< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Computing vertex-surjective homomorphisms to partially reflexive trees

Petr A. Golovach, Daniël Paulusma and Jian Song

School of Engineering and Computing Sciences, Durham University

The 6th International Computer Science Symposium in Russia June 14 – 18, 2011, St. Petersburg, Russia

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

Introduction

- Basic definitions
- Our results

2 Classification of computational complexity

- Polynomial cases
- Hardness

Homomorphisms

Definition (Homomorphisms)

A homomorphism from a graph G to a graph H is a mapping $f: V_G \to V_H$ that maps adjacent vertices of G to adjacent vertices of H, i.e., $f(u)f(v) \in E_H$ whenever $uv \in E_G$.

Homomorphisms

Definition (Homomorphisms)

A homomorphism from a graph G to a graph H is a mapping $f: V_G \to V_H$ that maps adjacent vertices of G to adjacent vertices of H, i.e., $f(u)f(v) \in E_H$ whenever $uv \in E_G$.

Problem (*H*-Coloring)

The problem H-COLORING tests whether a given graph G allows a homomorphism to a graph H called the target.

Homomorphisms

Definition (Homomorphisms)

A homomorphism from a graph G to a graph H is a mapping $f: V_G \to V_H$ that maps adjacent vertices of G to adjacent vertices of H, i.e., $f(u)f(v) \in E_H$ whenever $uv \in E_G$.

Problem (H-Coloring)

The problem H-COLORING tests whether a given graph G allows a homomorphism to a graph H called the target.

Theorem (Hell-Nešetřil dichotomy theorem, 1990)

The H-COLORING problem is solvable in polynomial time if H is bipartite, and NP-complete otherwise.

Classification of computational complexity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Surjective homomorphisms

Definition (Surjective homomorphisms)

A homomorphism f from a *irreflexive* graph G to a *partially reflexive* graph H is *surjective* if for each $x \in V_H$ there exists at least one vertex $u \in V_G$ with f(u) = x.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Surjective homomorphisms

Definition (Surjective homomorphisms)

A homomorphism f from a *irreflexive* graph G to a *partially reflexive* graph H is *surjective* if for each $x \in V_H$ there exists at least one vertex $u \in V_G$ with f(u) = x.

Definition (Partially reflexive graphs)

We say that a vertex incident to a self-loop is *reflexive*, whereas vertices with no self-loop are said to be *irreflexive*. A graph that contains zero or more reflexive vertices is called *partially reflexive*. In particular, a graph is *reflexive* if all its vertices are reflexive, and a graph is *irreflexive* if all its vertices are irreflexive.

Surjective homomorphisms

Definition (Surjective homomorphisms)

A homomorphism f from a *irreflexive* graph G to a *partially reflexive* graph H is *surjective* if for each $x \in V_H$ there exists at least one vertex $u \in V_G$ with f(u) = x.

Definition (Partially reflexive graphs)

We say that a vertex incident to a self-loop is *reflexive*, whereas vertices with no self-loop are said to be *irreflexive*. A graph that contains zero or more reflexive vertices is called *partially reflexive*. In particular, a graph is *reflexive* if all its vertices are reflexive, and a graph is *irreflexive* if all its vertices are irreflexive.

Problem (Surjective *H*-Coloring)

The problem SURJECTIVE H-COLORING tests whether a given graph G allows a surjective homomorphism to a graph H.

Introduction 000000 Classification of computational complexity

Open problems

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Related problems

• A homomorphism *f* from a graph *G* to a graph *H* is *locally surjective* if *f* becomes surjective when restricted to the neighborhood of every vertex *u* of *G*.

Classification of computational complexity

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Related problems

- A homomorphism f from a graph G to a graph H is *locally* surjective if f becomes surjective when restricted to the neighborhood of every vertex u of G.
- Let G and H be two graphs with a list L(u) ⊆ V_H associated to each vertex u ∈ V_G. Then a homomorphism f from G to H is a *list-homomorphism* with respect to the lists L if f(u) ∈ L(u) for all u ∈ V_G.

Related problems

- A homomorphism f from a graph G to a graph H is *locally* surjective if f becomes surjective when restricted to the neighborhood of every vertex u of G.
- Let G and H be two graphs with a list $L(u) \subseteq V_H$ associated to each vertex $u \in V_G$. Then a homomorphism f from G to H is a *list-homomorphism* with respect to the lists L if $f(u) \in L(u)$ for all $u \in V_G$.
- Let H be an induced subgraph of a graph G. A homomorphism f from a graph G to H is a retraction from G to H if f(h) = h for all h ∈ V_H.

Related problems

- A homomorphism f from a graph G to a graph H is *locally* surjective if f becomes surjective when restricted to the neighborhood of every vertex u of G.
- Let G and H be two graphs with a list L(u) ⊆ V_H associated to each vertex u ∈ V_G. Then a homomorphism f from G to H is a list-homomorphism with respect to the lists L if f(u) ∈ L(u) for all u ∈ V_G.
- Let H be an induced subgraph of a graph G. A homomorphism f from a graph G to H is a retraction from G to H if f(h) = h for all h ∈ V_H.
- A homomorphism from a graph G to a graph H is called edge-surjective or a compaction if for any edge xy ∈ E_H with x ≠ y there exists an edge uv ∈ E_G with f(u) = x and f(v) = y.

Introduction 000000 Classification of computational complexity

Open problems

Problems that can be expressed via surjective homomorphisms

Stable Cutset

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Introduction 0000●0 Classification of computational complexity

Open problems

Problems that can be expressed via surjective homomorphisms

Independent Set

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Our results

• We give a complete classification of the computational complexity of the SURJECTIVE *H*-COLORING problem when *H* is a partially reflexive tree.

Our results

- We give a complete classification of the computational complexity of the SURJECTIVE *H*-COLORING problem when *H* is a partially reflexive tree.
- We analyze the running time of the polynomial-time solvable cases and for connected *n*-vertex graphs, we find a running time of $n^{k+O(1)}$, where k is the number of leaves of H, and observe that this running time is asymptotically optimal.

Our results

- We give a complete classification of the computational complexity of the SURJECTIVE *H*-COLORING problem when *H* is a partially reflexive tree.
- We analyze the running time of the polynomial-time solvable cases and for connected *n*-vertex graphs, we find a running time of $n^{k+O(1)}$, where k is the number of leaves of H, and observe that this running time is asymptotically optimal.
- But we prove that for these cases, SURJECTIVE *H*-COLORING parameterized by $|V_H|$ is FPT on graphs of bounded expansion.

Classification of computational complexity

Theorem

For any fixed partially reflexive tree H, the SURJECTIVE H-COLORING problem is polynomial time solvable if the set of reflexive vertices induces a connected subgraph (we call such graphs loop-connected), and NP-complete otherwise. Classification of computational complexity

Open problems

Classification of computational complexity

Introduction 000000 Classification of computational complexity

Open problems

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Polynomial cases

Theorem

Let H be a loop-connected tree with k leaves. For n-vertex connected graphs, SURJECTIVE H-COLORING can be solved in time $n^{k+O(1)}$.

Sketch of the proof

Special homomorphisms

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Sketch of the proof

Special homomorphisms

Sketch of the proof

Special homomorphisms

 $\label{eq:classification} Classification of computational complexity \\ \texttt{OOOOOOOOOOO}$

Sketch of the proof

Special homomorphisms

 $\begin{array}{c} Classification \ of \ computational \ complexity \\ \texttt{000000000000} \end{array}$

Sketch of the proof

Special homomorphisms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Classification of computational complexity

Parameterized complexity

Theorem

Let H be a loop-connected tree with k leaves. For n-vertex connected graphs, SURJECTIVE H-COLORING can be solved in time $n^{k+O(1)}$, i.e. this problem is in XP when parameterized by the number of leaves.

 $\begin{array}{c} Classification \ of \ computational \ complexity \\ \texttt{00000000000000} \end{array}$

Parameterized complexity

Independent Set

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Introduction 000000 Open problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Parameterized complexity

Proposition

SURJECTIVE S_k -COLORING is W[1]-complete when parameterized by k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Parameterized complexity

Proposition

SURJECTIVE S_k -COLORING is W[1]-complete when parameterized by k.

Proposition

SURJECTIVE S_k -COLORING cannot be solved in $f(k) \cdot n^{o(k)}$ time on n-vertex graphs, unless the Exponential Time Hypothesis collapses. Introduction 000000 Classification of computational complexity

Open problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Parameterized complexity

Theorem

Let H be a loop-connected tree. Then SURJECTIVE H-COLORING is FPT for any graphs of bounded expansion when parameterized by $|V_H|$.

Idea of the proof

Special homomorphisms

 Introduction 000000 Open problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

NP-complete cases

Theorem

For any fixed partially reflexive tree H that is not loop-connected, the SURJECTIVE H-COLORING problem is NP-complete.

Idea of the proof

Stable Cutset

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Open problems

• Give a complete complexity classification of the SURJECTIVE *H*-COLORING.

Open problems

- Give a complete complexity classification of the SURJECTIVE *H*-COLORING.
- What can be said about special case when *H* is a partially reflexive cycle?

Open problems

- Give a complete complexity classification of the SURJECTIVE *H*-COLORING.
- What can be said about special case when *H* is a partially reflexive cycle?
- Are *H*-COMPACTION, *H*-RETRACTION and SURJECTIVE *H*-COLORING polynomially equivalent to each other for each target graph *H*?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Thank You!