Approximate matching in grammar-compressed strings

Alexander Tiskin

Department of Computer Science
University of Warwick
http://www.dcs.warwick.ac.uk/~tiskin

Alexander Tiskin (Warwick) Approximate matching in GC-strings

http://www.dcs.warwick.ac.uk/~tiskin

@ Introduction

© Semi-local string comparison
© Matrix distance multiplication
@ Compressed string comparison

© Conclusions and future work

Alexander Tiskin (Warwick) Approximate matching in GC-strings

@ Introduction

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Introduction

String matching: finding an exact pattern in a string
String comparison: finding similar patterns in two strings

Applications: computational biology, image recognition,

Alexander Tiskin (Warwick)

Approximate matching in GC-strings

Introduction

String matching: finding an exact pattern in a string
String comparison: finding similar patterns in two strings
Applications: computational biology, image recognition, ...
Standard types of string comparison:

o global: whole string vs whole string

@ local: substrings vs substrings
Main focus of this work:
@ semi-local: whole string vs substrings; prefixes vs suffixes

Closely related to approximate string matching (no relation to
approximation algorithms!)

Main tool: implicit unit-Monge matrices (a.k.a. seaweed matrices)

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Introduction

Terminology and notation

Integers: ... —2,—-1,0,1,2,...

|w
[&;]

)

N

)

Nl

i . 5 3
Odd half-integers: ... — 3, =35, —
(i) (",J)iff i <i" and j </

We consider finite and infinite integer matrices over integer and odd
half-integer indices. For simplicity, index range will usually be ignored.

3,
i) (') iffi<i"andj>j'

~ N

A permutation matrix is a 0/1 matrix with exactly one nonzero per row
and per column

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Introduction

Terminology and notation

Given matrix D, its distribution matrix is D*(i,) = > isig<i D(3,))
In other words, D*(i,j) = 3 D(%,), where (2,7) is <-dominated by (i, j)

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Introduction

Terminology and notation

Given matrix D, its distribution matrix is D*(i,) = > isig<i D(3,))

In other words, D*(i,j) = 3 D(%,), where (2,7) is <-dominated by (i, j)
Given matrix E, its density matrix is

where D*, E over integers; D, EY over odd half-integers

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Introduction

Terminology and notation

Given matrix D, its distribution matrix is D*(i,) = > isig<i D(3,))
In other words, D*(i,j) = 3 D(%,), where (2,7) is <-dominated by (i, j)

Given matrix E, its density matrix is

where D*, E over integers; D, EY over odd half-integers

O
01 0]F 01 23 0123 01 0
0112 0112
1 0 0] = =11 00
00 1 0 001 0 001 00 1
0 00O 0 00O

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Introduction

Terminology and notation

Given matrix D, its distribution matrix is D*(i,) = > isig<i D(3,))
In other words, D*(i,j) = 3 D(%,), where (2,7) is <-dominated by (i, j)

Given matrix E, its density matrix is

where D*, E over integers; D, EY over odd half-integers

O
01 0]F 01 23 0123 01 0
0112 0112
1 0 0] = =11 00
00 1 0 001 0 001 00 1
0 00O 0 00O

(D¥)Y = D for all D
Matrix E is simple, if (E7)* = E

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Introduction

Terminology and notation

Matrix E is Monge, if EV is nonnegative
Intuition: border-to-border distances in a (weighted) planar graph
Matrix E is unit-Monge, if EF is a permutation matrix

Intuition: border-to-border distances in a grid-like graph

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Introduction

Terminology and notation

Matrix E is Monge, if EV is nonnegative

Intuition: border-to-border distances in a (weighted) planar graph
Matrix E is unit-Monge, if EF is a permutation matrix

Intuition: border-to-border distances in a grid-like graph

Simple unit-Monge matrix: P>, where P is a permutation matrix
Seaweed matrix: P*, represented implicitly by P

0102 0 2 3
1 0 0f =
0 0 1

o O O
O O = =

1 2
01
00

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Introduction

Implicit unit-Monge matrices

Efficient P* queries: range tree on nonzeros of P [Bentley: 1980]

@ binary search tree by i-coordinate

@ under every node, binary search tree by j-coordinate

[} [J [}
([] — [] — []

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Introduction

Implicit unit-Monge matrices

Efficient P* queries: (contd.)

Every node of the range tree represents a canonical range (rectangular
region), and stores its nonzero count

Overall, < nlog n canonical ranges are non-empty

A P* query means dominance counting: how many nonzeros are
dominated by query point? Answered by decomposing query range into
< log? n disjoint canonical ranges.

Total size O(nlog n), query time O(log? n)

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Introduction

Implicit unit-Monge matrices

Efficient P* queries: (contd.)

Every node of the range tree represents a canonical range (rectangular
region), and stores its nonzero count

Overall, < nlog n canonical ranges are non-empty

A P* query means dominance counting: how many nonzeros are
dominated by query point? Answered by decomposing query range into
< log? n disjoint canonical ranges.

Total size O(nlog n), query time O(log? n)
There are asymptotically more efficient (but less practical) data structures

Total size O(n), query time O(Iog’ign) [JaJa+: 2004]
[Chan, P3trascu: 2010]

Alexander Tiskin (Warwick) Approximate matching in GC-strings

© Semi-local string comparison

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison

Semi-local LCS and edit distance

Consider strings (= sequences) over an alphabet of size o

Distinguish contiguous substrings and not necessarily contiguous
subsequences

Special cases of substring: prefix, suffix
Notation: strings a, b of length m, n respectively

Assume where necessary: m < n; m, n reasonably close

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison

Semi-local LCS and edit distance

Consider strings (= sequences) over an alphabet of size o

Distinguish contiguous substrings and not necessarily contiguous
subsequences

Special cases of substring: prefix, suffix

Notation: strings a, b of length m, n respectively
Assume where necessary: m < n; m, n reasonably close
The longest common subsequence (LCS) score:

@ length of longest string that is a subsequence of both a and b

@ equivalently, alignment score, where score(match) = 1 and
score(mismatch) = 0

In biological terms, “loss-free alignment” (unlike “lossy” BLAST)

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison

Semi-local LCS and edit distance

The LCS problem
Give the LCS score for a vs b

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison

Semi-local LCS and edit distance

The LCS problem
Give the LCS score for a vs b

LCS: running time

O(mn) [Wagner, Fischer:
O(Io’;’é’n) o= 0(1) [Masek, Paterson:

[Crochemore+:
O(—mn(lli’)i;ong n)2) [Paterson, Dantik:

[Bille, Farach-Colton:

1974]
1980]

2003]
1994]
2008]

.

Running time varies depending on the RAM model

We assume word-RAM with word size log n

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison
Semi-local LCS and edit distance

LCS on the alignment graph (directed, acyclic)
b aabcabocabaca blue =0

NN TN i
a\\\\§§ o

A NN NG NN

LCS("baabcbca”, "baabcabcabaca”) = “baabcbca”

LCS = highest-score corner-to-corner path

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison
Semi-local LCS and edit distance

LCS: dynamic programming [WF: 1974]
Sweep alignment graph by cells
Cell update: time O(1)

Overall time O(mn)

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison
Semi-local LCS and edit distance

LCS: micro-block dynamic programming [MP: 1980; BF: 2008]

Sweep alignment graph by micro-blocks

Micro-block size:

o t = O(log n) when o = O(1)

. logn .
°ot= O(J—Ioglogn) otherwise

Micro-block interface:

@ O(t) characters, each O(log o) bits, can be reduced to O(log t) bits
e O(t) small integers, each O(1) bits

Micro-block update: time O(1), via table of all possible interfaces

Overall time O(Io’g—”rn) when o = O(1), O(%bf'm) otherwise

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison
Semi-local LCS and edit distance

The semi-local LCS problem

Give the (implicit) matrix of O(m? + n?) LCS scores:
@ string-substring LCS: string a vs every substring of b
o prefix-suffix LCS: every prefix of a vs every suffix of b

o symmetrically, substring-string and suffix-prefix LCS

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison
Semi-local LCS and edit distance

The semi-local LCS problem

Give the (implicit) matrix of O(m? + n?) LCS scores:
@ string-substring LCS: string a vs every substring of b

o prefix-suffix LCS: every prefix of a vs every suffix of b

o symmetrically, substring-string and suffix-prefix LCS

v

The three-way semi-local LCS problem

Give the (implicit) matrix of O(n?) LCS scores:

@ string-substring, prefix-suffix, suffix-prefix LCS
@ no substring-string LCS
Suitable for m > n

¢

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison
Semi-local LCS and edit distance

The semi-local LCS problem

Give the (implicit) matrix of O(m? + n?) LCS scores:
@ string-substring LCS: string a vs every substring of b
o prefix-suffix LCS: every prefix of a vs every suffix of b

o symmetrically, substring-string and suffix-prefix LCS

The three-way semi-local LCS problem

| \

Give the (implicit) matrix of O(n?) LCS scores:
@ string-substring, prefix-suffix, suffix-prefix LCS
@ no substring-string LCS

Suitable for m > n)

Cf.: dynamic programming gives prefix-prefix LCS

Alexander Tiskin (Warwick) Approximate matching in GC-strings 16 / 52

Semi-local string comparison
Semi-local LCS and edit distance

Semi-local LCS on the alignment graph
baabcabcabaca blue =0

b\ \- -: \ \ red =1
Al NNCUNC N N N
JERNN - \\\ AN

score("baabcbca”, “cabcaba”) = 5 (“abcba”)

Semi-local LCS = all highest-score border-to-border paths
(string-substring = top-to-bottom, etc.)

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H

012345667 888 8 8 3 = “baabcbca”
-10 123 4556 77777 B .
910 123 445060666 7 b = "baabcabcabaca
-3-2-10 1 2 3 3 4556 6 7 b’:b<4:11):“cabcaba”
—4-3-2-10 1 2 2 3 4 4 5 6

—5-4-3-2-101 2 3 4 4?5 6 H(4,11):LCS(a,b’):5
~6-5-4-3-2-10 1 2 3 3 4 4 5 H(i,j)=j—iifi>}j
-7-6-5-4-3-2-10 1 2 2 3 3 4

—-8-—7-6-5-4-3-2-10 1 2 3 3 4

-9-8-7-6-5-4-3-2-10 1 2 3 4

-10-9-8-7-6-5-4-3-2-10 1 2 3
—1-10-9-8-7-6-5-4-3-2-10 1 2

~1211-10-9 -8-7—-6-5-4-3-2-10 1
—13-12-1+-10-9-8-7-6-5-4-3-2-1 0

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison

Score matrices and seaweed matrices

Semi-local LCS: output representation and running time

size query time

0(n?) 0(1) trivial

O(mY2n) O(logn) string-substring [Alves+: 2003]

O(n) O(n) string-substring [Alves+: 2005]

O(nlogn) O(log? n) [T: 2006]
..or any 2D orthogonal range counting data structure

running time

O(mn?) naive
O(mn) string-substring [Schmidt: 1998; Alves+: 2005]

O(mn) [T: 2006]

O(I) [T: 2006]
mn Ioglog mn(log log n)? .

O(T =2t Ty) [T: 2007]/
Alexander Tiskin (Warwick) Approximate matching in GC-strings 19 / 52

Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P
H(i,j): the number of matched characters for a vs substring b(i : j)
J—i—H(i,j): the number of unmatched characters
Properties of matrix j — i — H(i,J):
@ simple unit-Monge
o therefore, = P>, where P = —HY is a permutation matrix
P is the seaweed matrix, giving an implicit representation of H

Range tree for P: memory O(nlog n), query time O(log? n)

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

0123456678888Ii 2 — “baabcbca’

-10 1 2 3 4 5]5 6 7|7|7|717 . .,
o101 2 3 ala s 6lslsls™ b = "baabcabcabaca
-3-2-10 1 2 3|3 4 5|5 6|6 7 b’ = b(4 : 11) = “cabcaba”
—4-3-2-10 1 2|2 3 4]a 5 6

—5-4-3-2-10 1 2 3 4 4?5 6 H(4,11) = LC5(a, b)) = 5
—6-5-4-3-2-10 1 2 3|3 4|4 5 H(i,j)=j—iifi>}j
—7-6-5-4-3-2-10 1 2|2 3|3 4

—8-7-6-5-4-3-2-10 1 2 3|3 4

90-8-7-6-54-3-2-10 1 2 3 &

~10-9-8-7-6-5-4-3-2-10 1 2 3
~11-10-9-8-7-6-5-4-3-2-10 1 2
~12-11-10-9 -8 -7 —6 -5 -4 -3 -2-1 0 1

~13-12-11-10-9 —8 —7 —6 —5 —4 —3 —2 —1 0

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

0123456678888Ii 2 — “baabcbca’

-10 1 2 3 4 5]5 6 7|7|7|717 . .,
o101 2 3 ala s 6lslsls™ b = "baabcabcabaca
-3-2-10 1 2 3|3 4 5|5 6|6 7 b’:b<4:11):“cabcaba”
—4-3-2-10 1 2|2 3 4|4 5 6

—5-4-3-2-10 1 2 3 4 4?5 6 H(4,11) = LC5(a, b)) = 5
—6-5-4-3-2-10 1 2 3|3 4|4 5 H(i,j)=j—iifi>}j
oS 320l 14202131314 blue: difference in H is 0
-8-7-6-5-4-3-2-10 1 2 3|3 4

9-8-7-6-5-4-3-2-10 1 2 3 4 red: difference in H is 1
-10-9-8-7-6-5-4-3-2-10 1 2 3
~11-10-9-8-7-6-5-4-3-2-10 1 2
~12-11-10-9 -8 -7 —6 -5 -4 -3 -2-1 0 1

~13-12-11-10-9 —8 —7 —6 —5 —4 —3 —2 —1 0

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

012 3 45 6|6 7 8|sls]s]s 2 = “baabcbea”
-10 1 2 3 4 5|5 6 7717|717 b — “baabcabcabaca”
2-10 1 2 3 4|4 5 6|6lele 7 = Dbaabcabcabaca
-3-2-10 1 2 3|3 4 5|5 6|6 7 b’ = b(4 : 11) = “cabcaba”
—4-3-2-10 1 2|2 3 4|4 ®)|5 6
: H(4,11) = LCS(a,b') =5
-5-4-3-2-10 1 2 3 4|4 5]5 6 (’) (’)
—6-5-4-3-2-10 1 2 3|3 4|4 5 H(i,j)=j—iifi>}j
—7-6-5-4-3-2-1 .))
01212 313 4 blue: difference in H is 0
-8-7-6-5-4-3-2-10 1 2 3|3 4
9-8-7-6-5-4-3-2-10 1 2 3 & red: difference in H is 1
~10-9-8-7-6-5-4-3-2-10 1 2 3 green: P(i,j) =1
~11-10-9-8-7—-6-5-4-3-2-10 1 2 o o s
—12-11-10-9 -8 -7 —6-5—-4-3-2-10 1 H(i,j) =j—i— P*(i,j)
—13-12-11-10-9 -8 -7 —6 —5 —4 —3 -2 —1 0

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

L a = "baabcbca”
b = “baabcabcabaca”

b’ = b(4 : 11) = “cabcaba”
H(4,11) = LCS(a, b) =
11-4-— PZ(’?./) =
11-4-2=5

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison
Score matrices and seaweed matrices

The seaweeds in the alignment graph

a a cabocabaca

b\ l l\. \ l l \ ai ““baabcbca” ”
a \\\\ \ l \\\ \ \ b = “baabcabcabaca
a _i'"'_\\ l AN l _ N\ b = b(4:11) = “cabcaba’

BN NHSAN L NN H(4,11) = LCS(a,) =
N AN l AN 11—4— PX(i,j) =

bN N l\\\\—-\\lf 11-4-2=5
al NN\ i \\ \k \\\;\\\

P(i,j) =1 corresponds to seaweed (top, i) ~> (bottom, j)

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Semi-local string comparison

Score matrices and seaweed matrices

The seaweeds in the alignment graph

aa a = “baabcbca”

b = “baabcabcabaca”
b’ = b(4 :11) = “cabcaba”

H(4,11) = LCS(a, b') =
11-4- Pz(’?./) =
11-4-2-5

ffp/»/rp

AR
F \\\\\\\@\\\\\

P(i,j) =1 corresponds to seaweed (top, i) ~> (bottom, j)
Also define top ~~ right, left ~~ right, left ~ bottom seaweeds

Gives bijection between top-left and bottom-right borders

Alexander Tiskin (Warwick) Approximate matching in GC-strings

© Matrix distance multiplication

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Seaweed braids

Distance algebra (a.k.a (min, +) or tropical algebra): @ is min, ® is +
Matrix O-multiplication
AoB=C C(i, k) = @j(A(i,j) ©® B(j, k)) = minj(A(i,j) + B(j, k))

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Seaweed braids

Distance algebra (a.k.a (min, +) or tropical algebra): @ is min, ® is +
Matrix O-multiplication
AoB=C C(i, k) = @j(A(i,j) ® B(j, k)) = min;(A(i,j) + B(j, k))
Matrix classes closed under ®-multiplication (for given n):

@ general numerical (integer, real) matrices

@ Monge matrices

@ simple unit-Monge matrices

PX ® PE = PZ written as P4 Pg = Pc

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Seaweed braids

The seaweed monoid Tp:

@ simple unit-Monge matrices under ®-multiplication

@ permutation matrices under [l-multiplication

[dentity: 1 x = x Zero: 0 x =0

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Seaweed braids

Pa[d Pg = P¢ can be seen as [J-multiplication of seaweed braids

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Seaweed braids

Pa[d Pg = P¢ can be seen as [J-multiplication of seaweed braids

[] [] []
[) [) []
[] [] []
[] [] []
[] [] []
[] [] []
Pa Pg Pc
—0—0—0—0—0—0—
Pa
—0—0—0—0—0—0—
Pg

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Seaweed braids

Pa[d Pg = P¢ can be seen as [J-multiplication of seaweed braids

[] [] []
[) [) []
[] [] []
[] [] []
[] [] []
[] [] []
Pa Pg Pc
—0—0—0—0—0—0— —0—0—0—0—0—0—
Pa
—0—0—0—0—0—0—
Pg
——0—0—0—0 0 ——0—0—0—0 0

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Seaweed braids

Pa[d Pg = P¢ can be seen as [J-multiplication of seaweed braids

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Seaweed braids

Seaweed braids: similar to standard braids, generated by crossings

Unlike in standard braids, all seaweed crossings are

@ transversal, i.e. on one level (not underpass/overpass)

@ idempotent, i.e. two seaweeds can cross at most once

Seaweed braid [J-multiplication: associative, no inverse (a crossing cannot
be undone)

[dentity: 1 x = x Zero: 0 x =0

1 SR

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Seaweed braids

The seaweed monoid 7,:

e n! elements (permutations of size n)

e n— 1 generators gi, &, ..., 8r—1 (elementary crossings)

idempotence:

g/.2 =g; foralli §
_ |

far commutativity: X
gigi=gig& J—i>1 :

.
a

braid relations:
gigigi = ggg J—i=1

><:§<><

-)C
X)(X
X

X

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Seaweed braids

The seaweed monoid 7,
Also known as the 0-Hecke monoid of the symmetric group Ho(Sh)
Generalisations:

@ general 0-Hecke monoids [Fomin, Greene: 1998; Buch+: 2008]
o Coxeter monoids [Tsaranov: 1990; Richardson, Springer: 1990]

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Seaweed braids

Computation in the seaweed monoid: a confluent rewriting system can be
obtained by software (SEMIGROUPE, GAP)

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Seaweed braids

Computation in the seaweed monoid: a confluent rewriting system can be
obtained by software (SEMIGROUPE, GAP)

T3: 1, a=g1, b= g»; ab, ba, aba=0

aa— a bb — b bab — 0 aba— 0

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Seaweed braids

Computation in the seaweed monoid: a confluent rewriting system can be
obtained by software (SEMIGROUPE, GAP)

T3: 1, a=g1, b= g»; ab, ba, aba=0

aa— a bb — b bab — 0 aba— 0

Ta: 1, a=g, b= g, c = gs; ab, ac, ba, bc, cb, aba, abc, acb, bac,
beb, cba, abac, abcb, acba, bacb, bcba, abach, abcba, bacba, abacba = 0

aa— a ca — ac bab — aba cbac — bcbha
bb— b cc— ¢ cbc — bcb abacba — 0

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Seaweed braids

Computation in the seaweed monoid: a confluent rewriting system can be
obtained by software (SEMIGROUPE, GAP)

T3: 1, a=g1, b= g»; ab, ba, aba=0

aa— a bb — b bab — 0 aba— 0

Ta: 1, a=g, b= g, c = gs; ab, ac, ba, bc, cb, aba, abc, acb, bac,
beb, cba, abac, abcb, acba, bacb, bcba, abach, abcba, bacba, abacba = 0

aa— a ca — ac bab — aba cbac — bcbha
bb— b cc— ¢ cbc — bcb abacba — 0

Easy to use, but not an efficient algorithm

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication
Implicit unit-Monge ®-multiplication

The implicit unit-Monge matrix ®-multiplication problem

Given permutation matrices Py, Pg, compute Pc, such that
PE ® PE = PE (equivalently, P4 Pg = Pc¢)

Alexander Tiskin (Warwick)

Approximate matching in GC-strings

Matrix distance multiplication

Implicit unit-Monge ®-multiplication

The implicit unit-Monge matrix ®-multiplication problem

Given permutation matrices Py, Pg, compute Pc, such that

PA): ® PE = PE (equivalently, P4 Pg = Pc¢)

Matrix ®-multiplication: running time

type time

general 0o(n%) standard
O(~leejpen)’y [Chan: 2007]

Monge 0(n?) via [Aggarwal+: 1987]

implicit unit-Monge O(n'-) [T: 2006]
O(nlog n) [T: 2010]

Alexander Tiskin (Warwick)

Approximate matching in GC-strings

Matrix distance multiplication

Implicit unit-Monge ®-multiplication

Pg
[] : ..
.. ° .
[) © ¢
... ©
[] ° ® . ?
.. .. -
[] . °
Pa Pc

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Implicit unit-Monge ®-multiplication

Pajo, Pa ki

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Implicit unit-Monge ®-multiplication

[] ° R
[)
® []
..
® [)
[]
[]
i []
[]
[)
..
° [J
@ @
[) [)
[] .. []
[] e ° [] °
[}
..
.. ° ® °
(]
.. b ..
(] e []
Pajo, Pa ki

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Implicit unit-Monge ®-multiplication

[] ° R
° [)
° []
(]
[)
. [
° []
[]
° []
..
° [J
@
.. [] [)
[] ° [] °
¢ b [) [}
.. [] hd
..
° .. ° []
° [] []
° [] []
Pajo, Pa ki

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Implicit unit-Monge ®-multiplication

[] ° R
° [)
° []
(]
[)
. [
° []
° []
° []
° []
[J
@ @
.. ° .. [)
[] []
[] []
. [] e [)
.. * [] hd °
@ []
[) ®
) [
[] ° ° [] ° °
[] [)
(] e d []
Pajo, Pa ki Pc.io + Pc i

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Implicit unit-Monge ®-multiplication

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Implicit unit-Monge ®-multiplication

[] ° R
° [)
° []
(]
[)
. [
° []
[]
[]
° []
° []
[J
@
[)
[] ..
[]
. []
[)
° .. []
[) ®
° .. ° []
° [] []
° ® ! ° °
Pajo, Pa ki Pc.io + Pc i

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Implicit unit-Monge ®-multiplication

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Matrix distance multiplication

Implicit unit-Monge ®-multiplication

Implicit unit-Monge matrix ®-multiplication: the algorithm
PE(i, k) = min;(P%(i,j) + PE(j, k))

Divide-and-conquer on the range of j

Divide P4 horizontally, Pg vertically; two subproblems of effective size n/2:
> Yy _ ps X Y _ ps

Paio© Pglo=Pcso Pani © Pg pi = Pc pi

Conquer: most (but not alll) nonzeros of Pc j,, Pc ni appear in Pc

Missing nonzeros can be obtained in time O(n) using the Monge property

Overall time O(nlog n)

Alexander Tiskin (Warwick) Approximate matching in GC-strings

@ Compressed string comparison

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Compressed string comparison

Grammar compression

Notation: text t of length n; pattern p of length m

A GC-string (grammar-compressed string) t is a straight-line program
(context-free grammar) generating t = tz by 71 assignments of the form

@ t, = «, where « is an alphabet character
o t) = tit;, where i,j < k
In general, n = O(2")
Example: Fibonacci string “abaababaabaab”
t="'b ty ="a’

t3 = bty tg = t3tr ts = tyt3 te = tsty t7 = tets

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Compressed string comparison

Grammar compression

Grammar-compression covers various compression types, e.g. LZ78, LZW
(not LZ77 directly)

Simplifying assumption: arithmetic up to n runs in O(1)

This assumption can be removed by careful index remapping

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Compressed string comparison
Three-way semi-local LCS on GC-strings

LCS: running time

t P
plain plain O(mn) [Wagner, Fischer: 1974]
O(é—f—m) [Masek, Paterson: 1980]
[Crochemore+: 2003]
GC plain O(m n+ ...) general CFG [Myers: 1995]
O(m*'°h) 3-way semi [T: 2008]
O(m Iogm n) 3-way semi [T: NEW]
GC GC NP-hard [Lifshits: 2005]
O(ri2rt4) [Hermelin+: 2009]
O(rlogr-T) [T: NEW]
r=m-+n r=m-+n

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Compressed string comparison
Three-way semi-local LCS on GC-strings

Three-way semi-local LCS (GC text, plain pattern): the algorithm

For every k, compute by recursion the three-way seaweed matrix for p vs
tk, using seaweed matrix [-multiplication: time O(mlog m - n)

Overall time O(mlog m - n)

Alexander Tiskin (Warwick)

Approximate matching in GC-strings

Compressed string comparison

Subsequence recognition on GC-strings

The global subsequence recognition problem
Does text t contain pattern p as a subsequence?

Global subsequence recognition: running time

t p

plain plain O(n) greedy
GC plain O(mn) greedy
GC GC NP-hard [Lifshits: 2005]

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Compressed string comparison

Subsequence recognition on GC-strings

The local subsequence recognition problem
Find all minimally matching substrings of t with respect to p

Substring of t is matching, if p is a subsequence of t

Matching substring of t is minimally matching, if none of its proper
substrings are matching

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Compressed string comparison

Subsequence recognition on GC-strings

Local subsequence recognition: running time (+ output)

t P

plain plain O(mn) [Mannila+: 1995]
O(jeet) [Das+: 1997]
O(c™ + n) [Boasson+: 2001]
O(m+ no) [Tronitek: 2001]

GC plain O(m?log mn) [Cégielski+: 2006]
O(m*'5h) [T: 2008]
O(mlog m - n) [T: NEW]

GC GC NP-hard [Lifshits: 2005]

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Compressed string comparison

Subsequence recognition on GC-strings

b(i : j) matching iff box [/ : j] not pierced left-to-right
<-maximal seaweeds: <-chain (i%,j%) < (ig,j%) L K (isf%,jsf%)

b(i : j) minimally matching iff (i,) is in the interleaved <-chain

(L] [2:1) < (3] [35]) < < ([s-1) [25-3 1)

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Compressed string comparison

Subsequence recognition on GC-strings

Local subsequence recognition (GC text, plain pattern): the algorithm

For every k, compute by recursion the three-way seaweed matrix for p vs
tk, using seaweed matrix [-multiplication: time O(mlog m - n)

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Compressed string comparison

Subsequence recognition on GC-strings

Local subsequence recognition (GC text, plain pattern): the algorithm

For every k, compute by recursion the three-way seaweed matrix for p vs
tk, using seaweed matrix [-multiplication: time O(mlog m - n)

Given an assignment t = t't”, count by recursion

@ minimally matching substrings in t/

@ minimally matching substrings in t”

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Compressed string comparison

Subsequence recognition on GC-strings

Local subsequence recognition (GC text, plain pattern): the algorithm

For every k, compute by recursion the three-way seaweed matrix for p vs
tk, using seaweed matrix [-multiplication: time O(mlog m - n)

Given an assignment t = t't”, count by recursion
@ minimally matching substrings in t/
@ minimally matching substrings in t”
Then, find <-chain of <-maximal seaweeds in time - O(m) = O(mn)

The interleaved <-chain defines minimally matching substrings in t
overlapping both t’ and t”

Overall time O(mlog m- @) + O(mnA) = O(mlog m - A)

Alexander Tiskin (Warwick) Approximate matching in GC-strings 47 / 52

Compressed string comparison

Subsequence recognition on GC-strings

The threshold approximate matching problem

Find all matching substrings of t with respect to p, according to a
threshold k

Substring of t is matching, if the edit distance for p vs t is at most k

Alexander Tiskin (Warwick)

Approximate matching in GC-strings

Compressed string comparison

Subsequence recognition on GC-strings

Threshold approximate matching: running time (+ output)

t P

plain plain O(mn) [Sellers: 1980]
O(mk) [Landau, Vishkin: 1989]
O(m+n+ "7"4) [Cole, Hariharan: 2002]

GC plain O(mnk?) [Karkkainen+: 2003]
O(mnk + nlog n) [LV: 1989] via [Bille+: 2010]
O(mn + nk* + filog n) [CH: 2002] via [Bille+: 2010]
O(mlogm - n) [T: NEW]

GC GC NP-hard [Lifshits: 2005]

(Also many specialised variants for LZ compression)

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Compressed string comparison

Subsequence recognition on GC-strings

Threshold approximate matching (GC text, plain pattern): the
algorithm

Algorithm structure similar to local subsequence recognition by seaweed
matrix [l-multiplication and seaweed <-chains

Extra ingredients:

@ the blow-up technique: reduction of edit distances to LCS scores

o the “implicit SMAWK" technique: row minima in an implicit Monge

matrix by an extension of the classical "SMAWK" algorithm; replaces
< -chain interleaving

Overall time O(mlog m - i) + O(mn) = O(mlog m - n)

Alexander Tiskin (Warwick)

Approximate matching in GC-strings

© Conclusions and future work

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Conclusions and future work

A powerful alternative to dynamic programming
Implicit unit-Monge matrices:

@ the seaweed monoid
e distance multiplication in time O(nlog n)
@ next: lower bound?

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Conclusions and future work

A powerful alternative to dynamic programming
Implicit unit-Monge matrices:

@ the seaweed monoid
e distance multiplication in time O(nlog n)
@ next: lower bound?

Semi-local LCS problem:

@ representation by implicit unit-Monge matrices
@ generalisation to rational alignment scores
@ next: real alignment scores?

Alexander Tiskin (Warwick) Approximate matching in GC-strings

Conclusions and future work

A powerful alternative to dynamic programming
Implicit unit-Monge matrices:
@ the seaweed monoid

e distance multiplication in time O(nlog n)
@ next: lower bound?

Semi-local LCS problem:

@ representation by implicit unit-Monge matrices
@ generalisation to rational alignment scores
@ next: real alignment scores?

Approximate matching in GC-text in time O(mlog m - n)
Other applications:

@ maximum clique in a circle graph in time O(nlog2 n)
o parallel LCS in time O("?), comm O(’;’f;z”) per processor

@ identification of evolutionary-conserved regions in DNA

Alexander Tiskin (Warwick) Approximate matching in GC-strings

	Introduction
	Overview
	Terminology and notation
	Implicit unit-Monge matrices

	Semi-local string comparison
	Semi-local LCS and edit distance
	Score matrices and seaweed matrices
	Weighted alignment

	Matrix distance multiplication
	Seaweed braids
	Implicit unit-Monge -multiplication

	Compressed string comparison
	Grammar compression
	Three-way semi-local LCS on GC-strings
	Subsequence recognition on GC-strings

	Conclusions and future work

