A Polynomial-Time Algorithm for Finding a Minimal Conflicting Set Containing a Given Row

Guillaume Blin Romeo Rizzi Stéphane Vialette

LIGM Université Paris-Est Marne-la-Vallée, France

DIMI Università degli Studi di Udine, Italy.

June 2011

Consecutive ones property

Definition

A (0, 1)-matrix has the consecutive ones property (C1P) for rows if there is a permutation of its columns that leaves the 1's consecutive in every row.

$$M = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \end{bmatrix} \qquad MP = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Definition

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of a matrix that does not have the C1P but such that any proper subset of R has the C1P.

The Conflicting Index (CI) of a given row is the number of MCSR involving this last.

Definition

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of a matrix that does not have the C1P but such that any proper subset of R has the C1P.

The Conflicting Index (CI) of a given row is the number of MCSR involving this last.

$$R = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \qquad RP = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Definition

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of a matrix that does not have the C1P but such that any proper subset of R has the C1P.

The Conflicting Index (CI) of a given row is the number of MCSR involving this last.

$$R = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \qquad RP = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

Definition

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of a matrix that does not have the C1P but such that any proper subset of R has the C1P.

The Conflicting Index (CI) of a given row is the number of MCSR involving this last.

$$R = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \qquad RP = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

Definition

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of a matrix that does not have the C1P but such that any proper subset of R has the C1P.

The Conflicting Index (CI) of a given row is the number of MCSR involving this last.

$$R = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \qquad RP = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Background

Theorem (Chauve et al., 09)

Let *M* be a $m \times n(0, 1)$ -matrix with at most $\Delta 1$ -entries per row. Deciding if a given row of *M* has a positive *CI* can be decided in $O(\Delta^2 m^{\max(4,\Delta+1)}(n+m+e))$ time.

Main result

What about unbounded Δ ?

We prove it is still polynomial by combining characterization of matrices having the C1P with graph pruning techniques.

From (0, 1)-matrices to colored bipartite graphs

Definition

Let *M* be a (0, 1)-matrix. Its corresponding vertex-colored bipartite graph $G(M) = (V_M, E_M)$ is defined by associating a black vertex to each row of *M*, a white vertex to each column of *M*, and by adding an edge between the vertices that correspond to the *i*th row and the *j*th column of *M* if and only of M[i, j] = 1.

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ a & 0 & 1 & 0 & 1 & 1 & 0 \\ b & 0 & 0 & 0 & 1 & 1 & 0 \\ c & 0 & 1 & 1 & 0 & 1 & 0 \\ d & 1 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

C1P and forbidden structures

Theorem (Tucker, 72)

A (0, 1)-matrix has the C1P if and only if it contains none of the matrices M_{l_k} , M_{ll_k} , M_{ll_k} , $(k \ge 1)$, M_{lV} , and M_V depicted below:

... that we will try to detect

Definition

Finding a set of black nodes R not having C1P and any $R' \subset R$ has C1P

 $\Rightarrow \exists$ Tucker configuration (e.g. holes of size \geq 6) using the set of rows *R* and

Definition

Finding a set of black nodes R not having C1P and any $R' \subset R$ has C1P

 $\Rightarrow \exists$ Tucker configuration (e.g. holes of size \geq 6) using the set of rows *R* and

 \nexists a Tucker configuration using a proper subset of *R*

remind that we are pruning the rows but not the columns

Definition

Finding a set of black nodes R not having C1P and any $R' \subset R$ has C1P

 $\Rightarrow \exists$ Tucker configuration (e.g. holes of size \geq 6) using the set of rows *R* and

Definition

Finding a set of black nodes R not having C1P and any $R' \subset R$ has C1P

 $\Rightarrow \exists$ Tucker configuration (e.g. holes of size \geq 6) using the set of rows *R* and

Definition

Finding a set of black nodes R not having C1P and any $R' \subset R$ has C1P

 $\Rightarrow \exists$ Tucker configuration (e.g. holes of size \geq 6) using the set of rows *R* and

Definition

Finding a set of black nodes R not having C1P and any $R' \subset R$ has C1P

 $\Rightarrow \exists$ Tucker configuration (e.g. holes of size \geq 6) using the set of rows *R* and

 \nexists a Tucker configuration using a proper subset of *R*

both are minimal and finding at least one is enough to prove that the CI(r) > 0

General idea

Theorem

Let M be $m \times n$ (0, 1)-matrix. Deciding if a given row of M has a positive CI can be decided in $O(m^6n^5(m+n)^2\log(m+n))$ time.

Well it is polynomial

To be compared to the $O(\Delta^2 m^{max(4,\Delta+1)}(n + m + e))$ time for bounded case

Proof

We provide a sequence of polynomial-time algorithms for finding a minimal Tucker configuration of a given type in $\{M_{I_k}, M_{III_k}, M_{I_k}, M_{IV}, M_V\}$ (in this particular order) responsible for an MCSR involving a given row (if it exists).

Graph pruning and exhaustive search

Our algorithm is by combining shortest paths and two graph pruning techniques (clean and anticlean) together with some exhaustive search procedures (guess), *i.e.*,

- guessing (guess):
 exhaustive brute-force search.
- cleaning (clean): clean the neighbordhood of a vertex.
- anticleaning (anticlean): clean the non-neighbordhood of a vertex.

Note that guessed nodes are not affected by (anti)cleaning operations

Cleaning vertices

Definition (clean)

For any node x of G(M), clean(x) results in the graph where any neighbor of x has been deleted,

Cleaning vertices

Definition (clean)

For any node x of G(M), clean(x) results in the graph where any neighbor of x has been deleted,

Anticleaning vertices

Definition (anticlean)

For any node x of G(M), anticlean(x) results in the graph where any vertex with a different color and not in the neighborhood of x has been deleted.

Anticleaning vertices

Definition (anticlean)

For any node x of G(M), anticlean(x) results in the graph where any vertex with a different color and not in the neighborhood of x has been deleted.

Identifying M_{I_k} MCSR of r

Theorem

Let M be $m \times n(0, 1)$ -matrix. Finding (if it exists) a minimal M_{l_k} structures responsible for an MCSR of r is a $O(m^4 n^4)$ time procedure.

Identifying M_{I_k} MCSR of r

Theorem

Let M be $m \times n(0, 1)$ -matrix. Finding (if it exists) a minimal M_{l_k} structures responsible for an MCSR of r is a $O(m^4 n^4)$ time procedure.

► Brute-force seek for $G(M_{l_1})$ or $G(M_{l_2})$ s.t. no $G(M_{III_1})$ involving r exists (only smaller Tucker configuration that can occur)

▶ If none exists, $guess(r_A, r_B, r_C, c_x, c_y)$ s.t. $r = r_A$ and $(r_C, c_y, r_A, c_x, r_B)$ is a path in G(M)

• Otherwise call Check- $M_{I_k}(c_x, c_y, r_A, r_B, r_C)$

Identifying M_{l_k} MCSR of r

Check- $M_{I_k}(c_x, c_y, r_A, r_B, r_C)$

- 1: if $N(r_A) \cap N(r_B) \cap N(r_C) \neq \emptyset$ then
- 2: return "NO"
- 3: **end if**
- 4: clean(*c*) for all $c \in N(r_A) \setminus N(r_B)$
- 5: clean(*c*) for all $c \in N(r_A) \setminus N(r_C)$
- 6: $clean(r_A, C_x, C_y)$
- 7: delete vertex r_A
- 8: if there exists a $r_B r_C$ -path in the pruned graph then
- 9: let *P* be a shortest $r_B r_C$ -path in the pruned graph
- 10: **return** return $\{r_A\} \cup \{r_i : r_i \in V(P) \cap \mathcal{R}\}$
- 11: **else**
- 12: return "NO"
- 13: end if

- 1: if $N(r_A) \cap N(r_B) \cap N(r_C) \neq \emptyset$ then
- 2: return "NO"

3: **end if**

Remark that the minimal M_{l_k} configuration is

- 1: if $N(r_A) \cap N(r_B) \cap N(r_C) \neq \emptyset$ then
- 2: return "NO"

3: **end if**

Remark that the minimal M_{l_k} configuration is

Suppose $N(r_A) \cap N(r_B) \cap N(r_C) = c_s$ and $c_s \notin N(r_D)$

- 1: if $N(r_A) \cap N(r_B) \cap N(r_C) \neq \emptyset$ then
- 2: return "NO"

3: **end if**

Remark that the minimal M_{l_k} configuration is

Then there exists a smaller M_{l_k} configuration (impossible if we proceed *k* increasingly)

- 1: if $N(r_A) \cap N(r_B) \cap N(r_C) \neq \emptyset$ then
- 2: return "NO"

3: **end if**

Remark that the minimal M_{l_k} configuration is

Thus, $N(r_A) \cap N(r_B) \cap N(r_C) = c_s$ is a common neighbor of any black node

- 1: if $N(r_A) \cap N(r_B) \cap N(r_C) \neq \emptyset$ then
- 2: return "NO"

3: **end if**

Remark that the minimal M_{l_k} configuration is

Then there exists a smaller M_{III_1} configuration

1: clean(*c*) for all $c \in N(r_A) \setminus N(r_B)$

Suppose that $clean(c_s)$ is not a safe operation (we will "break" a solution). Then it follows that $c_s \in N(r_D)$ for some black vertex of the solution

1: clean(*c*) for all $c \in N(r_A) \setminus N(r_B)$

Then there exists a smaller $M_{l_{k'}}$ configuration

1: clean(*c*) for all $c \in N(r_A) \setminus N(r_C)$

2: $clean(r_A, C_X, C_y)$

Similar proof for $c \in N(r_A) \setminus N(r_C)$.

Moreover, since T is a chordless cycle, no black vertices of the solution other than the guessed ones can see c_x or c_y

1: delete vertex r_A

- 2: if there exists a $r_B r_C$ -path in the pruned graph then
- 3: let *P* be a shortest $r_B r_C$ -path in the pruned graph
- 4: **return** return $\{r_A\} \cup \{r_i : r_i \in V(P) \cap \mathcal{R}\}$
- 5: **else**
- 6: return "NO"
- 7: **end if**

Finding the shortest path ensures the minimality of our configuration

- 1: delete vertex r_A
- 2: if there exists a $r_B r_C$ -path in the pruned graph then
- 3: let *P* be a shortest $r_B r_C$ -path in the pruned graph
- 4: **return** return $\{r_A\} \cup \{r_i : r_i \in V(P) \cap \mathcal{R}\}$
- 5: **else**
- 6: return "NO"
- 7: **end if**

One can prove that considering back all the white vertices leads to a M_{l_k} MCSR

Identifying other MCSR of *r*

In a similar way, we designed 4 other algorithms to detect MCSR of a given type leading to

Tucker configuration	Running time
M_{l_k}	<i>O</i> (<i>m</i> ³ <i>n</i> ⁴)
M_{II_k}	$O(m^6n^5(m+n)^2\log(m+n))$
M_{III_k}	$O(m^5n^5(m+n)^2\log(m+n))$
M _{IV}	<i>O</i> (<i>m</i> ² <i>n</i> ⁶)
M _V	<i>O</i> (<i>m</i> ³ <i>n</i> ⁵)
Total	$O(m^6n^5(m+n)^2\log(m+n))$

Matrices with unbounded Δ

Theorem

Let M be $m \times n$ (0, 1)-matrix. Deciding if a given row of M has a positive CI can be decided in $O(m^6n^5(m+n)^2\log(m+n))$ time.

Going further...

Our graph pruning techniques can be used for solving related combinatorial problems.

Working also for Minimal Conflicting Set of Columns

Implying a polynomial-time algorithm for the *Circular Ones Property* (Circ1P) studied by Dom et al. 2009. (considering the matrix as being wrapped around a vertical cylinder).

A Polynomial-Time Algorithm for Finding a Minimal Conflicting Set Containing a Given Row

Guillaume Blin Romeo Rizzi Stéphane Vialette

LIGM Université Paris-Est Marne-la-Vallée, France

DIMI Università degli Studi di Udine, Italy.

June 2011