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Introduction

Our subject is public key cryptosystems.
No cryptosystem with public key has been proven to be secure.
If a secure public key cryptosystem exists then P # NP.

Moreover, asymptotic cryptography is kind of useless in
practice: you would be interested in specific key sizes.

To prove anything about specific key sizes, we have to talk
about circuit complexity.
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Introduction

@ Of course, there are no nonlinear lower bounds in circuit
complexity.

@ But we can prove that feebly secure cryptosystems exist.
Nikolenko and Hirsch constructed trapdoor functions which
are % times harder to break then to use.

@ In this paper we will show an improvement of their
construction allowing us to build a protocol which is % harder
to break then to use.

@ From now on when speaking about complexity we will mean
general circuit complexity.
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Fix functions pi, ti, m,c : N — N. A feebly trapdoor candidate is a
sequence of triples of circuits C = {(Key,, Eval,,Inv,)}72; where:

o {Key,}>2, is a family of sampling circuits
Key, : B" — BPi(") x Bti(),
o {Eval,}> is a family of evaluation circuits
Eval, : Bpi(n) « pm(n) _y IB%C(”), and
o {Inv,}>°, is a family of inversion circuits
Inv, : Bt x Be(n) — gm(n)
such that for every security parameter n, every seed s € B", and
every input m € B™("

Inv,,(Key,,Q(s), Eval,,(Keyml(s), m)) = m,

where Key,, 1(s) and Key, 5(s) are the first pi(n) bits (“public
information”) and the last ti(n) bits ( “trapdoor information”) of
Key,(s), respectively.



@ A circuit N breaks a feebly trapdoor candidate
C = {Key,,Eval,, Inv,} on seed length n with probability r
if, for uniformly chosen seeds s € B” and inputs m € B™(",

( P)r ” [N(Key, 1(s), Evalp(Key,, 1 (s), m)) = m] > r.
s,m)€

@ A feebly trapdoor candidate C = {Key,,, Eval,, Inv,} has
order of security k with level % if for every sequence of circuits
{N,}2 that break f on every input length n with probability
3
e

lim inf min
n—oo

C(Ny) C(N,) C(Ny)
{C(Keyn)’ C(Eval,)’ C(Inv,,)} 2 k.
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@ We will work with linear Boolean functions.
@ It is convenient to represent linear functions as matrices.
@ These functions are still interesting because the following

theorem holds:

Nonconstructive Bounds to Linear Functions

@ For every n there exists a constant §, such that the circuit
complexity of all linear functions ¢ : {0,1}" — {0,1}" does not

2 .
exceed (5,,|0”?, and lim,_ o 0, = 1.

@ For every n > 3, there exists a linear Boolean function
. - . 2
¢ :{0,1}" — {0,1}" with circuit complexity greater than 57 —.
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Gate Elimination

@ To build secure constructions we need a method to prove
lower bounds on complexity.

@ Gate elimination is virtually the only method we have to prove
lower bounds.
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Gate Elimination

@ Consider a function f and a circuit of minimal size C that
computes it.

@ Now substitute some value ¢ for some variable x thus
obtaining a circuit for the function f |x—c.

@ The original circuit C can now be simplified, because the
gates that had this variable as inputs become either unary or
constant.
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Gate Elimination for Linear Functions

Suppose that for n steps, there is at least one gate to eliminate.
Then C(f) > n.

@ Simple example: a function f that nontrivially depends on all
n inputs has C(f) > n— 1.
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Gate Elimination for Linear Functions

Gate Elimination 1

Suppose that P = {P,}%2 is a series of predicates defined on
matrices over [F> with the following properties:

o if P1(A) holds then C3/4(A) > 1;
o if P,(A) holds then Pp(A) holds for every 1 < m < n;
@ if Pp(A) holds then, for every index i, P,_1(A_;) holds.

Then, for every matrix A with > n + 1 different columns, if P,(A)
holds for some n then C(A) > n and, moreover, C3/4(A) > n.
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Gate Elimination for Linear Functions (Generalized)

Idea 1 is not optimal because on each elimination step, we count
only one gate as eliminated, while sometimes we actually get two
or more.

Idea 2

Suppose that for n steps, there exists an input in the circuit with
two outgoing edges, and, moreover, in m of these cases both of
these edges go to a gate (rather than a gate and an output). Then
C(f)=n+m.
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Gate Elimination for Linear Functions (Generalized)

Gate Elimination 2
Suppose that predicates R = {R,}52; and Q = {Qm}55_; defined
on matrices over F, have the following properties:

if R1(A) holds then C(A) > 1;

if Rn(A) holds then Ry(A) holds for every 1 < k < n;
if Rn(A) holds then, for every i, R,—1(A—_;) holds;

if Q1(A) holds then C(A) > 1;

if Qm(A) holds then Qk(A) holds for every 1 < k < n;
if @m(A) holds then, for every i, Qm_1(A—;) holds;

)

if @m(A) holds and A_; has more zero rows than A then
Qm(A_;) holds.

Then, for every matrix A with > n+ 1 columns, all of whose
columns are different, if R,(A) and @, (A) hold for some n > m
then C(A) > n+ m and, moreover, C3/4(A) > n+ m.
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Gate Elimination for Linear Functions (Generalized)

@ However, we are actually interested in the total number of
gates eliminated rather than specifically eliminating one gate
and two gates exactly (exact quantities and orderings may be
hard to find).

@ We call a nonzero entry unique if it is the only nonzero entry
in its row.
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Gate Elimination for Linear Functions (Generalized)

Gate Elimination 3

Suppose that P = {P,}%2 is a series of predicates defined on
matrices over [F> with the following properties:

e if P1(A) holds then C(A) > 1;
@ if Pp(A) holds then Pp,(A) holds for every 1 < m < n;

o if P,(A) holds then, for every index i, if the i column has no
unique entries then P,_2(A_;) holds, otherwise P,_1(A_;)
holds.

Then, for every matrix A with > n + 1 different columns, if P,(A)
holds for some n then C(A) > n and, moreover, C3/4(A) > n.

Alex Davydow, Sergey |. Nikolenko Gate Elimination for Linear Functions



Corollaries

Using Gate Elimination we can obtain several simple algorithms to
estimate complexity of linear Boolean functions.

Algorithm 1

Let t,u > 1. Assume also that A is a matrix with all colums
different and, every row of A has at least u nonzero entries, and
after removing any t columns of A, the matrix still has at least one
row containing at least two nonzero entries. Then C(A) > u+t
and, moreover, C3/4(A) > u +t.

Algorithm 2

Let t > u > 2. Assume that A is a u x t matrix with different
columns, and each column of A has at least two nonzero elements
(ones). Then C(A) > 2t — u and, moreover, C3/4(A) > 2t — u.
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Corollaries

@ While the first algorithm was introduced in Hirsch and
Nikolenko's paper, the second is a new result.

@ It is very simple but has several interesting applications.

@ For example, with this idea we can build a matrix with
complexity 2n+ % —2log(n) — 1. Example of such a matrix
is provided by cyclic shifts of Hamming code check matrices.
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Block Diagonal Matrices

Block Diagonal Matrix Complexity

Suppose that a linear function x is given by a block diagonal matrix

A1 0 - 0
0 A - O
Do . Y
6 0 - A

and every A; satisfies the conditions of Generalized Gate
Elimination method with predicates P/ = {P}}52,, and P}, (A))

k
hold for every j. Then C(x) > >_ n;.
j=1
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New Feebly Secure Construction

By U,, we denote the upper triangular square n x n matrix with a
bidiagonal inverse:

111 1100

011 B 0110
Upr=1.. .1, U R

001 00(')~~-i

note that U2 is an upper triangular matrix with zeros and ones
chequered. In what follows, we often write matrices that consist of
other matrices as blocks; e.g., (U Uy ) is an n X 2n matrix
consisting of two upper triangular blocks.

Q Gu(Un) =n—1

Q@ Gu(U )—”—

Q@ Gu(U,Y)=n-1.

(%) C3/4((Un Un)) =2n—1.

© 3n—6< Cyu((U2 Un)) < C((U2 Un)) < 3n—3.
@ 3n—4< Cya((ur ur)) < C((Us U31)) < 3n—2
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New Feebly Secure Construction

@ We assume that lengths of public information pi/, trapdoor
information ti, message m, and the cipher ¢ are the same and
equal n.

o We let ti = U, - pi, c = (u;* Un)-(,'ﬂ-).

@ An adversary would have to compute the matrix

c

(UnUn) - (§)=(Un12)- (pi)-

Problem
Inversion without the trapdoor is harder than inversion with
trapdoor, but encryption is about the same complexity as inversion

without trapdoor.
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Solving the Problem

@ To solve this problem we will use a feebly one-way linear
function A (one of Hiltgen's hard function with order of
security up to 2).

@ Their complexity follows from Algorithm 1, so we can stack
them up into a block matrix.

@ New protocol:

U, 0 _ i
Key, = 0 I,,>'(ss)_(f§i)’
Bval, = (Y% % 9)- (%) =(2)
n 0 0A my @/

(
Iy, — (UnUn o>,<;} —(
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Final Results

@ Complexities of new protocol:

C3/4(KGYn) = n—1,

Cz/a(Eval,) = 3n+An+ o(n),
Gy/a(Invy) = 2n+(2—€)An+ o(n),

G3/4(Adv,) = 3n+(2—€)An+o(n).

@ The order of security of this construction is now:

min C3/4(Aan) C3/4(Aan) C3/4 Aan
C(Eval,) * C(Inv,) = C(Key,)

o <3+(2—6))\ 3+(2—¢) )
ST TSI 25 2o )

lim
n—oo

This expression reaches maximum for A= 1% and this

maximum is 54
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Thank you for your attention!
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