
A Polynomial-Time Algorithm
for Finding a Minimal Conflicting Set

Containing a Given Row

Guillaume Blin Romeo Rizzi Stéphane Vialette

LIGM Université Paris-Est Marne-la-Vallée, France

DIMI Università degli Studi di Udine, Italy.

June 2011

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Consecutive ones property

Definition
A (0,1)-matrix has the consecutive ones property (C1P) for
rows if there is a permutation of its columns that leaves the 1’s
consecutive in every row.

Example

M =

1 0 0 1 0
1 1 0 1 0
0 0 1 1 0
1 0 1 1 1

 MP =

0 1 1 0 0
1 1 1 0 0
0 0 1 1 0
0 1 1 1 1

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Minimal Conflicting Sets
Definition
A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of
a matrix that does not have the C1P but such that any proper
subset of R has the C1P.

The Conflicting Index (CI) of a given row is the number of
MCSR involving this last.

Example - MCSR

M =

1 0 0 1
1 1 1 0
1 1 0 1
1 0 1 0
1 1 1 0
1 0 0 1

 R =

1 0 0 1
1 1 1 0
1 1 0 1
1 0 1 0
1 1 1 0
1 0 0 1

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Minimal Conflicting Sets
Definition
A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of
a matrix that does not have the C1P but such that any proper
subset of R has the C1P.

The Conflicting Index (CI) of a given row is the number of
MCSR involving this last.

Example - MCSR

R =

1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1

 RP =

1 1 0 1
0 1 1 1
1 1 0 0
0 1 1 0

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Minimal Conflicting Sets
Definition
A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of
a matrix that does not have the C1P but such that any proper
subset of R has the C1P.

The Conflicting Index (CI) of a given row is the number of
MCSR involving this last.

Example - MCSR

R =

1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1

 RP =

0 1 1 1
1 1 0 1
0 1 1 0
1 1 0 0

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Minimal Conflicting Sets
Definition
A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of
a matrix that does not have the C1P but such that any proper
subset of R has the C1P.

The Conflicting Index (CI) of a given row is the number of
MCSR involving this last.

Example - MCSR

R =

1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1

 RP =

0 1 1 1
1 1 1 0
0 1 0 1
1 1 0 0

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Minimal Conflicting Sets
Definition
A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of
a matrix that does not have the C1P but such that any proper
subset of R has the C1P.

The Conflicting Index (CI) of a given row is the number of
MCSR involving this last.

Example - MCSR

R =

1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1

 RP =

1 1 1 0
0 1 1 1
1 1 0 0
0 1 0 1

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Background

Theorem (Chauve et al., 09)
Let M be a m × n (0,1)-matrix with at most ∆ 1-entries per row.
Deciding if a given row of M has a positive CI can be decided in
O(∆2mmax(4,∆+1)(n + m + e)) time.

Main result
What about unbounded ∆ ?

We prove it is still polynomial by combining characterization of
matrices having the C1P with graph pruning techniques.

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

From (0,1)-matrices to colored bipartite graphs

Definition
Let M be a (0,1)-matrix. Its corresponding vertex-colored
bipartite graph G(M) = (VM ,EM) is defined by associating a
black vertex to each row of M, a white vertex to each column of
M, and by adding an edge between the vertices that
correspond to the i th row and the j th column of M if and only of
M[i , j] = 1.

Example

M =

1 2 3 4 5 6

a 0 1 0 1 1 0
b 0 0 0 1 1 0
c 0 1 1 0 1 0
d 1 0 1 0 1 1

 G(M) = 2

a

c

4

5

3

b

d

1

6

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

C1P and forbidden structures
Theorem (Tucker, 72)
A (0,1)-matrix has the C1P if and only if it contains none of the
matrices MIk , MIIk , MIIIk (k ≥ 1), MIV , and MV depicted below:

... that we will try to detect

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Process of finding MCSR of r
Definition
Finding a set of black nodes R not having C1P and
any R ′ ⊂ R has C1P

⇒ ∃ Tucker configuration (e.g. holes of size ≥ 6) using the set
of rows R and
@ a Tucker configuration using a proper subset of R

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Process of finding MCSR of r
Definition
Finding a set of black nodes R not having C1P and
any R ′ ⊂ R has C1P

⇒ ∃ Tucker configuration (e.g. holes of size ≥ 6) using the set
of rows R and
@ a Tucker configuration using a proper subset of R

remind that we are pruning the rows but not the columns

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Process of finding MCSR of r
Definition
Finding a set of black nodes R not having C1P and
any R ′ ⊂ R has C1P

⇒ ∃ Tucker configuration (e.g. holes of size ≥ 6) using the set
of rows R and
@ a Tucker configuration using a proper subset of R

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Process of finding MCSR of r
Definition
Finding a set of black nodes R not having C1P and
any R ′ ⊂ R has C1P

⇒ ∃ Tucker configuration (e.g. holes of size ≥ 6) using the set
of rows R and
@ a Tucker configuration using a proper subset of R

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Process of finding MCSR of r
Definition
Finding a set of black nodes R not having C1P and
any R ′ ⊂ R has C1P

⇒ ∃ Tucker configuration (e.g. holes of size ≥ 6) using the set
of rows R and
@ a Tucker configuration using a proper subset of R

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Process of finding MCSR of r
Definition
Finding a set of black nodes R not having C1P and
any R ′ ⊂ R has C1P

⇒ ∃ Tucker configuration (e.g. holes of size ≥ 6) using the set
of rows R and
@ a Tucker configuration using a proper subset of R

both are minimal and finding at least one is enough to prove
that the CI(r) > 0

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

General idea

Theorem
Let M be m× n (0,1)-matrix. Deciding if a given row of M has a
positive CI can be decided in O(m6n5(m + n)2 log(m + n)) time.

Well it is polynomial

To be compared to the O(∆2mmax(4,∆+1)(n + m + e)) time for
bounded case

Proof
We provide a sequence of polynomial-time algorithms for
finding a minimal Tucker configuration of a given type in
{MIk ,MIIIk ,MIIk ,MIV ,MV } (in this particular order) responsible for
an MCSR involving a given row (if it exists).

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Graph pruning and exhaustive search

Our algorithm is by combining shortest paths and two graph
pruning techniques (clean and anticlean) together with
some exhaustive search procedures (guess), i.e.,

I guessing (guess):
exhaustive brute-force search.

I cleaning (clean):
clean the neighbordhood of a vertex.

I anticleaning (anticlean):
clean the non-neighbordhood of a vertex.

Note that guessed nodes are not affected by (anti)cleaning
operations

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Cleaning vertices

Definition (clean)
For any node x of G(M), clean(x) results in the graph where
any neighbor of x has been deleted,

Example

x
A

B

C

D

A

B

C

D

E

F

G

H

rs

t u

vw

y z

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Cleaning vertices

Definition (clean)
For any node x of G(M), clean(x) results in the graph where
any neighbor of x has been deleted,

Example

x

A

B

C

D

A

B

C

D

E

F

G

H

rs

t u

vw

y z

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Anticleaning vertices
Definition (anticlean)
For any node x of G(M), anticlean(x) results in the graph
where any vertex with a different color and not in the
neighborhood of x has been deleted.

Example

x
A

B

C

D

E

F

G

H

E

F

G

H

rs

t u

vw

y z
(here, any black node 6∈ N(x))

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Anticleaning vertices
Definition (anticlean)
For any node x of G(M), anticlean(x) results in the graph
where any vertex with a different color and not in the
neighborhood of x has been deleted.

Example

x
A

B

C

D

E

F

G

H

E

F

G

H

rs

t u

vw

y z
(here, any black node 6∈ N(x))

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Identifying MIk MCSR of r

Theorem
Let M be m × n (0,1)-matrix. Finding (if it exists) a minimal MIk
structures responsible for an MCSR of r is a O(m4n4) time
procedure.

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Identifying MIk MCSR of r

Theorem
Let M be m × n (0,1)-matrix. Finding (if it exists) a minimal MIk
structures responsible for an MCSR of r is a O(m4n4) time
procedure.

I Brute-force seek for G(MI1) or G(MI2) s.t. no G(MIII1) involving
r exists (only smaller Tucker configuration that can occur)
I If none exists, guess(rA, rB, rC , cx , cy) s.t. r = rA and
(rC , cy , rA, cx , rB) is a path in G(M)
I Otherwise call Check-MIk (cx , cy , rA, rB, rC)

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Identifying MIk MCSR of r

Check-MIk (cx , cy , rA, rB, rC)

1: if N(rA) ∩ N(rB) ∩ N(rC) 6= ∅ then
2: return ”NO”
3: end if
4: clean(c) for all c ∈ N(rA) \ N(rB)
5: clean(c) for all c ∈ N(rA) \ N(rC)
6: clean(rA, cx , cy)
7: delete vertex rA
8: if there exists a rBrC-path in the pruned graph then
9: let P be a shortest rBrC-path in the pruned graph

10: return return {rA} ∪ {ri : ri ∈ V (P) ∩R}
11: else
12: return ”NO”
13: end if

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Identifying MIk MCSR of r : safe pruning
1: if N(rA) ∩ N(rB) ∩ N(rC) 6= ∅ then
2: return ”NO”
3: end if

Remark that the minimal MIk configuration is

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Identifying MIk MCSR of r : safe pruning
1: if N(rA) ∩ N(rB) ∩ N(rC) 6= ∅ then
2: return ”NO”
3: end if

Remark that the minimal MIk configuration is

Suppose N(rA) ∩ N(rB) ∩ N(rC) = cs and cs 6∈ N(rD)

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Identifying MIk MCSR of r : safe pruning
1: if N(rA) ∩ N(rB) ∩ N(rC) 6= ∅ then
2: return ”NO”
3: end if

Remark that the minimal MIk configuration is

Then there exists a smaller MIk configuration (impossible if we
proceed k increasingly)

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Identifying MIk MCSR of r : safe pruning
1: if N(rA) ∩ N(rB) ∩ N(rC) 6= ∅ then
2: return ”NO”
3: end if

Remark that the minimal MIk configuration is

Thus, N(rA) ∩ N(rB) ∩ N(rC) = cs is a common neighbor of any
black node

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Identifying MIk MCSR of r : safe pruning
1: if N(rA) ∩ N(rB) ∩ N(rC) 6= ∅ then
2: return ”NO”
3: end if

Remark that the minimal MIk configuration is

Then there exists a smaller MIII1 configuration

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Identifying MIk MCSR of r : safe pruning
1: clean(c) for all c ∈ N(rA) \ N(rB)

Suppose that clean(cs) is not a safe operation (we will ”break”
a solution). Then it follows that cs ∈ N(rD) for some black vertex
of the solution

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Identifying MIk MCSR of r : safe pruning
1: clean(c) for all c ∈ N(rA) \ N(rB)

Then there exists a smaller MIk ′ configuration

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Identifying MIk MCSR of r : safe pruning
1: clean(c) for all c ∈ N(rA) \ N(rC)
2: clean(rA, cx , cy)

Similar proof for c ∈ N(rA) \ N(rC).
Moreover, since T is a chordless cycle, no black vertices of the
solution other than the guessed ones can see cx or cy

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Identifying MIk MCSR of r : safe pruning
1: delete vertex rA
2: if there exists a rBrC-path in the pruned graph then
3: let P be a shortest rBrC-path in the pruned graph
4: return return {rA} ∪ {ri : ri ∈ V (P) ∩R}
5: else
6: return ”NO”
7: end if

Finding the shortest path ensures the minimality of our
configuration

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Identifying MIk MCSR of r : safe pruning
1: delete vertex rA
2: if there exists a rBrC-path in the pruned graph then
3: let P be a shortest rBrC-path in the pruned graph
4: return return {rA} ∪ {ri : ri ∈ V (P) ∩R}
5: else
6: return ”NO”
7: end if

One can prove that considering back all the white vertices
leads to a MIk MCSR

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Identifying other MCSR of r

In a similar way, we designed 4 other algorithms to detect MCSR
of a given type leading to

Tucker configuration Running time
MIk O(m3n4)

MIIk O(m6n5(m + n)2 log(m + n))
MIIIk O(m5n5(m + n)2 log(m + n))
MIV O(m2n6)

MV O(m3n5)

Total O(m6n5(m + n)2 log(m + n))

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Matrices with unbounded ∆

Theorem
Let M be m× n (0,1)-matrix. Deciding if a given row of M has a
positive CI can be decided in O(m6n5(m + n)2 log(m + n)) time.

Going further...
Our graph pruning techniques can be used for solving related
combinatorial problems.

Working also for Minimal Conflicting Set of Columns

Implying a polynomial-time algorithm for the Circular Ones
Property (Circ1P) studied by Dom et al. 2009. (considering the
matrix as being wrapped around a vertical cylinder).

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

A Polynomial-Time Algorithm
for Finding a Minimal Conflicting Set

Containing a Given Row

Guillaume Blin Romeo Rizzi Stéphane Vialette

LIGM Université Paris-Est Marne-la-Vallée, France

DIMI Università degli Studi di Udine, Italy.

June 2011

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

