A Polynomial-Time Algorithm
for Finding a Minimal Conflicting Set
Containing a Given Row

Guillaume Blin Romeo Rizzi Stéphane Vialette

LIGM Université Paris-Est Marne-la-Vallée, France

DIMI Universita degli Studi di Udine, Italy.

June 2011

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

Consecutive ones property

A (0, 1)-matrix has the consecutive ones property (C1P) for
rows if there is a permutation of its columns that leaves the 1's
consecutive in every row.

MP

—_ O = -
oo — O
-~ - OO0
- o -
—~ 00O
|
oo — O
—_ O = —
—“ ot -
-~ - OO0
—~ OO0 O

Guillaume Blin

Minimal Conflicting Sets

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of
a matrix that does not have the C1P but such that any proper
subset of R has the C1P.

The Conflicting Index (Cl) of a given row is the number of
MCSR involving this last.

1 0 0 17 i 7
1 1 1 0 10
1 1 0 1 1 0 1
M=11 9 1 o R=11 0 1 o
1 110
10 0 1 1 0 0 1]

Guillaume Blin

Minimal Conflicting Sets

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of
a matrix that does not have the C1P but such that any proper
subset of R has the C1P.

The Conflicting Index (Cl) of a given row is the number of
MCSR involving this last.

[G G

OO — —

o -+ O —

Guillaume Blin

RP =

— O =+ O
o

— O —

o o —

Minimal Conflicting Sets

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of
a matrix that does not have the C1P but such that any proper
subset of R has the C1P.

The Conflicting Index (Cl) of a given row is the number of
MCSR involving this last.

[G G

OO — —

o -+ O —

— O = O

Guillaume Blin

RP =

Minimal Conflicting Sets

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of
a matrix that does not have the C1P but such that any proper
subset of R has the C1P.

The Conflicting Index (Cl) of a given row is the number of
MCSR involving this last.

1 1 10 0 1 1

1 1 0 1 1 0
A= 10 10 AP =

10 0 1 0

Guillaume Blin

Minimal Conflicting Sets

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of
a matrix that does not have the C1P but such that any proper
subset of R has the C1P.

The Conflicting Index (Cl) of a given row is the number of
MCSR involving this last.

1
1
RP = 0

Ny
I
—_ ol i
— O = O
()

OO — —
o - O —

Guillaume Blin

Background

Let M be a m x n (0, 1)-matrix with at most A 1-entries per row.
Deciding if a given row of M has a positive Cl can be decided in
O(A?mmMax(4A+1) (n - m+ e)) time.

What about unbounded A ?

We prove it is still polynomial by combining characterization of
matrices having the C1P with graph pruning techniques.

Guillaume Blin

From (0, 1)-matrices to colored bipartite graphs

Let M be a (0, 1)-matrix. Its corresponding vertex-colored
bipartite graph G(M) = (V, Eu) is defined by associating a
black vertex to each row of M, a white vertex to each column of
M, and by adding an edge between the vertices that
correspond to the i row and the j% column of M if and only of
Mli, jl = 1.

|
—~ 00 o
-0 =

OO L —
—_ ol ol
— O O O
9
I

Guillaume Blin

C1P and forbidden structures

A (0, 1)-matrix has the C1P if and only if it contains none of the
matrices M, , My, My, (k > 1), My, and My depicted below:

GMIk /XO\ |||</\

RN VM
W AN WA

—

—_—— —_——
k k+1
X X X
GMm K GMIV GMV
A

g\/\/\ \/\/ O\/O\/\/ A
LGRS B

k+1

... that we will try to detect

Guillaume Blin

Process of finding MCSR of r

Finding a set of black nodes R not having C1P and
any R’ ¢ Rhas C1P

= d Tucker configuration (e.g. holes of size > 6) using the set

of rows R and
3 a Tucker configuration using a proper subset of R

Guillaume Blin

Process of finding MCSR of r

Finding a set of black nodes R not having C1P and
any R’ ¢ Rhas C1P

= d Tucker configuration (e.g. holes of size > 6) using the set

of rows R and
3 a Tucker configuration using a proper subset of R

® O O
O O O O O
S

remind that we are pruning the rows but not the columns

Guillaume Blin

Process of finding MCSR of r

Finding a set of black nodes R not having C1P and
any R’ ¢ Rhas C1P

= d Tucker configuration (e.g. holes of size > 6) using the set

of rows R and
3 a Tucker configuration using a proper subset of R

Guillaume Blin

Process of finding MCSR of r

Finding a set of black nodes R not having C1P and
any R’ ¢ Rhas C1P

= d Tucker configuration (e.g. holes of size > 6) using the set

of rows R and
3 a Tucker configuration using a proper subset of R

Guillaume Blin

Process of finding MCSR of r

Finding a set of black nodes R not having C1P and
any R’ ¢ Rhas C1P

= d Tucker configuration (e.g. holes of size > 6) using the set

of rows R and
3 a Tucker configuration using a proper subset of R

O

Guillaume Blin

Process of finding MCSR of r
Finding a set of black nodes R not having C1P and
any R’ ¢ Rhas C1P

= d Tucker configuration (e.g. holes of size > 6) using the set

of rows R and
3 a Tucker configuration using a proper subset of R

0 O S
O

both are minimal and finding at least one is enough to prove
that the Cl(r) > 0

Guillaume Blin

General idea

Let M be m x n (0,1)-matrix. Deciding if a given row of M has a
positive Cl can be decided in O(m°®n>(m+ n)?log(m+ n)) time.

Well it is polynomial

To be compared to the time for
bounded case

We provide a sequence of polynomial-time algorithms for
finding a minimal Tucker configuration of a given type in

M, My, s My, My, My} (in this particular order) responsible for
an MCSR involving a given row (if it exists).

Guillaume Blin

Graph pruning and exhaustive search

Our algorithm is by combining shortest paths and two graph
pruning techniques (clean and anticlean) together with
some exhaustive search procedures (guess), I.e.,

guessing (guess):
exhaustive brute-force search.

cleaning (clean):
clean the neighbordhood of a vertex.

anticleaning (anticlean):
clean the non-neighbordhood of a vertex.

Note that guessed nodes are not affected by (anti)cleaning
operations

Guillaume Blin

Cleaning vertices

For any node x of G(M), clean(x) results in the graph where
any neighbor of x has been deleted,

Guillaume Blin

Cleaning vertices

For any node x of G(M), clean(x) results in the graph where
any neighbor of x has been deleted,

Guillaume Blin

Anticleaning vertices

For any node x of G(M), anticlean(x) results in the graph
where any vertex with a different color and not in the
neighborhood of x has been deleted.

H (here, any black node ¢ N(x))

Guillaume Blin

Anticleaning vertices

For any node x of G(M), anticlean(x) results in the graph
where any vertex with a different color and not in the
neighborhood of x has been deleted.

O @ O
t D u
O O
y z
H (here, any black node ¢ N(x))

Guillaume Blin

Identifying M, MCSR of r

Let M be m x n (0, 1)-matrix. Finding (if it exists) a minimal M,
structures responsible for an MCSR of r is a O(m*n*) time
procedure.

J

Guillaume Blin

Identifying M, MCSR of r

Let M be m x n (0, 1)-matrix. Finding (if it exists) a minimal M,
structures responsible for an MCSR of r is a O(m*n*) time
procedure.

» Brute-force seek for G(M,,) or G(M,,) s.t. no G(M,) involving
r exists (only smaller Tucker configuration that can occur)

» If none exists, guess(ra,rs,rc,Cx,cy) st. r = rq and
(rey Cy, Iay Cx, Ig) is @ path in G(M)

» Otherwise call Check-M, (cx, ¢y, ra, s, I'c)

Guillaume Blin

Identifying M, MCSR of r

Check-M,, (¢cx, ¢y, ra, s, I'c)

1:
2
3
4
D:
6
7
8
9:
10:
11:

12:
13:

if N(ra) N N(rg) N N(rc) # () then
return "NO”

. end if
. clean(c) forall c € N(ra) \ N(rg)

clean(c) forall c € N(rg) \ N(r¢)

. clean(rga, Cx, Cy)
. delete vertex ry
. If there exists a rgre-path in the pruned graph then

let P be a shortest rgres-path in the pruned graph
return return {ratU{ri: rre V(P)NR}

else
return "NO”

end if

Guillaume Blin

Identifying M, MCSR of r : safe pruning

1: if N(ra) " N(rg) N N(rg) # 0 then
2: return "NO”
3: end if
Remark that the minimal M, configuration is

Guillaume Blin

Identifying M, MCSR of r : safe pruning

1: if N(ra) " N(rg) N N(rg) # 0 then
2: return "NO”
3: end if
Remark that the minimal M, configuration is

Suppose N(ra) "N N(rg) N N(rc) = cs and ¢cs & N(rp)

Guillaume Blin

Identifying M, MCSR of r : safe pruning

1: if N(ra) " N(rg) N N(rg) # 0 then
2: return "NO”
3: end if
Remark that the minimal M, configuration is

Then there exists a smaller M, configuration (impossible if we
proceed k increasingly)

Guillaume Blin

Identifying M, MCSR of r : safe pruning

1: if N(ra) " N(rg) N N(rg) # 0 then
2: return "NO”
3: end if
Remark that the minimal M, configuration is

Thus, N(ra) " N(rg) N N(rec) = ¢s Is @ common neighbor of any
black node

Guillaume Blin

Identifying M, MCSR of r : safe pruning

1: if N(ra) " N(rg) N N(rg) # 0 then
2: return "NO”
3: end if
Remark that the minimal M, configuration is

Then there exists a smaller My, configuration

Guillaume Blin

Identifying M, MCSR of r : safe pruning

1: clean(c) forall c € N(ra) \ N(rg)

Suppose that clean(cs) is not a safe operation (we will "break”
a solution). Then it follows that ¢ € N(rp) for some black vertex
of the solution

Guillaume Blin

Identifying M, MCSR of r : safe pruning

1: clean(c) forall c € N(ra) \ N(rg)

Then there exists a smaller M, , configuration

Guillaume Blin

Identifying M, MCSR of r : safe pruning

1: clean(c) forall c € N(ra) \ N(r¢)
2: Clean(rA, Cx, Cy)

Similar proof for ¢ € N(ra) \ N(r¢).
Moreover, since T is a chordless cycle, no black vertices of the
solution other than the guessed ones can see ¢y or ¢,

Guillaume Blin

Identifying M, MCSR of r : safe pruning

1: delete vertex ry

2: If there exists a rgre-path in the pruned graph then
3: let P be a shortest rgre-path in the pruned graph
4: return return{ratuf{r,:re V(P)NR}

5: else

6: return "NO”

7: end if

Finding the shortest path ensures the minimality of our
configuration

Guillaume Blin

Identifying M, MCSR of r : safe pruning

1: delete vertex ry

2: If there exists a rgre-path in the pruned graph then
3: let P be a shortest rgre-path in the pruned graph
4: return return{ratuf{r,:re V(P)NR}

5: else

6: return "NO”

7: end if

One can prove that considering back all the white vertices
leads to a M, MCSR

Guillaume Blin

Identifying other MCSR of r

In a similar way, we designed 4 other algorithms to detect MCSR
of a given type leading to

Tucker configuration Running time
M, O(m3n*)
My, O(mPr’(m+ n)?log(m+ n))
My, O(mPr’(m+ n)?log(m+ n))
M/\/ O(m2n6)
M, O(m3n5)
Total O(mPr’(m+ n)?log(m+ n))

Guillaume Blin

Matrices with unbounded A

Let M be m x n (0,1)-matrix. Deciding if a given row of M has a
positive Cl can be decided in O(mPn®(m+ n)?log(m+ n)) time.

Our graph pruning techniques can be used for solving related
combinatorial problems.

Working also for Minimal Conflicting Set of Columns
Implying a polynomial-time algorithm for the Circular Ones

Property (Circ1P) studied by Dom et al. 2009. (considering the
matrix as being wrapped around a vertical cylinder).

Guillaume Blin

A Polynomial-Time Algorithm
for Finding a Minimal Conflicting Set
Containing a Given Row

Guillaume Blin Romeo Rizzi Stéphane Vialette

LIGM Université Paris-Est Marne-la-Vallée, France

DIMI Universita degli Studi di Udine, Italy.

June 2011

Guillaume Blin A Polynomial-Time Algorithm for Finding a MCSR

