Shared-Memory Systems and Charts

Remi MORIN

Universite de la Mediterranée
Laboratoire d'Informatique Fondamentale de Marseille

SR 2011 June 2011

Peterson's mutual exclusion protocol

Process 1

Process 2

repeat:
f[1l] < true;
Turn «— 2;
wait (f[2] = false
or Turn = 1);
Critical Section(1l);

f[1] «— false;

repeat:
f[2] < true;
Turn «— 1;
wait (f[1] = false
or Turn = 2);
Critical Section(2);
f[2] «— false;

Executions as partial orders (pomsets)

Proc_ess 1 Process 2
f[l]<—truee ef[2]—true

Turn—1

Turn<—2

H
c
2]
=]
I
N

Time
C
a
N

N

f[2]=false

C°S'(1)_T_

v Foreword

-

Model and semantics
Expressive power & MSO logic
Specifications with automata

Checking SMC specifications

A simple model for shared-memory systems

Let 2 be a fixed alphabet.

A shared-memory system consists of
e aset of registers R, a set of data D,
e aset of processes P
e for each action a € X: a non-empty subset Loc(a) C P
e an initial configurationi1 € Q
e some final configurations F C Q.

e and for each actiona € X: a set of rules A,

e A configuration is a mappingq: R — D

e Aruleisatriple p}v,a,v"{here vvV. R ~D

Guard Update

Sequential operational semantics

For any two states q,q € Q and any rule p = (v,a,V') € A,,
we denote by

e a, = a the action performed by p
e R, = dom(v) the subset of registers read by p
e W, = dom(v') the subset of registers modified by p

We put g->q if

e qIR = v (the rule is enabled in q)
e q'|W, =V (the rule is applied in q)
e g'(r)=q(r) forallr € R\ W, (nothing else happens inbetween)

Special case [Zielonka, RATRO, 1987]

An asynchronous automaton is an SMS such that
e P=7Rand

e forall rulesp € A, R, = Loc(a) = W,.

May-Occur-Concurrently relation

Let p,p’ € A be two rules.
We put p||p’ if
e Loc(a,) NLoc(ay) =0,
e W,N(Ry UW,)=0and
o W, N (R, UW,)=0.

Intuitively, two rules may occur concurrently if they correspond to
actions occurring on disjoint sets of processes and if each rule does
not modify the registers read or written by the other.

Partial-order semantics (1/2)

Let + = (E,<,n) be a labeled partial order, i.e. a partially
ordered multiset (for short: a pomset) over .

A run of T is a mapping p : E — A such that

Ro: Foralle € E, aye) = n(e)
(rule action matches event action)

Ri: Forall e, e, € E with p(e;) fp(ez), e1 < ez ore, < e;

(dependent rules cannot occur concurrently)

R.: Forall ej, e, € E with e;—e;, p(e;) fp(e2)
(waiting means rule dependency)

where x—y means: x <yand x < z xy implies z = y.

Partial-order semantics (2/2)

Let H be a downward-closed subset of events (a prefix of t).
The configuration q, 4 reached after H with run p is such that

/

V;(e)(r‘) if e = max{f €¢ H | rec Wp(e)}

r)= <
Qo H(r) kqle(r.) =1(r) if there is no such event

A run p of t is applicable if the rule p(e) is enabled in q, |e\(e;
for all events e € E.

An applicable run of t = (E, <, n) is accepting if q,¢ € F.

Definition I
The language L(8) recognized by § collects all pomsets which
admit some accepting run.

-

Foreword

Model and semantics
Expressive power & MSO logic
Specifications with automata

Checking SMC specifications

Question!

Let £ = {p,c} and L be the set of all ladders.

- - -

(1]

/[11]

Does any SMS recognize this language?

First result

¥ | MSO-definable languages

Cut-bounded languages

Pomset languages

Theorem I (Expressive power of shared-memory systems)

A pomset language is recognized by some finite SMS iff
it is MSO-definable and cut-bounded.

12

MSO logic

The language of all ladders is MSO-definable by the conjunc-
tion of the following sentences:

Vy i Pe(y) — 3x.(Pp(x) A x—<y)
X,z i Py(x) — Ty.(Pc(y) A x—<y))
X,y 1 (Po(y) A X < y) — Pp(X)

10

Cut-bounded languages

The (universal) cut-width of t = (E,<,n) is

CW(T) =) pt\ggfoﬂ #{(h,e) e Hx(E\H) | h—e}

Definition I
The cut-bound B € NU{} of L is
sup{ CW(H) |t e L}

L is cut-bounded if its cut-bound is < o,

Example I

The language of all ladders is not cut-bounded.

o

H

[T

//

@)

I_.

11

<

-

Foreword

Model and semantics
Expressive power & MSO logic
Specifications with automata

Checking SMC specifications

15

How to concatenate two pomsets?

BRSNS,

We have to distinguish between a's

16

How to concatenate two pomsets?

Go@(){? q
a
e
r
as (=9 N~ ¢
a
Qe——>eh q 5
ae (>0 :

We have to distinguish between a's

17

Pomsets with gates

Let G be a finite and non-empty set of gates.
We consider the extended alphabet ' = X x 2° \ {0}.

We put (a,H)Jf-(a’,H)if HNH 20 ora=a.

Definition I (Pomsets with gates)

A shared-memory chart (an SMC) is a pomset t = (E, <,n) over
I" such that we have either e; < e; or e; < e; for any two
events e; and e; with n(e1) fr-n(ez).

We denote by SMC the set of all SMCs.

18

Product of SMCs

ea,{x} a,{x}

b,{x}e X

ea,{y} b, {x} eq,{y}

Definition I (Product of pomsets with gates)

Given two SMCs t; = (E1,%1,n1) and t> = (Ez,%z,nz) the
asynchronous product 1; - 12 is the pomset t = (E, <, n) where
E=E,UE,, n=n1Uny, and < is the transitive closure of

<1 U <2 U{(e1,e2) € E1xE2 | n(er) frn(e2)}

19

Rational SMC languages

o

\Q
’-Aﬂ
X
(>}
o
>éO£
*——>0

@]

@]

(o]

fh

X

<o

(]

>
(]
HHTH

o

Definition I (Automata over pomsets with gates)

An SMC specification is an automaton A = (Q,1,—,F) where Q
IS a finite set of states, with initial state 1, — C QxSMC xQ
is a finite set of transitions labeled by SMCs, and F C Q is a

subset of final states.
20

C X X X

-

Foreword

Model and semantics
Expressive power & MSO logic
Specifications with automata

Checking SMC specifications

21

How to detect unbounded specifications?

Definition I

Let t = (E, <, n) bean SMC. The communication graph of t is the
directed graph CG(t) = (V,—) over the set V = |, m2(n(e))
of active gates in t such that g — g’ if there are e,e’ € E for

which g € mz(n(e)), g’ € m2(n(e’)) and

e either n(e))frn(e’)

e or e—<¢e’.

22

Checking unboundedness

Theorem I

The pomset language L5(A) of an SMC specification A is

cut-bounded iff for any loop qol...gqn = qo, all connected
components of the communication graph CG(t; - ... - tn) are
strongly connected.

Consequently checking for cut-boundedness of a given SMC specification is
decidable. It is actually easy to show that this problem is co-NP-complete.

23

How to detect non-implementable specifications?

We cannot decide whether an SMC specification describes
an implementable language, since this question is already
undecidable for Mazurkiewicz traces.

Definition I
An SMC specification is loop-connected if for all loops

o—>...25qn = qo the communication graph of the SMC t; - ... 1,

is connected.

Theorem I

A cut-bounded language is MSO-definable if and only if it is
the language of a loop-connected SMC specification.

24

Conclusion

e We have presented a characterization of the expressive
power of shared-memory systems

1. in terms of logic definability and cut-boundedness
2. in terms of automata over pomsets with gates.
e This model of concurrency and this algebraic framework

generalize the theory of Mazurkiewicz traces and
message sequence charts.

e These results should be extended soon to systems with
autoconcurrency.

e A simpler notion of communication graph may be designed.

25

Questions?

Unambiguity & determinism

An SMS is unambiguous if each pomset admits at most one
applicable run.

An SMS is deterministic if for each a € Z and each reachable
configuration q, there exists at most one rule p € A, such that

q—q'.

Clearly:

Any deterministic SMS is unambiguous.

26

Unambiguous case

¥ | MSO-definable languages

Media-bounded languages

Cut-bounded languages

>3

Pomset languages

Theorem | ~ |\ IJFCS, 2010]

A pomset language is recoghized by some unambiguous finite
SMS iff it is MSO-definable and media-bounded.

14

Deterministic case

¥ ! MSO-definable languages

Media-bounded languages

>3
Cut-bounded languages

>3

Pomset languages

Theorem I ~ [M., CONCUR'08]

A pomset language is recognized by some deterministic finite
SMS iff it is MSO-definable, media-bounded, coherent and
consistent.

15

SMCs vs. Mazurkiewicz traces and MSCs

Any Mazurkiewicz trace can be regarded as an SMC where
each action is a gate and each event labeled by a is associated
with the set of actions dependent with a.

Similarly any message sequence chart can be regarded as an
SMC where gates are processes and each event is associated
with the (single) process where it occurs.

Moreover these identifications preserve the product of
traces and MSCs

In that way, SMCs appear as a formal generalization
of both Mazurkiewicz traces and message sequence
charts.

21

