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Homomorphisms

Definition (Homomorphisms)

A homomorphism from a graph G to a graph H is a mapping
f : VG → VH that maps adjacent vertices of G to adjacent vertices
of H, i.e., f (u)f (v) ∈ EH whenever uv ∈ EG .

Problem (H-Coloring)

The problem H-Coloring tests whether a given graph G allows a
homomorphism to a graph H called the target.

Theorem (Hell-Nešeťril dichotomy theorem, 1990)

The H-Coloring problem is solvable in polynomial time if H is
bipartite, and NP-complete otherwise.
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Surjective homomorphisms

Definition (Surjective homomorphisms)

A homomorphism f from a irreflexive graph G to a partially
reflexive graph H is surjective if for each x ∈ VH there exists at
least one vertex u ∈ VG with f (u) = x .

Definition (Partially reflexive graphs)

We say that a vertex incident to a self-loop is reflexive, whereas
vertices with no self-loop are said to be irreflexive. A graph that
contains zero or more reflexive vertices is called partially reflexive.
In particular, a graph is reflexive if all its vertices are reflexive, and
a graph is irreflexive if all its vertices are irreflexive.

Problem (Surjective H-Coloring)

The problem Surjective H-Coloring tests whether a given
graph G allows a surjective homomorphism to a graph H.
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Related problems

A homomorphism f from a graph G to a graph H is locally
surjective if f becomes surjective when restricted to the
neighborhood of every vertex u of G .

Let G and H be two graphs with a list L(u) ⊆ VH associated
to each vertex u ∈ VG . Then a homomorphism f from G to
H is a list-homomorphism with respect to the lists L if
f (u) ∈ L(u) for all u ∈ VG .

Let H be an induced subgraph of a graph G . A
homomorphism f from a graph G to H is a retraction from G
to H if f (h) = h for all h ∈ VH .

A homomorphism from a graph G to a graph H is called
edge-surjective or a compaction if for any edge xy ∈ EH with
x 6= y there exists an edge uv ∈ EG with f (u) = x and
f (v) = y .
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Problems that can be expressed via surjective
homomorphisms

Stable Cutset

G

H
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Our results

We give a complete classification of the computational
complexity of the Surjective H-Coloring problem when
H is a partially reflexive tree.

We analyze the running time of the polynomial-time solvable
cases and for connected n-vertex graphs, we find a running
time of nk+O(1), where k is the number of leaves of H, and
observe that this running time is asymptotically optimal.

But we prove that for these cases, Surjective
H-Coloring parameterized by |VH | is FPT on graphs of
bounded expansion.
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Classification of computational complexity

Theorem

For any fixed partially reflexive tree H, the Surjective
H-Coloring problem is polynomial time solvable if the set of
reflexive vertices induces a connected subgraph (we call such
graphs loop-connected), and NP-complete otherwise.
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Classification of computational complexity

Polynomial and NP-complete cases

NP-completePolynomial
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Polynomial cases

Theorem

Let H be a loop-connected tree with k leaves. For n-vertex
connected graphs, Surjective H-Coloring can be solved in
time nk+O(1).
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Sketch of the proof

Special homomorphisms
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Parameterized complexity

Theorem

Let H be a loop-connected tree with k leaves. For n-vertex
connected graphs, Surjective H-Coloring can be solved in
time nk+O(1), i.e. this problem is in XP when parameterized by the
number of leaves.



Introduction Classification of computational complexity Open problems

Parameterized complexity
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Parameterized complexity

Proposition

Surjective Sk-Coloring is W[1]-complete when parameterized
by k.

Proposition

Surjective Sk-Coloring cannot be solved in f (k) · no(k) time
on n-vertex graphs, unless the Exponential Time Hypothesis
collapses.
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Parameterized complexity

Theorem

Let H be a loop-connected tree. Then Surjective H-Coloring
is FPT for any graphs of bounded expansion when parameterized
by |VH |.
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Idea of the proof

Special homomorphisms
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NP-complete cases

Theorem

For any fixed partially reflexive tree H that is not loop-connected,
the Surjective H-Coloring problem is NP-complete.
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Idea of the proof
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Open problems

Give a complete complexity classification of the Surjective
H-Coloring.

What can be said about special case when H is a partially
reflexive cycle?

Are H-Compaction, H-Retraction and Surjective
H-Coloring polynomially equivalent to each other for each
target graph H?
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Thank You!
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