# Approximate matching in grammar-compressed strings 

Alexander Tiskin

Department of Computer Science<br>University of Warwick<br>http://www.dcs.warwick.ac.uk/~tiskin

(1) Introduction
(2) Semi-local string comparison
(3) Matrix distance multiplication

4 Compressed string comparison
(5) Conclusions and future work

## (1) Introduction

## (2) Semi-local string comparison

(3) Matrix distance multiplication

4 Compressed string comparison
(5) Conclusions and future work

## Introduction

String matching: finding an exact pattern in a string String comparison: finding similar patterns in two strings Applications: computational biology, image recognition, ...

## Introduction

String matching: finding an exact pattern in a string
String comparison: finding similar patterns in two strings
Applications: computational biology, image recognition, ...
Standard types of string comparison:

- global: whole string vs whole string
- local: substrings vs substrings

Main focus of this work:

- semi-local: whole string vs substrings; prefixes vs suffixes

Closely related to approximate string matching (no relation to approximation algorithms!)
Main tool: implicit unit-Monge matrices (a.k.a. seaweed matrices)

## Introduction

## Terminology and notation

Integers: ... $-2,-1,0,1,2, \ldots$
Odd half-integers: $\ldots-\frac{5}{2},-\frac{3}{2},-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots$
$(i, j) \ll\left(i^{\prime}, j^{\prime}\right)$ iff $i<i^{\prime}$ and $j<j^{\prime} \quad(i, j) \lessgtr\left(i^{\prime}, j^{\prime}\right)$ iff $i<i^{\prime}$ and $j>j^{\prime}$
We consider finite and infinite integer matrices over integer and odd half-integer indices. For simplicity, index range will usually be ignored.

A permutation matrix is a $0 / 1$ matrix with exactly one nonzero per row and per column
$\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

## Introduction

Terminology and notation
Given matrix $D$, its distribution matrix is $D^{\Sigma}(i, j)=\sum_{\hat{\imath}>i, \hat{\jmath}<j} D(\hat{\imath}, \hat{\jmath})$ In other words, $D^{\Sigma}(i, j)=\sum D(\hat{\imath}, \hat{\jmath})$, where $(\hat{\imath}, \hat{\jmath})$ is $\lessgtr$-dominated by $(i, j)$

## Introduction

## Terminology and notation

Given matrix $D$, its distribution matrix is $D^{\Sigma}(i, j)=\sum_{\hat{\imath}>i, \hat{\jmath}<j} D(\hat{\imath}, \hat{\jmath})$ In other words, $D^{\Sigma}(i, j)=\sum D(\hat{\imath}, \hat{\jmath})$, where $(\hat{\imath}, \hat{\jmath})$ is $\lessgtr$-dominated by $(i, j)$
Given matrix $E$, its density matrix is $E^{\square}(\hat{\imath}, \hat{\jmath})=E\left(\hat{\imath}-\frac{1}{2}, \hat{\jmath}+\frac{1}{2}\right)-E\left(\hat{\imath}-\frac{1}{2}, \hat{\jmath}-\frac{1}{2}\right)-E\left(\hat{\imath}+\frac{1}{2}, \hat{\jmath}+\frac{1}{2}\right)+E\left(\hat{\imath}+\frac{1}{2}, \hat{\jmath}-\frac{1}{2}\right)$ where $D^{\Sigma}, E$ over integers; $D, E^{\square}$ over odd half-integers

## Introduction

## Terminology and notation

Given matrix $D$, its distribution matrix is $D^{\Sigma}(i, j)=\sum_{\hat{\imath}>i, \hat{\jmath}<j} D(\hat{\imath}, \hat{\jmath})$ In other words, $D^{\Sigma}(i, j)=\sum D(\hat{\imath}, \hat{\jmath})$, where $(\hat{\imath}, \hat{\jmath})$ is $\lessgtr$-dominated by $(i, j)$
Given matrix $E$, its density matrix is $E^{\square}(\hat{\imath}, \hat{\jmath})=E\left(\hat{\imath}-\frac{1}{2}, \hat{\jmath}+\frac{1}{2}\right)-E\left(\hat{\imath}-\frac{1}{2}, \hat{\jmath}-\frac{1}{2}\right)-E\left(\hat{\imath}+\frac{1}{2}, \hat{\jmath}+\frac{1}{2}\right)+E\left(\hat{\imath}+\frac{1}{2}, \hat{\jmath}-\frac{1}{2}\right)$ where $D^{\Sigma}, E$ over integers; $D, E^{\square}$ over odd half-integers

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]^{\Sigma}=\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]^{\square}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

## Introduction

## Terminology and notation

Given matrix $D$, its distribution matrix is $D^{\Sigma}(i, j)=\sum_{\hat{\imath}>i, \hat{\jmath}<j} D(\hat{\imath}, \hat{\jmath})$ In other words, $D^{\Sigma}(i, j)=\sum D(\hat{\imath}, \hat{\jmath})$, where $(\hat{\imath}, \hat{\jmath})$ is $\lessgtr$-dominated by $(i, j)$
Given matrix $E$, its density matrix is $E^{\square}(\hat{\imath}, \hat{\jmath})=E\left(\hat{\imath}-\frac{1}{2}, \hat{\jmath}+\frac{1}{2}\right)-E\left(\hat{\imath}-\frac{1}{2}, \hat{\jmath}-\frac{1}{2}\right)-E\left(\hat{\imath}+\frac{1}{2}, \hat{\jmath}+\frac{1}{2}\right)+E\left(\hat{\imath}+\frac{1}{2}, \hat{\jmath}-\frac{1}{2}\right)$ where $D^{\Sigma}, E$ over integers; $D, E^{\square}$ over odd half-integers

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]^{\Sigma}=\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]^{\square}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$\left(D^{\Sigma}\right)^{\square}=D$ for all $D$
Matrix $E$ is simple, if $\left(E^{\square}\right)^{\Sigma}=E$

## Introduction

## Terminology and notation

Matrix $E$ is Monge, if $E^{\square}$ is nonnegative
Intuition: border-to-border distances in a (weighted) planar graph Matrix $E$ is unit-Monge, if $E^{\square}$ is a permutation matrix

Intuition: border-to-border distances in a grid-like graph

## Introduction

## Terminology and notation

Matrix $E$ is Monge, if $E^{\square}$ is nonnegative Intuition: border-to-border distances in a (weighted) planar graph Matrix $E$ is unit-Monge, if $E^{\square}$ is a permutation matrix Intuition: border-to-border distances in a grid-like graph Simple unit-Monge matrix: $P^{\Sigma}$, where $P$ is a permutation matrix Seaweed matrix: $P^{\Sigma}$, represented implicitly by $P$
$\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]^{\Sigma}=\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$

## Introduction

## Implicit unit-Monge matrices

Efficient $P^{\Sigma}$ queries: range tree on nonzeros of $P$
[Bentley: 1980]

- binary search tree by $i$-coordinate
- under every node, binary search tree by $j$-coordinate



## Introduction

Implicit unit-Monge matrices
Efficient $P^{\Sigma}$ queries: (contd.)
Every node of the range tree represents a canonical range (rectangular region), and stores its nonzero count

Overall, $\leq n \log n$ canonical ranges are non-empty
A $P^{\Sigma}$ query means dominance counting: how many nonzeros are dominated by query point? Answered by decomposing query range into $\leq \log ^{2} n$ disjoint canonical ranges.
Total size $O(n \log n)$, query time $O\left(\log ^{2} n\right)$

## Introduction

## Implicit unit-Monge matrices

Efficient $P^{\Sigma}$ queries: (contd.)
Every node of the range tree represents a canonical range (rectangular region), and stores its nonzero count

Overall, $\leq n \log n$ canonical ranges are non-empty
A $P^{\Sigma}$ query means dominance counting: how many nonzeros are dominated by query point? Answered by decomposing query range into $\leq \log ^{2} n$ disjoint canonical ranges.
Total size $O(n \log n)$, query time $O\left(\log ^{2} n\right)$
There are asymptotically more efficient (but less practical) data structures
Total size $O(n)$, query time $O\left(\frac{\log n}{\log \log n}\right)$
[JáJá+: 2004]
[Chan, Pǎtrașcu: 2010]

## (1) Introduction

(2) Semi-local string comparison
(3) Matrix distance multiplication
(4) Compressed string comparison
(5) Conclusions and future work

## Semi-local string comparison

Semi-local LCS and edit distance

Consider strings (= sequences) over an alphabet of size $\sigma$
Distinguish contiguous substrings and not necessarily contiguous subsequences

Special cases of substring: prefix, suffix
Notation: strings $a, b$ of length $m, n$ respectively
Assume where necessary: $m \leq n ; m, n$ reasonably close

## Semi-local string comparison

Semi-local LCS and edit distance

Consider strings (= sequences) over an alphabet of size $\sigma$
Distinguish contiguous substrings and not necessarily contiguous subsequences

Special cases of substring: prefix, suffix
Notation: strings $a, b$ of length $m, n$ respectively
Assume where necessary: $m \leq n ; m, n$ reasonably close
The longest common subsequence (LCS) score:

- length of longest string that is a subsequence of both $a$ and $b$
- equivalently, alignment score, where score(match) $=1$ and score $($ mismatch $)=0$

In biological terms, "loss-free alignment" (unlike "lossy" BLAST)

## Semi-local string comparison

Semi-local LCS and edit distance
The LCS problem
Give the LCS score for $a$ vs $b$

## Semi-local string comparison

Semi-local LCS and edit distance

## The LCS problem

Give the LCS score for $a$ vs $b$

$$
\begin{aligned}
& \text { LCS: running time } \\
& O(m n) \\
& O\left(\frac{m n}{\log ^{2} n}\right) \quad \sigma=O(1) \\
& O\left(\frac{m n(\log \log n)^{2}}{\log ^{2} n}\right)
\end{aligned}
$$

[Wagner, Fischer: 1974]
[Masek, Paterson: 1980]
[Crochemore+: 2003]
[Paterson, Dančík: 1994]
[Bille, Farach-Colton: 2008]

Running time varies depending on the RAM model We assume word-RAM with word size $\log n$

## Semi-local string comparison

Semi-local LCS and edit distance

LCS on the alignment graph (directed, acyclic)

blue $=0$
red $=1$

LCS( "baabcbca", "baabcabcabaca") = "baabcbca"
LCS = highest-score corner-to-corner path

## Semi-local string comparison

Semi-local LCS and edit distance
LCS: dynamic programming [WF: 1974]
Sweep alignment graph by cells
Cell update: time $O(1)$
Overall time $O(m n)$

## Semi-local string comparison

Semi-local LCS and edit distance

## LCS: micro-block dynamic programming

 [MP: 1980; BF: 2008]Sweep alignment graph by micro-blocks
Micro-block size:

- $t=O(\log n)$ when $\sigma=O(1)$
- $t=O\left(\frac{\log n}{\log \log n}\right)$ otherwise

Micro-block interface:

- $O(t)$ characters, each $O(\log \sigma)$ bits, can be reduced to $O(\log t)$ bits
- $O(t)$ small integers, each $O(1)$ bits

Micro-block update: time $O(1)$, via table of all possible interfaces Overall time $O\left(\frac{m n}{\log ^{2} n}\right)$ when $\sigma=O(1), O\left(\frac{m n(\log \log n)^{2}}{\log ^{2} n}\right)$ otherwise

## Semi-local string comparison

Semi-local LCS and edit distance

## The semi-local LCS problem

Give the (implicit) matrix of $O\left(m^{2}+n^{2}\right)$ LCS scores:

- string-substring LCS: string $a$ vs every substring of $b$
- prefix-suffix LCS: every prefix of $a$ vs every suffix of $b$
- symmetrically, substring-string and suffix-prefix LCS


## Semi-local string comparison

Semi-local LCS and edit distance

## The semi-local LCS problem

Give the (implicit) matrix of $O\left(m^{2}+n^{2}\right)$ LCS scores:

- string-substring LCS: string $a$ vs every substring of $b$
- prefix-suffix LCS: every prefix of $a$ vs every suffix of $b$
- symmetrically, substring-string and suffix-prefix LCS

The three-way semi-local LCS problem
Give the (implicit) matrix of $O\left(n^{2}\right)$ LCS scores:

- string-substring, prefix-suffix, suffix-prefix LCS
- no substring-string LCS

Suitable for $m \gg n$

## Semi-local string comparison

Semi-local LCS and edit distance

## The semi-local LCS problem

Give the (implicit) matrix of $O\left(m^{2}+n^{2}\right)$ LCS scores:

- string-substring LCS: string $a$ vs every substring of $b$
- prefix-suffix LCS: every prefix of $a$ vs every suffix of $b$
- symmetrically, substring-string and suffix-prefix LCS

The three-way semi-local LCS problem
Give the (implicit) matrix of $O\left(n^{2}\right)$ LCS scores:

- string-substring, prefix-suffix, suffix-prefix LCS
- no substring-string LCS

Suitable for $m \gg n$
Cf.: dynamic programming gives prefix-prefix LCS

## Semi-local string comparison

Semi-local LCS and edit distance

Semi-local LCS on the alignment graph

blue $=0$
red $=1$
score( "baabcbca", "cabcaba") $=5$ ("abcba")
Semi-local LCS = all highest-score border-to-border paths
(string-substring $=$ top-to-bottom, etc.)

## Semi-local string comparison

Score matrices and seaweed matrices

The score matrix $H$


## Semi-local string comparison

Score matrices and seaweed matrices

Semi-local LCS: output representation and running time
size query time
$O\left(n^{2}\right) \quad O(1) \quad$ trivial
$O\left(m^{1 / 2} n\right) \quad O(\log n) \quad$ string-substring $\quad$ [Alves $\left.+: 2003\right]$
$O(n) \quad O(n) \quad$ string-substring
...or any 2D orthogonal range counting data structure

| running time |  |  |
| :--- | ---: | ---: |
| $O\left(m n^{2}\right)$ |  | naive |
| $O(m n)$ | string-substring | [Schmidt: 1998; Alves+: 2005] |
| $O(m n)$ |  | $[\mathrm{T}: 2006]$ |
| $O\left(\frac{m n}{\log ^{9.5} n}\right)$ |  | $[\mathrm{T}: 2006]$ |
| $O\left(\frac{m n(\log \log n)^{2}}{\log ^{2} n}\right)$ |  | [T:2007] |

## Semi-local string comparison

Score matrices and seaweed matrices

The score matrix $H$ and the seaweed matrix $P$
$H(i, j)$ : the number of matched characters for a vs substring $b\langle i: j\rangle$
$j-i-H(i, j)$ : the number of unmatched characters
Properties of matrix $j-i-H(i, j)$ :

- simple unit-Monge
- therefore, $=P^{\Sigma}$, where $P=-H^{\square}$ is a permutation matrix
$P$ is the seaweed matrix, giving an implicit representation of $H$
Range tree for $P$ : memory $O(n \log n)$, query time $O\left(\log ^{2} n\right)$


## Semi-local string comparison

Score matrices and seaweed matrices

The score matrix $H$ and the seaweed matrix $P$

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | 8 | 8 | 8 | 8 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -1 | 0 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 7 | 7 | 7 | 7 |
| -2 | -1 | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 6 | 6 | 6 | 7 |
| -3 | -2 | -1 | 0 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 6 | 7 |
| -4 | -3 | -2 | -1 | 0 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 6 |
| -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 5 | 6 |
| -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 3 | 4 | 4 | 5 |
| -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 2 | 3 | 3 | 4 |
| -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 3 | 4 |
| -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
| $-10-9$ | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 |  |
| $-11-10$ | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 |  |
| $-12-11-10-9$ | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 |  |  |  |
| $-13-12$ | -11 | $-10-9$ | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 |  |  |

$a=$ "baabcbca"
$b=$ "baabcabcabaca"
$b^{\prime}=b\langle 4: 11\rangle=$ "cabcaba"
$H(4,11)=\operatorname{LCS}\left(a, b^{\prime}\right)=5$
$H(i, j)=j-i$ if $i>j$

## Semi-local string comparison

Score matrices and seaweed matrices

The score matrix $H$ and the seaweed matrix $P$

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | 8 | 8 | 8 | 8 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -1 | 0 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 7 | 7 | 7 | 7 |
| -2 | -1 | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 6 | 6 | 6 | 7 |
| -3 | -2 | -1 | 0 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 6 | 7 |
| -4 | -3 | -2 | -1 | 0 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 6 |
| -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 5 | 6 |
| -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 3 | 4 | 4 | 5 |
| -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 2 | 3 | 3 | 4 |
| -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 3 | 4 |
| -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
| $-10-9$ | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 |  |
| $-11-10$ | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 |  |
| $-12-11$ | -10 | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 |  |
| $-13-12$ | -11 | -10 | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 |  |

$a=$ "baabcbca"
$b=$ "baabcabcabaca"
$b^{\prime}=b\langle 4: 11\rangle=$ "cabcaba"
$H(4,11)=\operatorname{LCS}\left(a, b^{\prime}\right)=5$
$H(i, j)=j-i$ if $i>j$
blue: difference in $H$ is 0 red: difference in $H$ is 1

## Semi-local string comparison

Score matrices and seaweed matrices

The score matrix $H$ and the seaweed matrix $P$

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | 8 | 8 | 8 | 8 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -1 | 0 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 7 | 7 | 7 | 7 |
| -2 | -1 | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 6 | 6 | 6 | 7 |
| -3 | -2 | -1 | 0 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 6 | 7 |
| -4 | -3 | -2 | -1 | 0 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 6 |
| -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 5 | 6 |
| -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 3 | 4 | 4 | 5 |
| -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 2 | 3 | 3 | 4 |
| -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 3 | 4 |
| -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
| $-10-9$ | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 |  |
| $-11-10$ | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 |  |
| $-12-11$ | $-10-9$ | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 |  |  |
| $-13-12$ | -11 | $-10-9$ | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 |  |  |

$a=$ "baabcbca"
$b=$ "baabcabcabaca"
$b^{\prime}=b\langle 4: 11\rangle=$ "cabcaba"
$H(4,11)=\operatorname{LCS}\left(a, b^{\prime}\right)=5$
$H(i, j)=j-i$ if $i>j$
blue: difference in $H$ is 0 red: difference in $H$ is 1
green: $P(i, j)=1$
$H(i, j)=j-i-P^{\Sigma}(i, j)$

## Semi-local string comparison

Score matrices and seaweed matrices

The score matrix $H$ and the seaweed matrix $P$

$a=$ "baabcbca"
$b=$ "baabcabcabaca"
$b^{\prime}=b\langle 4: 11\rangle=$ "cabcaba"
$H(4,11)=\operatorname{LCS}\left(a, b^{\prime}\right)=$
$11-4-P^{\Sigma}(i, j)=$
$11-4-2=5$

## Semi-local string comparison

Score matrices and seaweed matrices

The seaweeds in the alignment graph


$$
\begin{aligned}
& a=\text { "baabcbca" } \\
& b=\text { "baabcabcabaca" } \\
& b^{\prime}=b\langle 4: 11\rangle=\text { "cabcaba" } \\
& H(4,11)=L C S\left(a, b^{\prime}\right)= \\
& 11-4-P^{\Sigma}(i, j)= \\
& 11-4-2=5
\end{aligned}
$$

$P(i, j)=1$ corresponds to seaweed $($ top,$i) \rightsquigarrow($ bottom, $j)$

## Semi-local string comparison

Score matrices and seaweed matrices

The seaweeds in the alignment graph


$$
\begin{aligned}
& a=\text { "baabcbca" } \\
& b=\text { "baabcabcabaca" } \\
& b^{\prime}=b\langle 4: 11\rangle=\text { "cabcaba" } \\
& H(4,11)=L C S\left(a, b^{\prime}\right)= \\
& 11-4-P^{\Sigma}(i, j)= \\
& 11-4-2=5
\end{aligned}
$$

$P(i, j)=1$ corresponds to seaweed $($ top,$i) \rightsquigarrow($ bottom, $j)$
Also define top $\rightsquigarrow$ right, left $\rightsquigarrow$ right, left $\rightsquigarrow$ bottom seaweeds
Gives bijection between top-left and bottom-right borders

## (1) Introduction

## (2) Semi-local string comparison

(3) Matrix distance multiplication

## Matrix distance multiplication

## Seaweed braids

Distance algebra (a.k.a (min, + ) or tropical algebra): $\oplus$ is min, $\odot$ is + Matrix $\odot$-multiplication

$$
A \odot B=C \quad C(i, k)=\bigoplus_{j}(A(i, j) \odot B(j, k))=\min _{j}(A(i, j)+B(j, k))
$$

## Matrix distance multiplication

## Seaweed braids

Distance algebra (a.k.a (min,+ ) or tropical algebra): $\oplus$ is $\min , \odot$ is +
Matrix $\odot$-multiplication
$A \odot B=C \quad C(i, k)=\bigoplus_{j}(A(i, j) \odot B(j, k))=\min _{j}(A(i, j)+B(j, k))$
Matrix classes closed under $\odot$-multiplication (for given $n$ ):

- general numerical (integer, real) matrices
- Monge matrices
- simple unit-Monge matrices
$P_{A}^{\sum} \odot P_{B}^{\sum}=P_{C}^{\sum}$ written as $P_{A} \odot P_{B}=P_{C}$


## Matrix distance multiplication

Seaweed braids

The seaweed monoid $\mathcal{T}_{n}$ :

- simple unit-Monge matrices under $\odot$-multiplication
- permutation matrices under $\square$-multiplication

Identity: $1 \backsim x=x$

$$
\text { Zero: } 0 \backsim x=0
$$

$1=\left[\begin{array}{cccc}\bullet & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \bullet\end{array}\right]$

$$
0=\left[\begin{array}{cccc}
\cdot & \cdot & \cdot & \bullet \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]
$$

## Matrix distance multiplication

## Seaweed braids

$P_{A} \boxtimes P_{B}=P_{C}$ can be seen as $\boxtimes$-multiplication of seaweed braids


## Matrix distance multiplication

## Seaweed braids

$P_{A} \boxtimes P_{B}=P_{C}$ can be seen as $\boxtimes$-multiplication of seaweed braids


## Matrix distance multiplication

Seaweed braids
$P_{A} \boxtimes P_{B}=P_{C}$ can be seen as $\boxtimes$-multiplication of seaweed braids


## Matrix distance multiplication

## Seaweed braids

$P_{A} \boxtimes P_{B}=P_{C}$ can be seen as $\boxtimes$-multiplication of seaweed braids


## Matrix distance multiplication

## Seaweed braids

Seaweed braids: similar to standard braids, generated by crossings Unlike in standard braids, all seaweed crossings are

- transversal, i.e. on one level (not underpass/overpass)
- idempotent, i.e. two seaweeds can cross at most once

Seaweed braid $\boxtimes$-multiplication: associative, no inverse (a crossing cannot be undone)
Identity: $1 \boxtimes x=x$
Zero: $0 \square x=0$


0


## Matrix distance multiplication

## Seaweed braids

The seaweed monoid $\mathcal{T}_{n}$ :

- $n$ ! elements (permutations of size $n$ )
- $n-1$ generators $g_{1}, g_{2}, \ldots, g_{n-1}$ (elementary crossings)
idempotence:
$g_{i}^{2}=g_{i}$ for all $i$
far commutativity:
$g_{i} g_{j}=g_{j} g_{i} \quad j-i>1$
braid relations:
$g_{i} g_{j} g_{i}=g_{j} g_{i} g_{j} \quad j-i=1$



## Matrix distance multiplication

Seaweed braids

The seaweed monoid $\mathcal{T}_{n}$
Also known as the 0 -Hecke monoid of the symmetric group $H_{0}\left(\mathcal{S}_{n}\right)$ Generalisations:

- general 0-Hecke monoids
[Fomin, Greene: 1998; Buch+: 2008]
- Coxeter monoids
[Tsaranov: 1990; Richardson, Springer: 1990]


## Matrix distance multiplication

Seaweed braids

Computation in the seaweed monoid: a confluent rewriting system can be obtained by software (SEmigroupe, GAP)

## Matrix distance multiplication

## Seaweed braids

Computation in the seaweed monoid: a confluent rewriting system can be obtained by software (SEmigroupe, GAP)
$\mathcal{T}_{3}: 1, a=g_{1}, b=g_{2} ; a b, b a, a b a=0$
$a a \rightarrow a$
$b b \rightarrow b$
$b a b \rightarrow 0$
$a b a \rightarrow 0$

## Matrix distance multiplication

## Seaweed braids

Computation in the seaweed monoid: a confluent rewriting system can be obtained by software (SEmigroupe, GAP)
$\mathcal{T}_{3}: 1, a=g_{1}, b=g_{2} ; a b, b a, a b a=0$
$a a \rightarrow a \quad b b \rightarrow b \quad b a b \rightarrow 0 \quad a b a \rightarrow 0$
$\mathcal{T}_{4}: 1, a=g_{1}, b=g_{2}, c=g_{3} ; a b, a c, b a, b c, c b, a b a, a b c, a c b, b a c$, $b c b, c b a, a b a c, a b c b, a c b a, b a c b, b c b a, a b a c b, a b c b a, b a c b a, a b a c b a=0$

| $a a \rightarrow a$ | $c a \rightarrow a c$ | $b a b \rightarrow a b a$ | $c b a c \rightarrow b c b a$ |
| :--- | :--- | :--- | :--- |
| $b b \rightarrow b$ | $c c \rightarrow c$ | $c b c \rightarrow b c b$ | $a b a c b a \rightarrow 0$ |

## Matrix distance multiplication

## Seaweed braids

Computation in the seaweed monoid: a confluent rewriting system can be obtained by software (SEmigroupe, GAP)
$\mathcal{T}_{3}: 1, a=g_{1}, b=g_{2} ; a b, b a, a b a=0$
$a a \rightarrow a \quad b b \rightarrow b \quad b a b \rightarrow 0 \quad a b a \rightarrow 0$
$\mathcal{T}_{4}: 1, a=g_{1}, b=g_{2}, c=g_{3} ; a b, a c, b a, b c, c b, a b a, a b c, a c b, b a c$, $b c b, c b a, a b a c, a b c b, a c b a, b a c b, b c b a, a b a c b, a b c b a, b a c b a, a b a c b a=0$

| $a a \rightarrow a$ | $c a \rightarrow a c$ | $b a b \rightarrow a b a$ | $c b a c \rightarrow b c b a$ |
| :--- | :--- | :--- | :--- |
| $b b \rightarrow b$ | $c c \rightarrow c$ | $c b c \rightarrow b c b$ | $a b a c b a \rightarrow 0$ |

Easy to use, but not an efficient algorithm

## Matrix distance multiplication

Implicit unit-Monge $\odot$-multiplication
The implicit unit-Monge matrix $\odot$-multiplication problem
Given permutation matrices $P_{A}, P_{B}$, compute $P_{C}$, such that $P_{A}^{\sum} \odot P_{B}^{\sum}=P_{C}^{\sum}$ (equivalently, $P_{A} \backsim P_{B}=P_{C}$ )

## Matrix distance multiplication

Implicit unit-Monge $\odot$-multiplication
The implicit unit-Monge matrix $\odot$-multiplication problem
Given permutation matrices $P_{A}, P_{B}$, compute $P_{C}$, such that $P_{A}^{\sum} \odot P_{B}^{\sum}=P_{C}^{\sum}$ (equivalently, $P_{A} \backsim P_{B}=P_{C}$ )

Matrix $\odot$-multiplication: running time

| type | time |  |
| :--- | :--- | ---: |
| general | $O\left(n^{3}\right)$ | standard |
|  | $O\left(\frac{n^{3}(\log \log n)^{3}}{\log ^{2} n}\right)$ | [Chan: 2007] |
| Monge | $O\left(n^{2}\right)$ | via [Aggarwal+: 1987] |
| implicit unit-Monge | $O\left(n^{1.5}\right)$ | $[$ T: 2006] |
|  | $O(n \log n)$ | $[$ T: 2010] |

## Matrix distance multiplication

Implicit unit-Monge $\odot$-multiplication


$P_{A}$


## Matrix distance multiplication

Implicit unit-Monge $\odot$-multiplication



## Matrix distance multiplication

Implicit unit-Monge $\odot$-multiplication



$P_{A, l o}, P_{A, h i}$

## Matrix distance multiplication

Implicit unit-Monge $\odot$-multiplication

$$
P_{B, l o}, P_{B, h i}
$$




$P_{A, l o}, P_{A, h i}$

## Matrix distance multiplication

Implicit unit-Monge $\odot$-multiplication



## Matrix distance multiplication

Implicit unit-Monge $\odot$-multiplication


## Matrix distance multiplication

Implicit unit-Monge $\odot$-multiplication


## Matrix distance multiplication

Implicit unit-Monge $\odot$-multiplication


## Matrix distance multiplication

Implicit unit-Monge $\odot$-multiplication

Implicit unit-Monge matrix $\odot$-multiplication: the algorithm
$P_{C}^{\Sigma}(i, k)=\min _{j}\left(P_{A}^{\Sigma}(i, j)+P_{B}^{\Sigma}(j, k)\right)$
Divide-and-conquer on the range of $j$
Divide $P_{A}$ horizontally, $P_{B}$ vertically; two subproblems of effective size $n / 2$ : $P_{A, l o}^{\Sigma} \odot P_{B, l o}^{\Sigma}=P_{C, l o}^{\Sigma} \quad P_{A, h i}^{\Sigma} \odot P_{B, h i}^{\Sigma}=P_{C, h i}^{\Sigma}$
Conquer: most (but not all!) nonzeros of $P_{C, l o}, P_{C, h i}$ appear in $P_{C}$ Missing nonzeros can be obtained in time $O(n)$ using the Monge property Overall time $O(n \log n)$

## (1) Introduction

## (2) Semi-local string comparison

(3) Matrix distance multiplication
(4) Compressed string comparison

## Compressed string comparison

## Grammar compression

Notation: text $t$ of length $n$; pattern $p$ of length $m$
A GC-string (grammar-compressed string) $t$ is a straight-line program (context-free grammar) generating $t=t_{\bar{n}}$ by $\bar{n}$ assignments of the form

- $t_{k}=\alpha$, where $\alpha$ is an alphabet character
- $t_{k}=t_{i} t_{j}$, where $i, j<k$

In general, $n=O\left(2^{\bar{n}}\right)$
Example: Fibonacci string "abaababaabaab"
$t_{1}=' \mathrm{~b}$ ' $t_{2}=$ 'a'
$t_{3}=t_{2} t_{1} \quad t_{4}=t_{3} t_{2} \quad t_{5}=t_{4} t_{3} \quad t_{6}=t_{5} t_{4} \quad t_{7}=t_{6} t_{5}$

## Compressed string comparison

## Grammar compression

Grammar-compression covers various compression types, e.g. LZ78, LZW (not LZ77 directly)
Simplifying assumption: arithmetic up to $n$ runs in $O(1)$
This assumption can be removed by careful index remapping

## Compressed string comparison

## Three-way semi-local LCS on GC-strings

## LCS: running time

| $t$ | $p$ |  |
| :--- | :--- | :--- |
| plain | plain | $O(m n)$ |
|  |  | $O\left(\frac{m n}{\log ^{2} m}\right)$ |

[Wagner, Fischer: 1974]
[Masek, Paterson: 1980] [Crochemore+: 2003]
GC plain $O\left(m^{3} \bar{n}+\ldots\right)$ general CFG $O\left(m^{1.5} \bar{n}\right) \quad$ 3-way semi [Myers: 1995] [T: 2008] $O(m \log m \cdot \bar{n}) \quad$ 3-way semi
GC GC NP-hard

$$
\begin{aligned}
& O\left(r^{1.2} \bar{r}^{1.4}\right) \\
& O(r \log r \cdot \bar{r})
\end{aligned}
$$

[Lifshits: 2005]
[Hermelin+: 2009]
[T: NEW]

$$
r=m+n \quad \bar{r}=\bar{m}+\bar{n}
$$

## Compressed string comparison

Three-way semi-local LCS on GC-strings

## Three-way semi-local LCS (GC text, plain pattern): the algorithm

For every $k$, compute by recursion the three-way seaweed matrix for $p$ vs $t_{k}$, using seaweed matrix $\square$-multiplication: time $O(m \log m \cdot \bar{n})$
Overall time $O(m \log m \cdot \bar{n})$

## Compressed string comparison

## Subsequence recognition on GC-strings

The global subsequence recognition problem
Does text $t$ contain pattern $p$ as a subsequence?
Global subsequence recognition: running time

| $t$ | $p$ |  | greedy |
| :--- | :--- | :--- | ---: |
| plain | plain | $O(n)$ | greedy |
| GC | plain | $O(m \bar{n})$ | [Lifshits: 2005$]$ |
| GC | GC | NP-hard |  |

## Compressed string comparison

Subsequence recognition on GC-strings
The local subsequence recognition problem
Find all minimally matching substrings of $t$ with respect to $p$

Substring of $t$ is matching, if $p$ is a subsequence of $t$
Matching substring of $t$ is minimally matching, if none of its proper substrings are matching

## Compressed string comparison

## Subsequence recognition on GC-strings

Local subsequence recognition: running time ( + output)

| $t$ | $p$ |  |  |
| :--- | :--- | :--- | ---: |
| plain | plain | $O(m n)$ | [Mannila+: 1995] |
|  |  | $O\left(\frac{m n}{\log m}\right)$ | [Das+: 1997] |
|  |  | $O\left(c^{m}+n\right)$ | [Boasson+: 2001] |
|  |  | $O(m+n \sigma)$ | [Troniček: 2001] |
| GC | plain | $O\left(m^{2} \log m \bar{n}\right)$ | [Cégielski+: 2006] |
|  |  | $O\left(m^{1.5} \bar{n}\right)$ | [T: 2008] |
|  |  | $O(m \log m \cdot \bar{n})$ | [T: NEW] |
| GC | GC | NP-hard | [Lifshits: 2005] |

## Compressed string comparison

Subsequence recognition on GC-strings

$b\langle i: j\rangle$ matching iff box $[i: j]$ not pierced left-to-right $\lessgtr$-maximal seaweeds: <-chain $\left(\hat{\imath}_{\frac{1}{2}}, \hat{\jmath}_{\frac{1}{2}}\right) \ll\left(\hat{\imath}_{\frac{3}{2}}, \hat{\jmath}_{\frac{3}{2}}\right) \ll \cdots \ll\left(\hat{\imath}_{s-\frac{1}{2}}, \hat{\jmath}_{s-\frac{1}{2}}\right)$ $b\langle i: j\rangle$ minimally matching iff $(i, j)$ is in the interleaved $\ll$-chain $\left(\left\lfloor\hat{\imath}_{\frac{3}{2}}\right\rfloor,\left\lceil\hat{\jmath}_{\frac{1}{2}}\right\rceil\right) \ll\left(\left\lfloor\hat{\imath}_{\frac{5}{2}}\right\rfloor,\left\lceil\hat{\jmath}_{\frac{3}{2}}\right\rceil\right) \ll \cdots \ll\left(\left\lfloor\hat{\imath}_{s-\frac{1}{2}}\right\rfloor,\left\lceil\hat{\jmath}_{s-\frac{3}{2}}\right\rceil\right)$

## Compressed string comparison

Subsequence recognition on GC-strings
Local subsequence recognition (GC text, plain pattern): the algorithm
For every $k$, compute by recursion the three-way seaweed matrix for $p$ vs $t_{k}$, using seaweed matrix $\square$-multiplication: time $O(m \log m \cdot \bar{n})$

## Compressed string comparison

Subsequence recognition on GC-strings
Local subsequence recognition (GC text, plain pattern): the algorithm
For every $k$, compute by recursion the three-way seaweed matrix for $p$ vs $t_{k}$, using seaweed matrix $\square$-multiplication: time $O(m \log m \cdot \bar{n})$
Given an assignment $t=t^{\prime} t^{\prime \prime}$, count by recursion

- minimally matching substrings in $t^{\prime}$
- minimally matching substrings in $t^{\prime \prime}$


## Compressed string comparison

Local subsequence recognition (GC text, plain pattern): the algorithm
For every $k$, compute by recursion the three-way seaweed matrix for $p$ vs $t_{k}$, using seaweed matrix $\square$-multiplication: time $O(m \log m \cdot \bar{n})$
Given an assignment $t=t^{\prime} t^{\prime \prime}$, count by recursion

- minimally matching substrings in $t^{\prime}$
- minimally matching substrings in $t^{\prime \prime}$

Then, find <<-chain of $\lessgtr$-maximal seaweeds in time $\bar{n} \cdot O(m)=O(m \bar{n})$
The interleaved $\ll$-chain defines minimally matching substrings in $t$ overlapping both $t^{\prime}$ and $t^{\prime \prime}$
Overall time $O(m \log m \cdot \bar{n})+O(m \bar{n})=O(m \log m \cdot \bar{n})$

## Compressed string comparison

Subsequence recognition on GC-strings
The threshold approximate matching problem
Find all matching substrings of $t$ with respect to $p$, according to a threshold $k$

Substring of $t$ is matching, if the edit distance for $p$ vs $t$ is at most $k$

## Compressed string comparison

## Subsequence recognition on GC-strings

Threshold approximate matching: running time ( + output)

| $t$ | $p$ |  |  |
| :--- | :--- | :--- | ---: |
| plain | plain | $O(m n)$ | [Sellers: 1980] |
|  |  | $O(m k)$ | [Landau, Vishkin: 1989] |
|  |  | $O\left(m+n+\frac{n k^{4}}{m}\right)$ | [Cole, Hariharan: 2002] |
| GC | plain | $O\left(m \bar{n} k^{2}\right)$ | [Kärkkäinen+: 2003] |
|  |  | $O(m \bar{n} k+\bar{n} \log n)$ | [LV: 1989] via [Bille+: 2010] |
|  |  | $O\left(m \bar{n}+\bar{n} k^{4}+\bar{n} \log n\right)$ | [CH: 2002] via [Bille+: 2010] |
|  |  | $O(m \log m \cdot \bar{n})$ | [T: NEW] |
| GC | GC | NP-hard | [Lifshits: 2005] |

(Also many specialised variants for LZ compression)

## Compressed string comparison

Subsequence recognition on GC-strings

Threshold approximate matching (GC text, plain pattern): the algorithm
Algorithm structure similar to local subsequence recognition by seaweed matrix $\boxtimes$-multiplication and seaweed <<-chains

Extra ingredients:

- the blow-up technique: reduction of edit distances to LCS scores
- the "implicit SMAWK" technique: row minima in an implicit Monge matrix by an extension of the classical "SMAWK" algorithm; replaces <-chain interleaving

Overall time $O(m \log m \cdot \bar{n})+O(m \bar{n})=O(m \log m \cdot \bar{n})$

## (1) Introduction

## (2) Semi-local string comparison

(3) Matrix distance multiplication

4 Compressed string comparison
(5) Conclusions and future work

## Conclusions and future work

A powerful alternative to dynamic programming Implicit unit-Monge matrices:

- the seaweed monoid
- distance multiplication in time $O(n \log n)$
- next: lower bound?


## Conclusions and future work

A powerful alternative to dynamic programming Implicit unit-Monge matrices:

- the seaweed monoid
- distance multiplication in time $O(n \log n)$
- next: lower bound?

Semi-local LCS problem:

- representation by implicit unit-Monge matrices
- generalisation to rational alignment scores
- next: real alignment scores?


## Conclusions and future work

A powerful alternative to dynamic programming Implicit unit-Monge matrices:

- the seaweed monoid
- distance multiplication in time $O(n \log n)$
- next: lower bound?

Semi-local LCS problem:

- representation by implicit unit-Monge matrices
- generalisation to rational alignment scores
- next: real alignment scores?

Approximate matching in GC-text in time $O(m \log m \cdot \bar{n})$
Other applications:

- maximum clique in a circle graph in time $O\left(n \log ^{2} n\right)$
- parallel LCS in time $O\left(\frac{m n}{p}\right)$, comm $O\left(\frac{m+n}{p^{1 / 2}}\right)$ per processor
- identification of evolutionary-conserved regions in DNA

