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Chamber hitting problem

Definition

An orbit OrbΦ x is {Φkx : k ∈ Z+}, where Φ: Qd → Qd is a linear map
and x ∈ Qd .

Definition

A chamber HS = {x ∈ Qd : sign(hi (x)) = si for 1 6 i 6 m}, where hi are
affine functions and s ∈ {±1, 0}m is a sign pattern.

Chamber hitting problem (CHP)

INPUT: Φ, x0, h1, . . . , hm, s.
OUTPUT: ‘yes’ if OrbΦ x0 ∩ Hs 6= ∅ and

‘no’ otherwise.
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Special cases: the orbit problem

Orbit problem

INPUT: Φ, x , y .
OUTPUT: ‘yes’ if y ∈ OrbΦ x and

‘no’ otherwise.

In this case the chamber is {y}.

Theorem (Kannan, Lipton, 1986)

There exists a polynomial time algorithm for the orbit problem.
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Problems reducible to CHP

Skolem problem

INPUT: a1, . . . , ad ; b1, . . . , bd .
xn — a linear recurrent sequence

xn =
d∑

i=1

aixn−i , (n > d), xn = bn (1 6 n 6 d)

OUTPUT: ‘yes’ if xn = 0 for some n and
‘no’ otherwise.

Positivity problem

INPUT: a1, . . . , ad ; b1, . . . , bd ; xn is LRS.
OUTPUT: ‘yes’ if xn > 0 for all n and

‘no’ otherwise.
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State of the art

Open questions

Is CHP decidable? Is Skolem problem decidable? Is positivity problem
decidable?

Known decidability results for small d

d = 2 d = 3 d = 4 d = 5

Skolem folklore Vereshchagin, 1985 Halava et al.,
2005

Pos. pr. Halava et al.,
2006

Laohakosol,
Tangsupphathawat,
2009

CHP Sechin, 2011
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Regular realizability problems (RR)

A set L ⊂ Σ∗ is called a filter. Each filter determines a specific regular
realizability problem:

L-realizability problem

INPUT: a description of a regular language R.
OUTPUT: ‘yes’ if R ∩ L 6= ∅ and

‘no’ otherwise.

Filter LR w ∈ R ∩ L
w

w /∈ L
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Permutation filter

Definition

PB ⊂ {#, 0, 1}∗ consists of permutation words, i.e., words of the form

#w1#w2# . . .wN#,

where

wi ∈ {0, 1}∗ are blocks,

|wi | = n, i = 1, 2, . . . ,N (n is the block rank),

N = 2n, n > 1,

each binary word of length n is a block.

Examples

#00#11#10#01# ∈ PB

#10#11#00#01# ∈ PB

#10#01#00#11# ∈ PB
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Orbits vs Regular realizability

Theorem (Tarasov, Vyalyi, 2010)

CHP and PB-realizability problem are Turing equivalent.

From PB-realizability to CHP

Reduction starts from a Q-linear extension of the transition monoid.
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From CHP to PB-realizability

The idea is to represent an arithmetic computation in a ‘natural’ form.

The main construction

R1, R2 — regular languages.

How to check that there exists an integer n such that

Card({w : |w | = n ∧ w ∈ R1}) = Card({w : |w | = n ∧ w ∈ R2})?
(♣)

Regular expression

E = #((R1 ∩ R2)#)∗((R1 \ R2)#(R2 \ R1)#)∗((R1 ∩ R2)#)∗

(♣) is equivalent to E ∩ PB 6= ∅.
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More examples of relation between RR and linear algebra

undecidable track product of the periodic and permutation filter

unknown permutation filter

decidable surjective filter injective filter
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Surjective filter

Definition

SB consists of words of the form

#w1#w2# . . .wN#,

where

wi ∈ {0, 1}∗ are blocks,

|wi | = n, i = 1, 2, . . . ,N, n is the block rank,

each binary word of length n is a block.

Examples

#00#00#11#10#01# ∈ SB

#10#11#10#00#01# ∈ SB

#10#01#00#01#11# ∈ SB
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Injective filter

Definition

IB consists of words of the form

#w1#w2# . . .wN#,

where

wi ∈ {0, 1}∗ are blocks,

|wi | = n, i = 1, 2, . . . ,N, n is the block rank,

wi 6= wj for i 6= j .

Examples

#00#10#01# ∈ IB

#101#111#001#010# ∈ IB

#1000#0110#0000#1111# ∈ IB
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Decidability results

Theorem

IB-realizability problem is decidable.
SB-realizability problem is decidable.

Proofs are based on converting IB-realizability problem (resp.,
SB-realizability problem) to a problem about orbits.
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An undecidable problem

Zero in the Upper Right Corner Problem (ZURC)

INPUT: A1, . . . ,AN are D × D integer matrices.
OUTPUT: ‘yes’ if there exists a sequence j1, . . . , j` such that

(Aj1Aj2 . . .Aj`)1D = 0 and

‘no’ otherwise.

Theorem (Bell, Potapov, 2006)

The ZURC problem is undecidable for N = 2 and D = 18.

The ZURC problem is reduced to the regular realizability problem for the
track product of periodic and permutation filters.
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Track product

For languages L1 ⊂ ({#} ∪ Σ1)
∗, L2 ⊂ ({#} ∪ Σ2)

∗ the track product
L1‖L2 ⊂ ({#} ∪ Σ1 × Σ2)

∗.

Projections

a1

b1

a2

b2

a3

b3

# #. . . . . .

b1 b2 b3# #. . . . . .a1 a2 a3# #. . . . . .

π1 π2

Definition of L1‖L2

L1‖L2 = {w ∈ ({#} ∪ Σ1 × Σ2)
∗ | π1w ∈ L1; π2w ∈ L2}
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Track product of periodic and permutation filters

Definitions

Periodic filter PerΣ ⊂ ({#} ∪ Σ)∗ consists of words of the form

#w#w# . . .w#,

where w ∈ {0, 1}∗.
Definition of the permutation filter PΣ over the alphabet {#} ∪ Σ is
similar to the binary case.

Theorem

ZURC ≤m (PerΣ1‖PΣ2)-regular realizability for |Σ1| = 2, |Σ2| = 648.

Informally, the periodic part is to represent a sequence of matrices and the
permutation part is to encode the condition that the URC entry is 0.
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