Orbits of Linear Maps and Regular Languages

S. Tarasov, M. Vyalyi

Dorodnitsyn Computing Center of RAS

CSR 2011

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages

2 Regular realizability (RR)

3 Examples of relation between RR and linear algebra

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages

An orbit $\operatorname{Orb}_{\Phi} x$ is $\{\Phi^k x : k \in \mathbb{Z}^+\}$, where $\Phi : \mathbb{Q}^d \to \mathbb{Q}^d$ is a linear map and $x \in \mathbb{Q}^d$.

Definition

A chamber $H_S = \{x \in \mathbb{Q}^d : \operatorname{sign}(h_i(x)) = s_i \text{ for } 1 \leq i \leq m\}$, where h_i are affine functions and $s \in \{\pm 1, 0\}^m$ is a sign pattern.

Chamber hitting problem (CHP)

INPUT: $\Phi, x_0, h_1, \dots, h_m, s$. OUTPUT: 'yes' if $Orb_{\Phi} x_0 \cap H_s \neq \emptyset$ and 'no' otherwise.

CSR 2011 3 / 17

An orbit $\operatorname{Orb}_{\Phi} x$ is $\{\Phi^k x : k \in \mathbb{Z}^+\}$, where $\Phi : \mathbb{Q}^d \to \mathbb{Q}^d$ is a linear map and $x \in \mathbb{Q}^d$.

Definition

A chamber $H_S = \{x \in \mathbb{Q}^d : \operatorname{sign}(h_i(x)) = s_i \text{ for } 1 \leq i \leq m\}$, where h_i are affine functions and $s \in \{\pm 1, 0\}^m$ is a sign pattern.

Chamber hitting problem (CHP)

INPUT: $\Phi, x_0, h_1, \dots, h_m, s$. OUTPUT: 'yes' if $Orb_{\Phi} x_0 \cap H_s \neq \emptyset$ and 'no' otherwise.

CSR 2011 3 / 17

|山下 |田下 |田下

An orbit $\operatorname{Orb}_{\Phi} x$ is $\{\Phi^k x : k \in \mathbb{Z}^+\}$, where $\Phi : \mathbb{Q}^d \to \mathbb{Q}^d$ is a linear map and $x \in \mathbb{Q}^d$.

Definition

A chamber $H_S = \{x \in \mathbb{Q}^d : \operatorname{sign}(h_i(x)) = s_i \text{ for } 1 \leq i \leq m\}$, where h_i are affine functions and $s \in \{\pm 1, 0\}^m$ is a sign pattern.

Chamber hitting problem (CHP)

Orbit problem

In this case the chamber is $\{y\}$.

Theorem (Kannan, Lipton, 1986)

There exists a polynomial time algorithm for the orbit problem.

3 🕨 🖌 3

Orbit problem

INPUT: Φ, x, y . OUTPUT: 'yes' if $y \in Orb_{\Phi} x$ and 'no' otherwise.

In this case the chamber is $\{y\}$.

Theorem (Kannan, Lipton, 1986)

There exists a polynomial time algorithm for the orbit problem.

< ∃ > < ∃

Skolem problem

INPUT: $a_1, \ldots, a_d; b_1, \ldots, b_d$. x_n — a linear recurrent sequence

$$x_n = \sum_{i=1}^d a_i x_{n-i}, \ (n > d), \qquad x_n = b_n \ (1 \leqslant n \leqslant d)$$

OUTPUT: 'yes' if $x_n = 0$ for some *n* and 'no' otherwise.

Positivity problem

INPUT: $a_1, \ldots, a_d; b_1, \ldots, b_d; x_n$ is LRS.OUTPUT:'yes' if $x_n > 0$ for all n and
'no' otherwise.

Skolem problem

INPUT: $a_1, \ldots, a_d; b_1, \ldots, b_d$. x_n — a linear recurrent sequence

$$x_n = \sum_{i=1}^d a_i x_{n-i}, \ (n > d), \qquad x_n = b_n \ (1 \leqslant n \leqslant d)$$

OUTPUT: 'yes' if $x_n = 0$ for some *n* and 'no' otherwise.

Positivity problem

INPUT: $a_1, \ldots, a_d; b_1, \ldots, b_d; x_n$ is LRS. OUTPUT: 'yes' if $x_n > 0$ for all n and 'no' otherwise.

▲ @ ▶ ▲ ≥ ▶ ▲

Open questions

Is CHP decidable? Is Skolem problem decidable? Is positivity problem decidable?

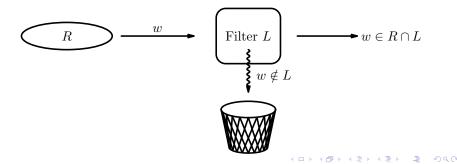
Known decidability results for small d

	<i>d</i> = 2	<i>d</i> = 3	<i>d</i> = 4	<i>d</i> = 5
Skolem	folklore	Vereshchagin, 1985		Halava et al., 2005
Pos. pr.	Halava et al., 2006	Laohakosol, Tangsupphathawat, 2009		
СНР	Sechin, 2011			

Regular realizability problems (RR)

A set $L \subset \Sigma^*$ is called a filter. Each filter determines a specific regular realizability problem:





 $P_{\mathbb{B}} \subset \{\#, 0, 1\}^*$ consists of permutation words, i.e., words of the form $\#w_1 \# w_2 \# \dots w_N \#,$

where

- $w_i \in \{0,1\}^*$ are blocks,
- $|w_i| = n, i = 1, 2, ..., N$ (*n* is the block rank),
- $N = 2^n, n \ge 1$,
- each binary word of length n is a block.

Examples

 $\#00\#11\#10\#01\# \in P_{\mathbb{B}}$ $\#10\#11\#00\#01\# \in P_{\mathbb{B}}$ $\#10\#01\#00\#11\# \in P_{\mathbb{B}}$

S. Tarasov, M. Vyalyi (CCAS)

Orbits of linear maps and regular languages

Theorem (Tarasov, Vyalyi, 2010)

CHP and $P_{\mathbb{B}}$ -realizability problem are Turing equivalent.

From $P_{\mathbb{B}}$ -realizability to CHP

Reduction starts from a \mathbb{Q} -linear extension of the transition monoid.

Theorem (Tarasov, Vyalyi, 2010)

CHP and $P_{\mathbb{B}}$ -realizability problem are Turing equivalent.

From $P_{\mathbb{B}}$ -realizability to CHP

Reduction starts from a $\mathbb Q\text{-linear}$ extension of the transition monoid.

The main construction

- R₁, R₂ regular languages.
- How to check that there exists an integer n such that

 $\operatorname{Card}(\{w: |w| = n \land w \in R_1\}) = \operatorname{Card}(\{w: |w| = n \land w \in R_2\})?$

Regular expression

 $E = \#((R_1 \cap R_2)\#)^*((R_1 \setminus R_2)\#(R_2 \setminus R_1)\#)^*((R_1 \cap R_2)\#)^*$

The main construction

- R₁, R₂ regular languages.
- How to check that there exists an integer n such that

$$\operatorname{Card}(\{w: |w| = n \land w \in R_1\}) = \operatorname{Card}(\{w: |w| = n \land w \in R_2\})?$$

Regular expression

 $E = \#((R_1 \cap R_2)\#)^*((R_1 \setminus R_2)\#(R_2 \setminus R_1)\#)^*((\overline{R_1} \cap \overline{R_2})\#)^*$

• (\clubsuit) is equivalent to $E \cap P_{\mathbb{B}} \neq \varnothing$.

(

The main construction

- R₁, R₂ regular languages.
- How to check that there exists an integer n such that

$$\operatorname{Card}(\{w: |w| = n \land w \in R_1\}) = \operatorname{Card}(\{w: |w| = n \land w \in R_2\})?$$

• Regular expression

 $E = \#((R_1 \cap R_2)\#)^*((R_1 \setminus R_2)\#(R_2 \setminus R_1)\#)^*((\overline{R_1} \cap \overline{R_2})\#)^*$

• (\clubsuit) is equivalent to $E \cap P_{\mathbb{B}} \neq \varnothing$.

< ∃ > <

(♣)

The main construction

- R₁, R₂ regular languages.
- How to check that there exists an integer n such that

$$\operatorname{Card}(\{w: |w| = n \land w \in R_1\}) = \operatorname{Card}(\{w: |w| = n \land w \in R_2\})?$$

Regular expression

 $E = \#((R_1 \cap R_2)\#)^*((R_1 \setminus R_2)\#(R_2 \setminus R_1)\#)^*((\overline{R_1} \cap \overline{R_2})\#)^*$

• (
$$\clubsuit$$
) is equivalent to $E \cap P_{\mathbb{B}} \neq \varnothing$.

(♣)

undecidable track product of the periodic and permutation filter

unknown

permutation filter

decidable surjective filter injective filter

Surjective filter

Definition

 $S_{\mathbb{B}}$ consists of words of the form

```
\#w_1\#w_2\#\ldots w_N\#,
```

where

- $w_i \in \{0,1\}^*$ are blocks,
- $|w_i| = n, i = 1, 2, ..., N$, *n* is the block rank,
- each binary word of length *n* is a block.

Examples

S. Tarasov, M. Vyalyi (CCAS)

 $\#00\#00\#11\#10\#01\# \in S_{\mathbb{B}}$ $\#10\#11\#10\#00\#01\# \in S_{\mathbb{B}}$ $\#10\#01\#00\#01\#11\# \in S_{\mathbb{R}}$

Orbits of linear maps and regular languages

▲ 注 ト 注 少 へ C
CSR 2011 12 / 17

(a)

Injective filter

Definition

 $I_{\mathbb{B}}$ consists of words of the form

$$\#w_1\#w_2\#\ldots w_N\#,$$

where

- $w_i \in \{0,1\}^*$ are blocks,
- $|w_i| = n, i = 1, 2, ..., N$, *n* is the block rank,
- $w_i \neq w_j$ for $i \neq j$.

Examples

 $\#00\#10\#01\# \in I_{\mathbb{B}}$ $\#101\#111\#001\#010\# \in I_{\mathbb{B}}$ $\#1000\#0110\#0000\#1111\# \in I_{\mathbb{B}}$

S. Tarasov, M. Vyalyi (CCAS)

イロト イヨト イヨト イヨト

Theorem

 $I_{\mathbb{B}}$ -realizability problem is decidable. $S_{\mathbb{B}}$ -realizability problem is decidable.

Proofs are based on converting $I_{\mathbb{B}}$ -realizability problem (resp., $S_{\mathbb{B}}$ -realizability problem) to a problem about orbits.

CSR 2011 14 / 17

Theorem

 $I_{\mathbb{B}}$ -realizability problem is decidable. $S_{\mathbb{B}}$ -realizability problem is decidable.

Proofs are based on converting $I_{\mathbb{B}}$ -realizability problem (resp., $S_{\mathbb{B}}$ -realizability problem) to a problem about orbits.

Zero in the Upper Right Corner Problem (ZURC)

INPUT: A_1, \ldots, A_N are $D \times D$ integer matrices. **OUTPUT**: 'yes' if there exists a sequence j_1, \ldots, j_ℓ such that

$$(A_{j_1}A_{j_2}\ldots A_{j_\ell})_{1D}=0$$
 and

'no' otherwise.

Theorem (Bell, Potapov, 2006)

The ZURC problem is undecidable for N = 2 and D = 18.

The ZURC problem is reduced to the regular realizability problem for the track product of periodic and permutation filters.

CSR 2011

15 / 17

Zero in the Upper Right Corner Problem (ZURC)

INPUT: A_1, \ldots, A_N are $D \times D$ integer matrices. **OUTPUT**: 'yes' if there exists a sequence j_1, \ldots, j_ℓ such that

$$(A_{j_1}A_{j_2}\ldots A_{j_\ell})_{1D}=0$$
 and

'no' otherwise.

Theorem (Bell, Potapov, 2006)

The ZURC problem is undecidable for N = 2 and D = 18.

The ZURC problem is reduced to the regular realizability problem for the track product of periodic and permutation filters.

Zero in the Upper Right Corner Problem (ZURC)

INPUT: A_1, \ldots, A_N are $D \times D$ integer matrices. OUTPUT: 'yes' if there exists a sequence j_1, \ldots, j_ℓ such that

$$(A_{j_1}A_{j_2}\ldots A_{j_\ell})_{1D}=0$$
 and

'no' otherwise.

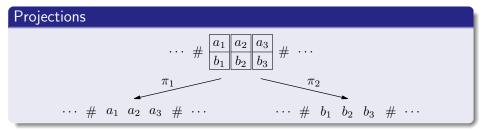
Theorem (Bell, Potapov, 2006)

The ZURC problem is undecidable for N = 2 and D = 18.

The ZURC problem is reduced to the regular realizability problem for the track product of periodic and permutation filters.

Track product

For languages $L_1 \subset (\{\#\} \cup \Sigma_1)^*$, $L_2 \subset (\{\#\} \cup \Sigma_2)^*$ the track product $L_1 || L_2 \subset (\{\#\} \cup \Sigma_1 \times \Sigma_2)^*$.



Definition of $L_1 || L_2$

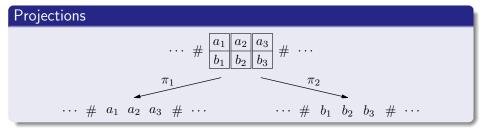
 $L_1 || L_2 = \{ w \in (\{\#\} \cup \Sigma_1 \times \Sigma_2)^* \mid \pi_1 w \in L_1; \ \pi_2 w \in L_2 \}$

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages

- 4 週 ト - 4 三 ト - 4 三 ト

Track product

For languages $L_1 \subset (\{\#\} \cup \Sigma_1)^*$, $L_2 \subset (\{\#\} \cup \Sigma_2)^*$ the track product $L_1 || L_2 \subset (\{\#\} \cup \Sigma_1 \times \Sigma_2)^*$.



Definition of $L_1 || L_2$

$$L_1 \| L_2 = \{ w \in (\{\#\} \cup \Sigma_1 \times \Sigma_2)^* \mid \pi_1 w \in L_1; \ \pi_2 w \in L_2 \}$$

S. Tarasov, M. Vyalyi (CCAS) Orbits of linear maps and regular languages

通 ト イヨ ト イヨト

• Periodic filter $\operatorname{Per}_{\Sigma} \subset (\{\#\} \cup \Sigma)^*$ consists of words of the form

$$\#w\#w\#\ldots w\#,$$

where $w \in \{0, 1\}^*$.

Definition of the permutation filter P_Σ over the alphabet {#} ∪ Σ is similar to the binary case.

Theorem

 $ZURC \leq_m (\operatorname{Per}_{\Sigma_1} || P_{\Sigma_2})$ -regular realizability for $|\Sigma_1| = 2$, $|\Sigma_2| = 648$.

Informally, the periodic part is to represent a sequence of matrices and the permutation part is to encode the condition that the URC entry is 0.

▲圖▶ ▲ 臣▶ ▲ 臣

• Periodic filter $\operatorname{Per}_{\Sigma} \subset (\{\#\} \cup \Sigma)^*$ consists of words of the form

$$\#w\#w\#\ldots w\#,$$

where $w \in \{0, 1\}^*$.

• Definition of the permutation filter P_{Σ} over the alphabet $\{\#\} \cup \Sigma$ is similar to the binary case.

Theorem

 $ZURC \leq_m (\operatorname{Per}_{\Sigma_1} || P_{\Sigma_2})$ -regular realizability for $|\Sigma_1| = 2$, $|\Sigma_2| = 648$.

Informally, the periodic part is to represent a sequence of matrices and the permutation part is to encode the condition that the URC entry is 0.

・ 同 ト ・ ヨ ト ・ ヨ ト