-\Omega(n)}$ after several steps current formula becomes unsatisfiable.
- G is an expander.
- f is almost bijection.
- Myopic algorithm can't recognize different absolute terms.

