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Consecutive ones property

A (0, 1)-matrix has the consecutive ones property (C1P) for
rows if there is a permutation of its columns that leaves the 1's
consecutive in every row.
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Minimal Conflicting Sets

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of
a matrix that does not have the C1P but such that any proper
subset of R has the C1P.

The Conflicting Index (Cl) of a given row is the number of
MCSR involving this last.
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Minimal Conflicting Sets

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of
a matrix that does not have the C1P but such that any proper
subset of R has the C1P.

The Conflicting Index (Cl) of a given row is the number of
MCSR involving this last.
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Minimal Conflicting Sets

A Minimal Conflicting Set of Rows (MCSR) is a set of rows R of
a matrix that does not have the C1P but such that any proper
subset of R has the C1P.

The Conflicting Index (Cl) of a given row is the number of
MCSR involving this last.
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Background

Let M be a m x n (0, 1)-matrix with at most A 1-entries per row.
Deciding if a given row of M has a positive Cl can be decided in
O(A?mmMax(4A+1) (n - m+ e)) time.

What about unbounded A ?

We prove it is still polynomial by combining characterization of
matrices having the C1P with graph pruning techniques.
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From (0, 1)-matrices to colored bipartite graphs

Let M be a (0, 1)-matrix. Its corresponding vertex-colored
bipartite graph G(M) = (V, Eu) is defined by associating a
black vertex to each row of M, a white vertex to each column of
M, and by adding an edge between the vertices that
correspond to the i row and the j% column of M if and only of
Mli, jl = 1.
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C1P and forbidden structures

A (0, 1)-matrix has the C1P if and only if it contains none of the
matrices M, , My, My, (k > 1), My, and My depicted below:
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... that we will try to detect
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Process of finding MCSR of r

Finding a set of black nodes R not having C1P and
any R’ ¢ Rhas C1P

= d Tucker configuration (e.g. holes of size > 6) using the set

of rows R and
3 a Tucker configuration using a proper subset of R
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remind that we are pruning the rows but not the columns
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Process of finding MCSR of r
Finding a set of black nodes R not having C1P and
any R’ ¢ Rhas C1P

= d Tucker configuration (e.g. holes of size > 6) using the set

of rows R and
3 a Tucker configuration using a proper subset of R
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both are minimal and finding at least one is enough to prove
that the Cl(r) > 0
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General idea

Let M be m x n (0,1)-matrix. Deciding if a given row of M has a
positive Cl can be decided in O(m°®n>(m+ n)?log(m+ n)) time.

Well it is polynomial ....

To be compared to the time for
bounded case

We provide a sequence of polynomial-time algorithms for
finding a minimal Tucker configuration of a given type in

M, My, s My, My, My} (in this particular order) responsible for
an MCSR involving a given row (if it exists).
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Graph pruning and exhaustive search

Our algorithm is by combining shortest paths and two graph
pruning techniques (clean and anticlean) together with
some exhaustive search procedures (guess), I.e.,

guessing (guess):
exhaustive brute-force search.

cleaning (clean):
clean the neighbordhood of a vertex.

anticleaning (anticlean):
clean the non-neighbordhood of a vertex.

Note that guessed nodes are not affected by (anti)cleaning
operations
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Cleaning vertices

For any node x of G(M), clean(x) results in the graph where
any neighbor of x has been deleted,
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Anticleaning vertices

For any node x of G(M), anticlean(x) results in the graph
where any vertex with a different color and not in the
neighborhood of x has been deleted.

H (here, any black node ¢ N(x))
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Anticleaning vertices

For any node x of G(M), anticlean(x) results in the graph
where any vertex with a different color and not in the
neighborhood of x has been deleted.
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Identifying M, MCSR of r

Let M be m x n (0, 1)-matrix. Finding (if it exists) a minimal M,
structures responsible for an MCSR of r is a O(m*n*) time
procedure.

J
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Identifying M, MCSR of r

Let M be m x n (0, 1)-matrix. Finding (if it exists) a minimal M,
structures responsible for an MCSR of r is a O(m*n*) time
procedure.

» Brute-force seek for G(M,,) or G(M,,) s.t. no G(M, ) involving
r exists (only smaller Tucker configuration that can occur)

» If none exists, guess(ra,rs,rc,Cx,cy) st. r = rq and
(rey Cy, Iay Cx, Ig) is @ path in G(M)

» Otherwise call Check-M, (cx, ¢y, ra, s, I'c)
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Identifying M, MCSR of r

Check-M,, (¢cx, ¢y, ra, s, I'c)

1:
2
3
4
D:
6
7
8
9:
10:
11:

12:
13:

if N(ra) N N(rg) N N(rc) # () then
return "NO”

. end if
. clean(c) forall c € N(ra) \ N(rg)

clean(c) forall c € N(rg) \ N(r¢)

. clean(rga, Cx, Cy)
. delete vertex ry
. If there exists a rgre-path in the pruned graph then

let P be a shortest rgres-path in the pruned graph
return return {ratU{ri: rre V(P)NR}

else
return "NO”

end if
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Identifying M, MCSR of r : safe pruning

1: if N(ra) " N(rg) N N(rg) # 0 then
2:  return "NO”
3: end if
Remark that the minimal M, configuration is
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Identifying M, MCSR of r : safe pruning

1: if N(ra) " N(rg) N N(rg) # 0 then
2:  return "NO”
3: end if
Remark that the minimal M, configuration is

Suppose N(ra) "N N(rg) N N(rc) = cs and ¢cs & N(rp)
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Identifying M, MCSR of r : safe pruning

1: if N(ra) " N(rg) N N(rg) # 0 then
2:  return "NO”
3: end if
Remark that the minimal M, configuration is

Then there exists a smaller M, configuration (impossible if we
proceed k increasingly)
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Identifying M, MCSR of r : safe pruning

1: if N(ra) " N(rg) N N(rg) # 0 then
2:  return "NO”
3: end if
Remark that the minimal M, configuration is

Thus, N(ra) " N(rg) N N(rec) = ¢s Is @ common neighbor of any
black node
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Identifying M, MCSR of r : safe pruning

1: if N(ra) " N(rg) N N(rg) # 0 then
2:  return "NO”
3: end if
Remark that the minimal M, configuration is

Then there exists a smaller My, configuration
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Identifying M, MCSR of r : safe pruning

1: clean(c) forall c € N(ra) \ N(rg)

Suppose that clean(cs) is not a safe operation (we will "break”
a solution). Then it follows that ¢ € N(rp) for some black vertex
of the solution
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Identifying M, MCSR of r : safe pruning

1: clean(c) forall c € N(ra) \ N(rg)

Then there exists a smaller M, , configuration
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Identifying M, MCSR of r : safe pruning

1: clean(c) forall c € N(ra) \ N(r¢)
2: Clean(rA, Cx, Cy)

Similar proof for ¢ € N(ra) \ N(r¢).
Moreover, since T is a chordless cycle, no black vertices of the
solution other than the guessed ones can see ¢y or ¢,
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Identifying M, MCSR of r : safe pruning

1: delete vertex ry

2: If there exists a rgre-path in the pruned graph then
3: let P be a shortest rgre-path in the pruned graph
4: return return{ratuf{r,:re V(P)NR}

5: else

6: return "NO”

7: end if

Finding the shortest path ensures the minimality of our
configuration
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Identifying M, MCSR of r : safe pruning

1: delete vertex ry

2: If there exists a rgre-path in the pruned graph then
3: let P be a shortest rgre-path in the pruned graph
4: return return{ratuf{r,:re V(P)NR}

5: else

6: return "NO”

7: end if

One can prove that considering back all the white vertices
leads to a M, MCSR
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Identifying other MCSR of r

In a similar way, we designed 4 other algorithms to detect MCSR
of a given type leading to

Tucker configuration Running time
M, O(m3n*)
My, O(mPr’(m+ n)?log(m+ n))
My, O(mPr’(m+ n)?log(m+ n))
M/\/ O(m2n6)
M, O(m3n5)
Total O(mPr’(m+ n)?log(m+ n))
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Matrices with unbounded A

Let M be m x n (0,1)-matrix. Deciding if a given row of M has a
positive Cl can be decided in O(mPn®(m+ n)?log(m+ n)) time.

Our graph pruning techniques can be used for solving related
combinatorial problems.

Working also for Minimal Conflicting Set of Columns
Implying a polynomial-time algorithm for the Circular Ones

Property (Circ1P) studied by Dom et al. 2009. (considering the
matrix as being wrapped around a vertical cylinder).
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