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1. Introduction

Restriction of many hard graph-theoretic problems to subclasses of
bounded tree-width graphs becomes efficiently solvable

Well known examples important here, see Courcelle, Makowsky,
Rotics:

permanent of square matrix M = (mij) of bounded tree-width;
here, the tree-width of M is the tree-width of the underlying
graph GM which has an edge (i , j) iff mij 6= 0
Valiant: computing permanent of general 0-1 matrices is
#P-hard; if matrices have entries from field K of characteristic
6= 2 the permanent polynomials build a VNP-complete family

Hamiltonian cycle decision problem
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Important: though above GM is directed its tree-width is taken as
that of the undirected graph, i.e., an edge (i , j) is present if at
least one entry mij or mji is non-zero;

thus, tree-width of GM does not reflect a case of lacking symmetry
where mij 6= 0 but mji = 0.
However, that might have impact on computation of the
permanent

Example: for an upper triangular (n, n)-matrix M the tree-width of
GM is n − 1; its permanent nevertheless is easy to compute.
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Goal: introduce new tree-width notion called triangular tree-width
for directed graphs such that

for square matrices M bounding the triangular tree-width of
GM allows to compute perm(M) efficiently

the (undirected) tree-width of GM is greater than or equal to
its triangular tree-width; examples where the former is
unbounded whereas the latter is not do exist.
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2. Triangular tree-width
Tree-width measures how close a graph is to a tree; on trees many
otherwise hard problems are easy

Definition (Tree-width)

G = 〈V ,E 〉 graph, k-tree-decomposition of G is a tree
T = 〈VT ,ET 〉 such that:

(i) For each t ∈ VT a subset Xt ⊆ V of size at most k + 1.

(ii) For each edge (u, v) ∈ E there is a t ∈ VT s.t. {u, v} ⊆ Xt .

(iii) For each vertex v ∈ V the set {t ∈ VT |v ∈ XT} forms a
(connected) subtree of T .

twd(G ) : smallest k such that there exists a k-tree-decomposition

Trees have tree-width 1, cycles have twd 2
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Tree-width of a matrix M = (mij) over K : (undirected) tree-width
of (directed) incidence graph GM

(i , j) edge in GM ⇔ mij 6= 0

weight of edge (i , j) = mij ;

cycle cover of GM : subset of edges s.t. each vertex incident with
exactly one edge as outgoing and one as ingoing edge;

partial cycle cover: subset of a cycle cover

weight of a (partial) cycle cover: product of weights of
participating edges
Permanent perm(M) :=

∑
e cycle cover

∏
m

ei,j

i ,j

Valiant’s conjecture: Computation of permanent hard
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Basic idea for defining triangular tree-width

Let GM = (V ,E ) with V = {1, . . . , n} and consider an order on
the vertices, f.e., 1 < 2 < . . . < n;

if a cycle contains an increasing edge w.r.t. the order, it must
contain as well a decreasing edge.

for computation of permanent more important than twd(GM) is
the tree-width of both the graph of increasing and that of
decreasing edges

find optimal order with respect to bounding both tree-width
parameters
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Definition (Triangular tree-width ttw)

M square matrix, GM = (V ,E ) with V = {1, . . . , n}, σ : V → V a
permutation;

a) G inc
σ = (V ,E inc

σ ) graph of increasing edges w.r.t. order
defined by σ, Gdec

σ accordingly; loops are located in Edec
σ

b) GM has a triangular tree-decomposition of width k ∈ N iff
there exists a σ s.t. both G inc

σ ,Gdec
σ have tree-width at most k

c) ttw(GM) := min
σ∈Sn

max{twd(G inc
σ ), twd(Gdec

σ )} .
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Basic observations:

if M has a symmetric structure of non-zero entries, i.e.,
mij 6= 0 ⇔ mji 6= 0, then ttw(GM) = twd(GM)

computation of the triangular tree-width of a directed graph is
NP-hard

triangular tree-width extends the tree-width notion; in
particular, there are families of graphs for which the former is
bounded whereas the latter is not
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twd(Gn) tends to ∞ for n→∞ Thomassen
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order vertices from left to right and from bottom to top; the red
edges are increasing, blue ones are decreasing and ttw(Gn,σ) = 1.
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3. Permanents of bounded ttw matrices

Theorem (Main theorem)

Let {Mi}i∈I be a family of matrices of bounded triangular
tree-width at most k ∈ N. For every member M of the family,
given corresponding tree-decompositions of the graphs of
increasing and of decreasing edges, perm(M) can be computed in
polynomial time in the size of M. The computation is fixed
parameter tractable w.r.t. k.
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Typically, proving such theorems employs climbing a
tree-decomposition bottom up, see, f.e., Flarup & Koiran &
Lyaudet;

once a vertex has been removed during this process from a bag of
the tree-decomposition it has not to be considered any longer

Main problem: we have to deal with two tree-decompositions. In
general, a vertex that has been removed in one can occur further
up in the other. Thus, it cannot be removed in the usual way and
backtracking cannot be avoided.
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Solution of this problem: guarantee that one of the two
decompositions bounds the number of occurences of each vertex in
a bag to say 10 · k many.

Definition (Perfect decompositions)

G = (V ,E ) directed has a perfect triangular tree-decomposition of
width k if there is a permutation σ and two corresponding
tree-decompositions T inc

σ ,T dec
σ of width k for G inc

σ ,Gdec
σ ,

respectively, and none of the vertices of G occurs in more than 10k
many bags of T dec

σ .
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STEP 1: Show main theorem for perfect decompositions

Climb decomposition T inc
σ of G inc

σ bottom up and construct partial
cycle covers together with their weights;

to each node of T inc
σ there correspond f (k) many types of partial

cycle covers; here a type represents the information about how
vertices occur in the cover; f only depends on k ;

each time a vertex i disappears when climbing up in T inc
σ all

information about i given in T dec
σ is incorporated; since i occurs in

at most 10 · k bags of T dec
σ again this results in at most f̃ (k) many

types;

thus, i can be removed in both decompositions
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STEP 2: Removing the perfectness assumption

Theorem

For M,GM and permutation σ with triangular tree-decomposition
T inc
σ ,T dec

σ one can construct a new matrix M̃, a corresponding
graph GM̃ and a permutation σ̃ such that

perm(M̃) = perm(M),GM̃ is of bounded triangular tree-width

witnessed by σ̃ and (T̃ inc
σ , T̃ dec

σ ) is a perfect triangular
decomposition.

Proof: New graph is obtained by adding at most linearly many
vertices and edges in such a way that original vertices occurring
too often in bags of T dec

σ are partially replaced by new ones;
replacement can be done in such a way that the cycle covers of the
old and those of the new graph are in a 1-1 correspondence
maintaining the weights
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Theorem

The Hamiltonian cycle decision problem is efficiently solvable for
families of matrices that are of bounded triangular tree-width k.
Here, a corresponding tree-decomposition has to be given.

Proof: Main difference is in removing the perfectness assumption;
here, the transformation leads to a slight modification of the HC
problem.
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4. Conclusions

Triangular tree-width notion tailored to permanent problem;

are there other graph related problems for which the result holds?

More general: does it hold for all monadic-second order definable
problems?

We conjecture not

Is triangular tree-width related to other parameters for directed
graphs?
Such parameters are for example directed tree-width (Johnson &
Robertson & Seymour & Thomas) and entanglement (Berwanger
& Grädel)
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