Orbits of Linear Maps and Regular Languages

S. Tarasov, M. Vyalyi
Dorodnitsyn Computing Center of RAS

CSR 2011

Contents

(1) Orbits of linear maps
(2) Regular realizability (RR)
(3) Examples of relation between RR and linear algebra

Chamber hitting problem

Definition

An orbit $\operatorname{Orb}_{\Phi} x$ is $\left\{\Phi^{k} x: k \in \mathbb{Z}^{+}\right\}$, where $\Phi: \mathbb{Q}^{d} \rightarrow \mathbb{Q}^{d}$ is a linear map and $x \in \mathbb{Q}^{d}$.

Definition

'no' otherwise.

Chamber hitting problem

Definition

An orbit $\operatorname{Orb}_{\Phi} x$ is $\left\{\Phi^{k} x: k \in \mathbb{Z}^{+}\right\}$, where $\Phi: \mathbb{Q}^{d} \rightarrow \mathbb{Q}^{d}$ is a linear map and $x \in \mathbb{Q}^{d}$.

Definition

A chamber $H_{S}=\left\{x \in \mathbb{Q}^{d}: \operatorname{sign}\left(h_{i}(x)\right)=s_{i}\right.$ for $\left.1 \leqslant i \leqslant m\right\}$, where h_{i} are affine functions and $s \in\{ \pm 1,0\}^{m}$ is a sign pattern.

Chamber hitting problem

Definition

An orbit $\operatorname{Orb}_{\Phi} x$ is $\left\{\Phi^{k} x: k \in \mathbb{Z}^{+}\right\}$, where $\Phi: \mathbb{Q}^{d} \rightarrow \mathbb{Q}^{d}$ is a linear map and $x \in \mathbb{Q}^{d}$.

Definition

A chamber $H_{S}=\left\{x \in \mathbb{Q}^{d}: \operatorname{sign}\left(h_{i}(x)\right)=s_{i}\right.$ for $\left.1 \leqslant i \leqslant m\right\}$, where h_{i} are affine functions and $s \in\{ \pm 1,0\}^{m}$ is a sign pattern.

Chamber hitting problem (CHP)
INPUT: $\Phi, x_{0}, h_{1}, \ldots, h_{m}, s$.
OUTPUT: 'yes' if $\operatorname{Orb}_{\Phi} x_{0} \cap H_{s} \neq \varnothing$ and
'no' otherwise.

Special cases: the orbit problem

Orbit problem
 INPUT: Φ, x, y.
 OUTPUT: 'yes' if $y \in \operatorname{Orb}_{\Phi} x$ and 'no' otherwise.

In this case the chamber is $\{y\}$.
\square

Special cases: the orbit problem

Orbit problem
 INPUT: Φ, x, y.
 OUTPUT: 'yes' if $y \in \operatorname{Orb}_{\Phi} x$ and
 'no' otherwise.

In this case the chamber is $\{y\}$.

Theorem (Kannan, Lipton, 1986)

There exists a polynomial time algorithm for the orbit problem.

Problems reducible to CHP

Skolem problem

INPUT: $\quad a_{1}, \ldots, a_{d} ; b_{1}, \ldots, b_{d}$.
x_{n} - a linear recurrent sequence

$$
x_{n}=\sum_{i=1}^{d} a_{i} x_{n-i},(n>d), \quad x_{n}=b_{n}(1 \leqslant n \leqslant d)
$$

OUTPUT: 'yes' if $x_{n}=0$ for some n and 'no' otherwise.

Problems reducible to CHP

Skolem problem

INPUT: $\quad a_{1}, \ldots, a_{d} ; b_{1}, \ldots, b_{d}$.
x_{n} - a linear recurrent sequence

$$
x_{n}=\sum_{i=1}^{d} a_{i} x_{n-i},(n>d), \quad x_{n}=b_{n}(1 \leqslant n \leqslant d)
$$

OUTPUT: 'yes' if $x_{n}=0$ for some n and 'no' otherwise.

Positivity problem
 INPUT: $a_{1}, \ldots, a_{d} ; b_{1}, \ldots, b_{d} ; x_{n}$ is LRS.
 OUTPUT: 'yes' if $x_{n}>0$ for all n and 'no' otherwise.

State of the art

Open questions

Is CHP decidable? Is Skolem problem decidable? Is positivity problem decidable?

Known decidability results for small d

	$d=2$	$d=3$	$d=4$	$d=5$
Skolem	folklore	Vereshchagin, 1985		Halava et al., 2005
Pos. pr.	Halava et al., 2006	Laohakosol, Tangsupphathawat, 2009		
CHP	Sechin, 2011			

Regular realizability problems (RR)

A set $L \subset \Sigma^{*}$ is called a filter. Each filter determines a specific regular realizability problem:

L-realizability problem

INPUT: a description of a regular language R.
OUTPUT: 'yes' if $R \cap L \neq \varnothing$ and
'no' otherwise.

Permutation filter

Definition

$P_{\mathbb{B}} \subset\{\#, 0,1\}^{*}$ consists of permutation words, i.e., words of the form

$$
\# w_{1} \# w_{2} \# \ldots w_{N} \#
$$

where

- $w_{i} \in\{0,1\}^{*}$ are blocks,
- $\left|w_{i}\right|=n, i=1,2, \ldots, N$ (n is the block rank),
- $N=2^{n}, n \geqslant 1$,
- each binary word of length n is a block.

Examples

$$
\begin{aligned}
& \# 00 \# 11 \# 10 \# 01 \# \in P_{\mathbb{B}} \\
& \# 10 \# 11 \# 00 \# 01 \# \in P_{\mathbb{B}} \\
& \# 10 \# 01 \# 00 \# 11 \# \in P_{\mathbb{B}}
\end{aligned}
$$

Orbits vs Regular realizability

Theorem (Tarasov, Vyalyi, 2010)
CHP and $P_{\mathbb{B}}$-realizability problem are Turing equivalent.

Orbits vs Regular realizability

Theorem (Tarasov, Vyalyi, 2010)
CHP and $P_{\mathbb{B}}$-realizability problem are Turing equivalent.

From $P_{\mathbb{B}}$-realizability to CHP

Reduction starts from a \mathbb{Q}-linear extension of the transition monoid.

From CHP to $P_{\mathbb{B}}$-realizability

The idea is to represent an arithmetic computation in a 'natural' form.
The main construction

- R_{1}, R_{2} - regular languages.
- Regular expression

From CHP to $P_{\mathbb{B}}$-realizability

The idea is to represent an arithmetic computation in a 'natural' form.
The main construction

- R_{1}, R_{2} - regular languages.
- How to check that there exists an integer n such that
$\operatorname{Card}\left(\left\{w:|w|=n \wedge w \in R_{1}\right\}\right)=\operatorname{Card}\left(\left\{w:|w|=n \wedge w \in R_{2}\right\}\right) ?$
(\%)
- Regular expression

From CHP to $P_{\mathbb{B}}$-realizability

The idea is to represent an arithmetic computation in a 'natural' form.

The main construction

- R_{1}, R_{2} - regular languages.
- How to check that there exists an integer n such that
$\operatorname{Card}\left(\left\{w:|w|=n \wedge w \in R_{1}\right\}\right)=\operatorname{Card}\left(\left\{w:|w|=n \wedge w \in R_{2}\right\}\right) ?$
(\&)
- Regular expression

$$
E=\#\left(\left(R_{1} \cap R_{2}\right) \#\right)^{*}\left(\left(R_{1} \backslash R_{2}\right) \#\left(R_{2} \backslash R_{1}\right) \#\right)^{*}\left(\left(\overline{R_{1}} \cap \overline{R_{2}}\right) \#\right)^{*}
$$

From CHP to $P_{\mathbb{B}}$-realizability

The idea is to represent an arithmetic computation in a 'natural' form.

The main construction

- R_{1}, R_{2} - regular languages.
- How to check that there exists an integer n such that

$$
\operatorname{Card}\left(\left\{w:|w|=n \wedge w \in R_{1}\right\}\right)=\operatorname{Card}\left(\left\{w:|w|=n \wedge w \in R_{2}\right\}\right) ?
$$

- Regular expression

$$
E=\#\left(\left(R_{1} \cap R_{2}\right) \#\right)^{*}\left(\left(R_{1} \backslash R_{2}\right) \#\left(R_{2} \backslash R_{1}\right) \#\right)^{*}\left(\left(\overline{R_{1}} \cap \overline{R_{2}}\right) \#\right)^{*}
$$

- (\&) is equivalent to $E \cap P_{\mathbb{B}} \neq \varnothing$.

More examples of relation between RR and linear algebra

undecidable track product of the periodic and permutation filter
unknown permutation filter
decidable
surjective filter
injective filter

Surjective filter

Definition

$S_{\mathbb{B}}$ consists of words of the form

$$
\# w_{1} \# w_{2} \# \ldots w_{N} \#
$$

where

- $w_{i} \in\{0,1\}^{*}$ are blocks,
- $\left|w_{i}\right|=n, i=1,2, \ldots, N, n$ is the block rank,
- each binary word of length n is a block.

Examples

$$
\begin{aligned}
& \# 00 \# 00 \# 11 \# 10 \# 01 \# \in S_{\mathbb{B}} \\
& \# 10 \# 11 \# 10 \# 00 \# 01 \# \in S_{\mathbb{B}} \\
& \# 10 \# 01 \# 00 \# 01 \# 11 \# \in S_{\mathbb{B}}
\end{aligned}
$$

Injective filter

Definition

$\mathbb{I}_{\mathbb{B}}$ consists of words of the form

$$
\# w_{1} \# w_{2} \# \ldots w_{N} \#
$$

where

- $w_{i} \in\{0,1\}^{*}$ are blocks,
- $\left|w_{i}\right|=n, i=1,2, \ldots, N, n$ is the block rank,
- $w_{i} \neq w_{j}$ for $i \neq j$.

Examples

$$
\begin{gathered}
\# 00 \# 10 \# 01 \# \in I_{\mathbb{B}} \\
\# 101 \# 111 \# 001 \# 010 \# \in I_{\mathbb{B}} \\
\# 1000 \# 0110 \# 0000 \# 1111 \# \in \mathbb{I}_{\mathbb{B}}
\end{gathered}
$$

Decidability results

Theorem
 $\mathbb{I}_{\mathbb{B}}$-realizability problem is decidable. $S_{\mathbb{B}}$-realizability problem is decidable.

Proofs are based on converting $I_{\mathbb{B}}$-realizability problem (resp $S_{\mathbb{B}}$-realizability problem) to a problem about orbits

Decidability results

Abstract

Theorem $\mathbb{I}_{\mathbb{B}}$-realizability problem is decidable. $S_{\mathbb{B}}$-realizability problem is decidable. Proofs are based on converting $\mathbb{I}_{\mathbb{B}}$-realizability problem (resp., $S_{\mathbb{B}}$-realizability problem) to a problem about orbits.

An undecidable problem

Zero in the Upper Right Corner Problem (ZURC)

INPUT: $\quad A_{1}, \ldots, A_{N}$ are $D \times D$ integer matrices.
OUTPUT: 'yes' if there exists a sequence j_{1}, \ldots, j_{ℓ} such that

$$
\left(A_{j_{1}} A_{j_{2}} \ldots A_{j \ell}\right)_{1 D}=0 \text { and }
$$

'no' otherwise.
\square
The ZURC problem is reduced to the regular realizability problem for the track product of periodic and permutation filters

An undecidable problem

Zero in the Upper Right Corner Problem (ZURC)

INPUT: $\quad A_{1}, \ldots, A_{N}$ are $D \times D$ integer matrices.
OUTPUT: 'yes' if there exists a sequence j_{1}, \ldots, j_{ℓ} such that

$$
\left(A_{j_{1}} A_{j_{2}} \ldots A_{j_{\ell}}\right)_{1 D}=0 \quad \text { and }
$$

'no' otherwise.

Theorem (Bell, Potapov, 2006)

The ZURC problem is undecidable for $N=2$ and $D=18$.
The ZURC problem is reduced to the regular realizability problem for the track product of periodic and permutation filters.

An undecidable problem

Zero in the Upper Right Corner Problem (ZURC)

INPUT: $\quad A_{1}, \ldots, A_{N}$ are $D \times D$ integer matrices.
OUTPUT: 'yes' if there exists a sequence j_{1}, \ldots, j_{ℓ} such that

$$
\left(A_{j_{1}} A_{j_{2}} \ldots A_{j \ell}\right)_{1 D}=0 \text { and }
$$

'no' otherwise.

Theorem (Bell, Potapov, 2006)

The ZURC problem is undecidable for $N=2$ and $D=18$.
The ZURC problem is reduced to the regular realizability problem for the track product of periodic and permutation filters.

Track product

For languages $L_{1} \subset\left(\{\#\} \cup \Sigma_{1}\right)^{*}, L_{2} \subset\left(\{\#\} \cup \Sigma_{2}\right)^{*}$ the track product $L_{1} \| L_{2} \subset\left(\{\#\} \cup \Sigma_{1} \times \Sigma_{2}\right)^{*}$.

Projections

Track product

For languages $L_{1} \subset\left(\{\#\} \cup \Sigma_{1}\right)^{*}, L_{2} \subset\left(\{\#\} \cup \Sigma_{2}\right)^{*}$ the track product $L_{1} \| L_{2} \subset\left(\{\#\} \cup \Sigma_{1} \times \Sigma_{2}\right)^{*}$.

Projections

$$
\cdots \neq \begin{array}{|l||l|l|}
\hline a_{1} & a_{2} & a_{3} \\
\hline b_{1} & b_{2} & b_{3} \\
\hline
\end{array} \quad \# \ldots
$$

Definition of $L_{1} \| L_{2}$

$$
L_{1} \| L_{2}=\left\{w \in\left(\{\#\} \cup \Sigma_{1} \times \Sigma_{2}\right)^{*} \mid \pi_{1} w \in L_{1} ; \pi_{2} w \in L_{2}\right\}
$$

Track product of periodic and permutation filters

Definitions

- Periodic filter $\operatorname{Per}_{\Sigma} \subset(\{\#\} \cup \Sigma)^{*}$ consists of words of the form $\# w \# w \# \ldots w \#$,
where $w \in\{0,1\}^{*}$.
- Definition of the permutation filter P_{Σ} over the alphabet $\{\#\} \cup \Sigma$ is similar to the binary case.

Theorem

$Z U R C \leq_{m}\left(\operatorname{Per}_{\Sigma_{1}} \| P_{\Sigma_{2}}\right)$-regular realizability for $\left|\Sigma_{1}\right|=2,\left|\Sigma_{2}\right|=648$.
Informally, the periodic part is to represent a sequence of matrices and the permutation part is to encode the condition that the URC entry is 0

Track product of periodic and permutation filters

Definitions

- Periodic filter $\operatorname{Per}_{\Sigma} \subset(\{\#\} \cup \Sigma)^{*}$ consists of words of the form $\# w \# w \# \ldots w \#$,
where $w \in\{0,1\}^{*}$.
- Definition of the permutation filter P_{Σ} over the alphabet $\{\#\} \cup \Sigma$ is similar to the binary case.

Theorem

$Z U R C \leq_{m}\left(\operatorname{Per}_{\Sigma_{1}} \| P_{\Sigma_{2}}\right)$-regular realizability for $\left|\Sigma_{1}\right|=2,\left|\Sigma_{2}\right|=648$.
Informally, the periodic part is to represent a sequence of matrices and the permutation part is to encode the condition that the URC entry is 0 .

