Maltsev digraphs

C. Carvalho^a, L. Egri^b, M. Jackson^c and T. Niven^c

^aUniversity of Hertfordshire, ^bMcGill University, ^cLaTrobe University

CSR 2011

Digraphs

A directed graph or digraph is a relational structure G = (V, E) with domain V, the vertices, and relation $E \subseteq V \times V$, the directed edges or arcs.

A polymorphism *f* of *G* is an *n*-ary operation in *V* that is a homomorphism $f: G \times \cdots \times G \longrightarrow G$.

A maltsev polymorphism of *G* is a 3-ary polymorphism, *m*, that satisfies m(x, y, y) = m(y, y, x) = x for all $x, y \in V$.

A D F A 同 F A E F A E F A Q A

Constraint Satisfaction Problem

or Homomorphism Problem

Given two digraphs G = (V(G), E(G)), H = (V(H), E(H)) is there a homomorphism $h : G \longrightarrow H$?

h satisfies $(a, b) \in E(G) \Rightarrow (h(a), h(b)) \in E(H)$.

If a homomorphism exists we write $G \longrightarrow H$.

The CSP with a fixed *H* is denoted CSP(H), and can be viewed as $\{G : G \longrightarrow H\}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example

 $CSP(K_2)$ is the graph 2-colourability problem.

More generally CSP(H), with H a digraph is the H-colouring problem. This is a much studied problem in graph theory.

Problem: Classify CSP(H) with respect to computational (and descriptive) complexity.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Polymorphisms and complexity

Good polymorphisms imply tractability.

Lack of polymorphisms NP-complete problems.

Certain polymorphism imply membership in a specific complexity class.

Example (Dalmau, Krokhin)

If H is preserved by a majority operation then CSP(H) is in NL.

(日) (日) (日) (日) (日) (日) (日)

m(x, y, y) = m(y, x, y) = m(y, y, x) = y

Polymorphisms and complexity

Good polymorphisms imply tractability.

Lack of polymorphisms NP-complete problems.

Certain polymorphism imply membership in a specific complexity class.

Example (Dalmau, Krokhin)

If H is preserved by a majority operation then CSP(H) is in NL.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$m(x, y, y) = m(y, x, y) = m(y, y, x) = y$$

Example (Dalmau, Larose)

If *H* is preserved by a maltsev operation + extra condition then CSP(H) is in L.

Polymorphisms are not easy to understand from a combinatorial point of view.

Aim: combinatorial description of digraphs with certain algebraic properties.

(日) (日) (日) (日) (日) (日) (日)

Characterization

Theorem

A digraph is preserved by a maltsev polymorphism iff it does not contain an N of any length

Example

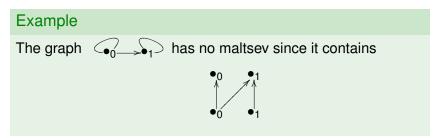
The graph \bigcirc has no maltsev since it contains

・ロト・西ト・ヨト ・日・ うろの

Characterization

Theorem

A digraph is preserved by a maltsev polymorphism iff it does not contain an N of any length



・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ.

Recognition in polynomial time

The non existence of Ns of length 1 is equivalent in the adjacency matrix to the following property: when 2 rows, or columns, share a 1 then they are identical.

It follows from that maltsev digraphs can be recognized in polynomial time on the number of vertices, $O(n^4)$.

(日) (日) (日) (日) (日) (日) (日)

Theorem

Let H be a maltsev digraph. If H is acyclic then it retracts onto a directed path. Otherwise it retracts onto the disjoint union of directed cycles.

It then follows that, for a maltsev digraph H, CSP(H) is in **L**.

List Homomorphism problem

The list *H*-colouring problem, given an input graph *G* and for each vertex $v \in V(G)$ a list $L_v \subseteq V(H)$, asks if there is $f : G \longrightarrow H$ s.t. $f(v) \in L_v$. It is equivalent to $CSP(H_u)$, where H_u is *H* together with all unary relations $\{S : S \subseteq V(H)\}$.

In this case we need conservative polymorphisms, i.e. $m(x, y, z) \in \{x, y, z\}.$

(日) (日) (日) (日) (日) (日) (日)

Characterization

Theorem

A digraph admits a conservative maltsev polymorphism iff

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

The digraph

has a maltsev polymorphism, but not a conservative maltsev polymorphism.

We can then deduce that, when *H* is a maltsev digraph, LHOM(H) is in **L**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cycles and paths

Theorem

Let H be a (conservative) maltsev digraph. Then H is preserved by (conservative) polymorphisms $t_1, t_2, ..., t_k$ (not necessarily distinct) satisfying a single equational sequence

$$t_1(x_{1,1}, x_{1,2}, \ldots, x_{1,n_1}) \approx \cdots \approx t_k(x_{k,1}, x_{n,2}, \ldots, x_{k,n_k}) \approx x,$$

where $\{x_{1,1}, \ldots, x_{1,n_1}\} = \cdots = \{x_{k,1}, \ldots, x_{k,n_k}\}$ and $x \in \{x_{1,1}, \ldots, x_{1,n_1}\}$, iff the directed path/cycle is preserved by these polymorphisms.

(日) (日) (日) (日) (日) (日) (日)

Maltsev iff Pixley iff Minority implies Majority

$$m(x, y, y) = m(y, y, x) = m(x, y, x) = x$$

 $m(x, y, y) = m(y, x, y) = m(y, y, x) = x$

2-semilattice polymorphisms

A binary polymorphism *c* is commutative if c(x, y) = c(y, x).

A disjoint union of directed cycles admits a binary conservative commutative polymorphism iff it contains no even cycles.

(日) (日) (日) (日) (日) (日) (日)

Theorem

A maltsev digraph with a conservative commutative polymorphism is a conservative maltsev digraph.

These do not retract to cycles of even length.