Gate Elimination for Linear Functions and new Feebly Secure Constructions

Alex Davydow ${ }^{1}$ Sergey I. Nikolenko ${ }^{2}$

${ }^{1}$ St. Petersburg Academic University, ul. Khlopina, 8, korp. 3, St. Petersburg, Russia, adavydow@yandex.ru
${ }^{2}$ Steklov Mathematical Institute, nab. r. Fontanka, 27, St. Petersburg, Russia, sergey@logic.pdmi.ras.ru

CSR 2011

Introduction

- Our subject is public key cryptosystems.
- No cryptosystem with public key has been proven to be secure.
- If a secure public key cryptosystem exists then $P \neq N P$.
- Moreover, asymptotic cryptography is kind of useless in practice: you would be interested in specific key sizes.
- To prove anything about specific key sizes, we have to talk about circuit complexity.

Introduction

- Of course, there are no nonlinear lower bounds in circuit complexity.
- But we can prove that feebly secure cryptosystems exist. Nikolenko and Hirsch constructed trapdoor functions which are $\frac{25}{22}$ times harder to break then to use.
- In this paper we will show an improvement of their construction allowing us to build a protocol which is $\frac{5}{4}$ harder to break then to use.
- From now on when speaking about complexity we will mean general circuit complexity.

Definitions

Fix functions pi, ti, $m, c: \mathbb{N} \rightarrow \mathbb{N}$. A feebly trapdoor candidate is a sequence of triples of circuits $\mathcal{C}=\left\{\left(\operatorname{Key}_{n}, \operatorname{Eval}_{n}, \operatorname{Inv}_{n}\right)\right\}_{n=1}^{\infty}$ where:

- $\left\{\operatorname{Key}_{n}\right\}_{n=1}^{\infty}$ is a family of sampling circuits $\mathrm{Key}_{n}: \mathbb{B}^{n} \rightarrow \mathbb{B}^{\mathrm{pi}(n)} \times \mathbb{B}^{\mathrm{ti}(n)}$,
- $\left\{\text { Eval }_{n}\right\}_{n=1}^{\infty}$ is a family of evaluation circuits

$$
\operatorname{Eval}_{n}: \mathbb{B}^{\text {pi }(n)} \times \mathbb{B}^{m(n)} \rightarrow \mathbb{B}^{c(n)}, \text { and }
$$

- $\left\{\operatorname{Inv}_{n}\right\}_{n=1}^{\infty}$ is a family of inversion circuits $\operatorname{Inv}_{n}: \mathbb{B}^{\overline{\mathrm{ti}}(n)} \times \mathbb{B}^{c(n)} \rightarrow \mathbb{B}^{m(n)}$
such that for every security parameter n, every seed $s \in \mathbb{B}^{n}$, and every input $m \in \mathbb{B}^{m(n)}$

$$
\operatorname{Inv}_{n}\left(\operatorname{Key}_{n, 2}(s), \operatorname{Eval}_{n}\left(\operatorname{Key}_{n, 1}(s), m\right)\right)=m
$$

$w_{\text {where }} \operatorname{Key}_{n, 1}(s)$ and $\operatorname{Key}_{n, 2}(s)$ are the first pi(n) bits ("public information") and the last ti(n) bits ("trapdoor information") of $\mathrm{Key}_{n}(s)$, respectively.

Definitions

- A circuit N breaks a feebly trapdoor candidate $\mathcal{C}=\left\{\mathrm{Key}_{n}\right.$, Eval $\left._{n}, \operatorname{Inv}_{n}\right\}$ on seed length n with probability r if, for uniformly chosen seeds $s \in \mathbb{B}^{n}$ and inputs $m \in \mathbb{B}^{m(n)}$,

$$
\underset{(s, m) \in U}{\operatorname{Pr}}\left[N\left(\operatorname{Key}_{n, 1}(s), \operatorname{Eval}_{n}\left(\operatorname{Key}_{n, 1}(s), m\right)\right)=m\right]>r
$$

- A feebly trapdoor candidate $\mathcal{C}=\left\{\mathrm{Key}_{n}, \mathrm{Eval}_{n}, \operatorname{Inv}_{n}\right\}$ has order of security k with level $\frac{3}{4}$ if for every sequence of circuits $\left\{N_{n}\right\}_{n=1}^{\infty}$ that break f on every input length n with probability $\frac{3}{4}$,

$$
\lim \inf _{n \rightarrow \infty} \min \left\{\frac{C\left(N_{n}\right)}{C\left(\mathrm{Key}_{n}\right)}, \frac{C\left(N_{n}\right)}{C\left(\mathrm{Eval}_{n}\right)}, \frac{C\left(N_{n}\right)}{C\left(\operatorname{Inv}_{n}\right)}\right\} \geq k
$$

Definitions

- We will work with linear Boolean functions.
- It is convenient to represent linear functions as matrices.
- These functions are still interesting because the following theorem holds:

Nonconstructive Bounds to Linear Functions

(1) For every n there exists a constant δ_{n} such that the circuit complexity of all linear functions $\phi:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ does not exceed $\delta_{n} \frac{n^{2}}{\log n}$, and $\lim _{n \rightarrow \infty} \delta_{n}=1$.
(2) For every $n \geq 3$, there exists a linear Boolean function $\phi:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ with circuit complexity greater than $\frac{n^{2}}{2 \log n}$.

Gate Elimination

- To build secure constructions we need a method to prove lower bounds on complexity.
- Gate elimination is virtually the only method we have to prove lower bounds.

Gate Elimination

- Consider a function f and a circuit of minimal size C that computes it.
- Now substitute some value c for some variable x thus obtaining a circuit for the function $\left.f\right|_{x=c}$.
- The original circuit C can now be simplified, because the gates that had this variable as inputs become either unary or constant.

Gate Elimination for Linear Functions

Idea 1

Suppose that for n steps, there is at least one gate to eliminate. Then $C(f) \geq n$.

- Simple example: a function f that nontrivially depends on all n inputs has $C(f) \geq n-1$.

Gate Elimination for Linear Functions

Gate Elimination 1

Suppose that $\mathcal{P}=\left\{P_{n}\right\}_{n=1}^{\infty}$ is a series of predicates defined on matrices over \mathbb{F}_{2} with the following properties:

- if $P_{1}(A)$ holds then $C_{3 / 4}(A) \geq 1$;
- if $P_{n}(A)$ holds then $P_{m}(A)$ holds for every $1 \leq m \leq n$;
- if $P_{n}(A)$ holds then, for every index $i, P_{n-1}\left(A_{-i}\right)$ holds.

Then, for every matrix A with $\geq n+1$ different columns, if $P_{n}(A)$ holds for some n then $C(A) \geq n$ and, moreover, $C_{3 / 4}(A) \geq n$.

Gate Elimination for Linear Functions (Generalized)

Idea 1 is not optimal because on each elimination step, we count only one gate as eliminated, while sometimes we actually get two or more.

Idea 2

Suppose that for n steps, there exists an input in the circuit with two outgoing edges, and, moreover, in m of these cases both of these edges go to a gate (rather than a gate and an output). Then $C(f) \geq n+m$.

Gate Elimination for Linear Functions (Generalized)

Gate Elimination 2

Suppose that predicates $\mathcal{R}=\left\{R_{n}\right\}_{n=1}^{\infty}$ and $\mathcal{Q}=\left\{Q_{m}\right\}_{m=1}^{\infty}$ defined on matrices over \mathbb{F}_{2} have the following properties:

- if $R_{1}(A)$ holds then $C(A) \geq 1$;
- if $R_{n}(A)$ holds then $R_{k}(A)$ holds for every $1 \leq k \leq n$;
- if $R_{n}(A)$ holds then, for every $i, R_{n-1}\left(A_{-i}\right)$ holds;
- if $Q_{1}(A)$ holds then $C(A) \geq 1$;
- if $Q_{m}(A)$ holds then $Q_{k}(A)$ holds for every $1 \leq k \leq n$;
- if $Q_{m}(A)$ holds then, for every $i, Q_{m-1}\left(A_{-i}\right)$ holds;
- if $Q_{m}(A)$ holds and A_{-i} has more zero rows than A then $Q_{m}\left(A_{-i}\right)$ holds.
Then, for every matrix A with $\geq n+1$ columns, all of whose columns are different, if $R_{n}(A)$ and $Q_{m}(A)$ hold for some $n \geq m$ then $C(A) \geq n+m$ and, moreover, $C_{3 / 4}(A) \geq n+m$.

Gate Elimination for Linear Functions (Generalized)

- However, we are actually interested in the total number of gates eliminated rather than specifically eliminating one gate and two gates exactly (exact quantities and orderings may be hard to find).
- We call a nonzero entry unique if it is the only nonzero entry in its row.

Gate Elimination for Linear Functions (Generalized)

Gate Elimination 3

Suppose that $\mathcal{P}=\left\{P_{n}\right\}_{n=1}^{\infty}$ is a series of predicates defined on matrices over \mathbb{F}_{2} with the following properties:

- if $P_{1}(A)$ holds then $C(A) \geq 1$;
- if $P_{n}(A)$ holds then $P_{m}(A)$ holds for every $1 \leq m \leq n$;
- if $P_{n}(A)$ holds then, for every index i, if the $i^{\text {th }}$ column has no unique entries then $P_{n-2}\left(A_{-i}\right)$ holds, otherwise $P_{n-1}\left(A_{-i}\right)$ holds.
Then, for every matrix A with $\geq n+1$ different columns, if $P_{n}(A)$ holds for some n then $C(A) \geq n$ and, moreover, $C_{3 / 4}(A) \geq n$.

Corollaries

Using Gate Elimination we can obtain several simple algorithms to estimate complexity of linear Boolean functions.

Algorithm 1

Let $t, u \geq 1$. Assume also that A is a matrix with all colums different and, every row of A has at least u nonzero entries, and after removing any t columns of A, the matrix still has at least one row containing at least two nonzero entries. Then $C(A) \geq u+t$ and, moreover, $C_{3 / 4}(A) \geq u+t$.

Algorithm 2

Let $t \geq u \geq 2$. Assume that A is a $u \times t$ matrix with different columns, and each column of A has at least two nonzero elements (ones). Then $C(A) \geq 2 t-u$ and, moreover, $C_{3 / 4}(A) \geq 2 t-u$.

Corollaries

- While the first algorithm was introduced in Hirsch and Nikolenko's paper, the second is a new result.
- It is very simple but has several interesting applications.
- For example, with this idea we can build a matrix with complexity $2 n+\frac{n}{\log (n)}-2 \log (n)-1$. Example of such a matrix is provided by cyclic shifts of Hamming code check matrices.

Block Diagonal Matrices

Block Diagonal Matrix Complexity

Suppose that a linear function χ is given by a block diagonal matrix

$$
\left(\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & A_{k}
\end{array}\right),
$$

and every A_{j} satisfies the conditions of Generalized Gate Elimination method with predicates $\mathcal{P}^{j}=\left\{P_{n}^{j}\right\}_{n=1}^{\infty}$, and $P_{n_{j}}^{j}\left(A_{j}\right)$ hold for every j. Then $C(\chi) \geq \sum_{j=1}^{k} n_{j}$.

New Feebly Secure Construction

By U_{n}, we denote the upper triangular square $n \times n$ matrix with a bidiagonal inverse:

$$
U_{n}=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
0 & 1 & \cdots & 1 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right), \quad U_{n}^{-1}=\left(\begin{array}{cccc}
1 & 1 & 0 & \cdots
\end{array}\right)
$$

note that U_{n}^{2} is an upper triangular matrix with zeros and ones chequered. In what follows, we often write matrices that consist of other matrices as blocks; e.g., $\left(U_{n} U_{n}\right)$ is an $n \times 2 n$ matrix consisting of two upper triangular blocks.
(1) $C_{3 / 4}\left(U_{n}\right)=n-1$.
(2) $C_{3 / 4}\left(U_{n}^{2}\right)=n-2$.
(3) $C_{3 / 4}\left(U_{n}^{-1}\right)=n-1$.
(4) $C_{3 / 4}\left(\left(U_{n} U_{n}\right)\right)=2 n-1$.
(3) $3 n-6 \leq C_{3 / 4}\left(\left(U_{n}^{2} u_{n}\right)\right) \leq C\left(\left(U_{n}^{2} U_{n}\right)\right) \leq 3 n-3$.
(6) $3 n-4 \leq C_{3 / 4}\left(\left(U_{n} u_{n}^{-1}\right)\right) \leq C\left(\left(U_{n} U_{n}^{-1}\right)\right) \leq 3 n-2$.

New Feebly Secure Construction

- We assume that lengths of public information pi, trapdoor information $t i$, message m, and the cipher c are the same and equal n.
- We let $t i=U_{n} \cdot p i, c=\left(U_{n}^{-1} U_{n}\right) \cdot\binom{m}{p i}$.
- An adversary would have to compute the matrix $\left(U_{n} U_{n}\right) \cdot\binom{c}{t i}=\left(U_{n} U_{n}^{2}\right) \cdot\binom{c}{p i}$.

Problem

Inversion without the trapdoor is harder than inversion with trapdoor, but encryption is about the same complexity as inversion without trapdoor.

Solving the Problem

- To solve this problem we will use a feebly one-way linear function A (one of Hiltgen's hard function with order of security up to 2).
- Their complexity follows from Algorithm 1, so we can stack them up into a block matrix.
- New protocol:

$$
\begin{aligned}
& \operatorname{Key}_{n}=\left(\begin{array}{cc}
U_{n} & 0 \\
0 & I_{n}
\end{array}\right) \cdot\left(\begin{array}{ll}
s & s
\end{array}\right)=\binom{t_{i}}{p_{i}}, \\
& \left.\begin{array}{rl}
\text { Eval }_{n} & =\left(\begin{array}{ccc}
U_{n}^{-1} & U_{n} & 0 \\
0 & 0 & A
\end{array}\right) \cdot\left(\begin{array}{c}
m_{1} \\
p i \\
m_{2} \\
m_{2} \\
U_{n}
\end{array} U_{n}\right. \\
0 \\
0 & 0
\end{array} A^{-1}\right) \cdot\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{2} \\
c_{2}
\end{array}\right)=\binom{m_{1}}{m_{2}} .
\end{aligned}
$$

Final Results

- Complexities of new protocol:

$$
\begin{aligned}
C_{3 / 4}\left(\mathrm{Key}_{n}\right) & =n-1, \\
C_{3 / 4}\left(\operatorname{Eval}_{n}\right) & =3 n+\lambda n+o(n), \\
C_{3 / 4}\left(\operatorname{Inv}_{n}\right) & =2 n+(2-\epsilon) \lambda n+o(n), \\
C_{3 / 4}\left(\operatorname{Adv}_{n}\right) & =3 n+(2-\epsilon) \lambda n+o(n) .
\end{aligned}
$$

- The order of security of this construction is now:

$$
\begin{array}{r}
\lim _{n \rightarrow \infty}\left(\min \left(\frac{C_{3 / 4}\left(\operatorname{Adv}_{n}\right)}{C\left(\operatorname{Eval}_{n}\right)}, \frac{C_{3 / 4}\left(\operatorname{Adv}_{n}\right)}{C\left(\operatorname{Inv}_{n}\right)}, \frac{C_{3 / 4}\left(\operatorname{Adv}_{n}\right)}{C\left(\operatorname{Key}_{n}\right)}\right)\right)= \\
=\min \left(\frac{3+(2-\epsilon) \lambda}{3+\lambda}, \frac{3+(2-\epsilon) \lambda}{2+(2-\epsilon) \lambda}\right)
\end{array}
$$

This expression reaches maximum for $\lambda=\frac{1}{1-\epsilon}$, and this maximum is $\frac{5-4 \epsilon}{4-\epsilon}$, which tends to $\frac{5}{4}$ as $\epsilon \rightarrow 0$.

Thank you!

Thank you for your attention!

