A Polynomial-Time Algorithm for Finding a Minimal Conflicting Set Containing a Given Row

Guillaume Blin Romeo Rizzi Stéphane Vialette

LIGM Université Paris-Est Marne-la-Vallée, France
DIMI Università degli Studi di Udine, Italy.

June 2011

Consecutive ones property

Definition

A (0,1)-matrix has the consecutive ones property (C1P) for rows if there is a permutation of its columns that leaves the 1's consecutive in every row.

Example

$$
M=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1
\end{array}\right] \quad M P=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Minimal Conflicting Sets

Definition

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of a matrix that does not have the C1P but such that any proper subset of R has the C1P.

The Conflicting Index (CI) of a given row is the number of MCSR involving this last.

Example - MCSR

$$
M=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \quad R=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

Minimal Conflicting Sets

Definition

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of a matrix that does not have the C1P but such that any proper subset of R has the C1P.

The Conflicting Index (CI) of a given row is the number of MCSR involving this last.

Example - MCSR

$$
R=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \quad R P=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Minimal Conflicting Sets

Definition

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of a matrix that does not have the C1P but such that any proper subset of R has the C1P.

The Conflicting Index (CI) of a given row is the number of MCSR involving this last.

Example - MCSR

$$
R=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \quad R P=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

Minimal Conflicting Sets

Definition

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of a matrix that does not have the C1P but such that any proper subset of R has the C1P.

The Conflicting Index (CI) of a given row is the number of MCSR involving this last.

Example - MCSR

$$
R=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \quad R P=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

Minimal Conflicting Sets

Definition

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of a matrix that does not have the C1P but such that any proper subset of R has the C1P.

The Conflicting Index (CI) of a given row is the number of MCSR involving this last.

Example - MCSR

$$
R=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \quad R P=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Background

Theorem (Chauve et al., 09)

Let M be a $m \times n(0,1)$-matrix with at most $\Delta 1$-entries per row. Deciding if a given row of M has a positive Cl can be decided in $O\left(\Delta^{2} m^{\max (4, \Delta+1)}(n+m+e)\right)$ time.

Main result

What about unbounded Δ ?
We prove it is still polynomial by combining characterization of matrices having the C1P with graph pruning techniques.

From (0, 1)-matrices to colored bipartite graphs

Definition

Let M be a (0,1)-matrix. Its corresponding vertex-colored bipartite graph $G(M)=\left(V_{M}, E_{M}\right)$ is defined by associating a black vertex to each row of M, a white vertex to each column of M, and by adding an edge between the vertices that correspond to the $i^{\text {th }}$ row and the $j^{\text {th }}$ column of M if and only of $M[i, j]=1$.

Example

$$
M=\left[\begin{array}{lllllll}
& 1 & 2 & 3 & 4 & 5 & 6 \\
a & 0 & 1 & 0 & 1 & 1 & 0 \\
b & 0 & 0 & 0 & 1 & 1 & 0 \\
c & 0 & 1 & 1 & 0 & 1 & 0 \\
d & 1 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

C1P and forbidden structures

Theorem (Tucker, 72)

A (0,1)-matrix has the C1P if and only if it contains none of the matrices $M_{I_{k}}, M_{I_{k}}, M_{I I_{k}}(k \geq 1), M_{I V}$, and M_{V} depicted below:

... that we will try to detect

Process of finding MCSR of r

Definition

Finding a set of black nodes R not having C1P and any $R^{\prime} \subset R$ has C1P
$\Rightarrow \exists$ Tucker configuration (e.g. holes of size ≥ 6) using the set of rows R and
\nexists a Tucker configuration using a proper subset of R

Process of finding MCSR of r

Definition

Finding a set of black nodes R not having C1P and any $R^{\prime} \subset R$ has C1P
$\Rightarrow \exists$ Tucker configuration (e.g. holes of size ≥ 6) using the set of rows R and
\nexists a Tucker configuration using a proper subset of R

remind that we are pruning the rows but not the columns

Process of finding MCSR of r

Definition

Finding a set of black nodes R not having C1P and any $R^{\prime} \subset R$ has C1P
$\Rightarrow \exists$ Tucker configuration (e.g. holes of size ≥ 6) using the set of rows R and
\nexists a Tucker configuration using a proper subset of R

Process of finding MCSR of r

Definition

Finding a set of black nodes R not having C1P and any $R^{\prime} \subset R$ has C1P
$\Rightarrow \exists$ Tucker configuration (e.g. holes of size ≥ 6) using the set of rows R and
\nexists a Tucker configuration using a proper subset of R

Process of finding MCSR of r

Definition

Finding a set of black nodes R not having C1P and any $R^{\prime} \subset R$ has C1P
$\Rightarrow \exists$ Tucker configuration (e.g. holes of size ≥ 6) using the set of rows R and
\nexists a Tucker configuration using a proper subset of R

Process of finding MCSR of r

Definition

Finding a set of black nodes R not having C1P and any $R^{\prime} \subset R$ has C1P
$\Rightarrow \exists$ Tucker configuration (e.g. holes of size ≥ 6) using the set of rows R and
\nexists a Tucker configuration using a proper subset of R

both are minimal and finding at least one is enough to prove that the $C l(r)>0$

General idea

Theorem

Let M be $m \times n(0,1)$-matrix. Deciding if a given row of M has a positive Cl can be decided in $O\left(m^{6} n^{5}(m+n)^{2} \log (m+n)\right)$ time.

Well it is polynomial
To be compared to the $O\left(\Delta^{2} m^{\max (4, \Delta+1)}(n+m+e)\right)$ time for bounded case

Proof

We provide a sequence of polynomial-time algorithms for finding a minimal Tucker configuration of a given type in $\left\{M_{I_{k}}, M_{I I_{k}}, M_{I_{k}}, M_{I V}, M_{V}\right\}$ (in this particular order) responsible for an MCSR involving a given row (if it exists).

Graph pruning and exhaustive search

Our algorithm is by combining shortest paths and two graph pruning techniques (clean and anticlean) together with some exhaustive search procedures (guess), i.e.,

- guessing (guess): exhaustive brute-force search.
- cleaning (clean): clean the neighbordhood of a vertex.
- anticleaning (anticlean): clean the non-neighbordhood of a vertex.

Note that guessed nodes are not affected by (anti)cleaning operations

Cleaning vertices

Definition (clean)

For any node x of $G(M)$, clean (x) results in the graph where any neighbor of x has been deleted,

Example

Cleaning vertices

Definition (clean)

For any node x of $G(M)$, clean (x) results in the graph where any neighbor of x has been deleted,

Example

Anticleaning vertices

Definition (anticlean)

For any node x of $G(M)$, anticlean (x) results in the graph where any vertex with a different color and not in the neighborhood of x has been deleted.

Example

Anticleaning vertices

Definition (anticlean)

For any node x of $G(M)$, anticlean (x) results in the graph where any vertex with a different color and not in the neighborhood of x has been deleted.

Example

Identifying $M_{l_{k}}$ MCSR of r

Theorem

Let M be $m \times n(0,1)$-matrix. Finding (if it exists) a minimal $M_{l_{k}}$ structures responsible for an MCSR of r is a $O\left(m^{4} n^{4}\right)$ time procedure.

Identifying $M_{l_{k}}$ MCSR of r

Theorem

Let M be $m \times n(0,1)$-matrix. Finding (if it exists) a minimal $M_{l_{k}}$ structures responsible for an MCSR of r is a $O\left(m^{4} n^{4}\right)$ time procedure.

- Brute-force seek for $G\left(M_{l_{1}}\right)$ or $G\left(M_{l_{2}}\right)$ s.t. no $G\left(M_{I I l_{1}}\right)$ involving r exists (only smaller Tucker configuration that can occur)
- If none exists, guess $\left(r_{A}, r_{B}, r_{C}, c_{x}, c_{y}\right)$ s.t. $r=r_{A}$ and $\left(r_{C}, c_{y}, r_{A}, c_{x}, r_{B}\right)$ is a path in $G(M)$
- Otherwise call Check- $M_{l_{k}}\left(c_{x}, c_{y}, r_{A}, r_{B}, r_{C}\right)$

Identifying $M_{l_{k}}$ MCSR of r

Check- $M_{l_{k}}\left(c_{x}, c_{y}, r_{A}, r_{B}, r_{C}\right)$
1: if $N\left(r_{A}\right) \cap N\left(r_{B}\right) \cap N\left(r_{C}\right) \neq \emptyset$ then
2: return "NO"
3: end if
4: clean(c) for all $c \in N\left(r_{A}\right) \backslash N\left(r_{B}\right)$
5: clean (c) for all $c \in N\left(r_{A}\right) \backslash N\left(r_{C}\right)$
6: clean $\left(r_{A}, c_{X}, c_{y}\right)$
7: delete vertex r_{A}
8: if there exists a $r_{B} r_{C}$-path in the pruned graph then
9: let P be a shortest $r_{B} r_{C}$-path in the pruned graph
10: return return $\left\{r_{A}\right\} \cup\left\{r_{i}: r_{i} \in V(P) \cap \mathcal{R}\right\}$
11: else
12: return "NO"
13: end if

Identifying $M_{l_{k}}$ MCSR of r : safe pruning

1: if $N\left(r_{A}\right) \cap N\left(r_{B}\right) \cap N\left(r_{C}\right) \neq \emptyset$ then
2: return "NO"
3: end if
Remark that the minimal $M_{l_{k}}$ configuration is

Identifying $M_{l_{k}}$ MCSR of r : safe pruning

1: if $N\left(r_{A}\right) \cap N\left(r_{B}\right) \cap N\left(r_{C}\right) \neq \emptyset$ then
2: return "NO"
3: end if
Remark that the minimal $M_{l_{k}}$ configuration is

Suppose $N\left(r_{A}\right) \cap N\left(r_{B}\right) \cap N\left(r_{C}\right)=c_{s}$ and $c_{s} \notin N\left(r_{D}\right)$

Identifying $M_{l_{k}}$ MCSR of r : safe pruning

1: if $N\left(r_{A}\right) \cap N\left(r_{B}\right) \cap N\left(r_{C}\right) \neq \emptyset$ then
2: return "NO"
3: end if
Remark that the minimal $M_{l_{k}}$ configuration is

Then there exists a smaller $M_{l_{k}}$ configuration (impossible if we proceed k increasingly)

Identifying $M_{l_{k}}$ MCSR of r : safe pruning

1: if $N\left(r_{A}\right) \cap N\left(r_{B}\right) \cap N\left(r_{C}\right) \neq \emptyset$ then
2: return "NO"
3: end if
Remark that the minimal $M_{l_{k}}$ configuration is

Thus, $N\left(r_{A}\right) \cap N\left(r_{B}\right) \cap N\left(r_{C}\right)=c_{s}$ is a common neighbor of any black node

Identifying $M_{l_{k}}$ MCSR of r : safe pruning

1: if $N\left(r_{A}\right) \cap N\left(r_{B}\right) \cap N\left(r_{C}\right) \neq \emptyset$ then
2: return "NO"
3: end if
Remark that the minimal $M_{l_{k}}$ configuration is

Then there exists a smaller $M_{l I_{1}}$ configuration

Identifying $M_{l_{k}}$ MCSR of r : safe pruning

1: clean($c)$ for all $c \in N\left(r_{A}\right) \backslash N\left(r_{B}\right)$

Suppose that clean $\left(c_{s}\right)$ is not a safe operation (we will "break" a solution). Then it follows that $c_{s} \in N\left(r_{D}\right)$ for some black vertex of the solution

Identifying $M_{l_{k}}$ MCSR of r : safe pruning

1: clean(c) for all $c \in N\left(r_{A}\right) \backslash N\left(r_{B}\right)$

Then there exists a smaller $M_{l^{\prime}}$ configuration

Identifying $M_{l_{k}}$ MCSR of r : safe pruning

$$
\begin{aligned}
& \text { 1: clean }(c) \text { for all } c \in N\left(r_{A}\right) \backslash N\left(r_{C}\right) \\
& \text { 2: clean }\left(r_{A}, c_{x}, c_{y}\right)
\end{aligned}
$$

Similar proof for $c \in N\left(r_{A}\right) \backslash N\left(r_{C}\right)$.
Moreover, since T is a chordless cycle, no black vertices of the solution other than the guessed ones can see c_{x} or c_{y}

Identifying $M_{l_{k}}$ MCSR of r : safe pruning

1: delete vertex r_{A}
2: if there exists a $r_{B} r_{C}$-path in the pruned graph then
3: let P be a shortest $r_{B} r_{C}$-path in the pruned graph
4: return return $\left\{r_{A}\right\} \cup\left\{r_{i}: r_{i} \in V(P) \cap \mathcal{R}\right\}$
5: else
6: return "NO"
7: end if

Finding the shortest path ensures the minimality of our configuration

Identifying $M_{l_{k}}$ MCSR of r : safe pruning

1: delete vertex r_{A}
2: if there exists a $r_{B} r_{C}$-path in the pruned graph then
3: let P be a shortest $r_{B} r_{C}$-path in the pruned graph
4: return return $\left\{r_{A}\right\} \cup\left\{r_{i}: r_{i} \in V(P) \cap \mathcal{R}\right\}$
5: else
6: return "NO"
7: end if

One can prove that considering back all the white vertices leads to a $M_{l_{k}}$ MCSR

Identifying other MCSR of r

In a similar way, we designed 4 other algorithms to detect MCSR of a given type leading to

Tucker configuration	Running time
$M_{l_{k}}$	$O\left(m^{3} n^{4}\right)$
$M_{l_{k}}$	$O\left(m^{6} n^{5}(m+n)^{2} \log (m+n)\right)$
$M_{I I_{k}}$	$O\left(m^{5} n^{5}(m+n)^{2} \log (m+n)\right)$
$M_{I V}$	$O\left(m^{2} n^{6}\right)$
M_{V}	$O\left(m^{3} n^{5}\right)$
Total	$O\left(m^{6} n^{5}(m+n)^{2} \log (m+n)\right)$

Matrices with unbounded Δ

Theorem

Let M be $m \times n(0,1)$-matrix. Deciding if a given row of M has a positive Cl can be decided in $O\left(m^{6} n^{5}(m+n)^{2} \log (m+n)\right.$) time.

Going further...

Our graph pruning techniques can be used for solving related combinatorial problems.

Working also for Minimal Conflicting Set of Columns
Implying a polynomial-time algorithm for the Circular Ones Property (Circ1P) studied by Dom et al. 2009. (considering the matrix as being wrapped around a vertical cylinder).

A Polynomial-Time Algorithm for Finding a Minimal Conflicting Set Containing a Given Row

Guillaume Blin Romeo Rizzi Stéphane Vialette

LIGM Université Paris-Est Marne-la-Vallée, France
DIMI Università degli Studi di Udine, Italy.

June 2011

