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Introduction

String matching: finding an exact pattern in a string
String comparison: finding similar patterns in two strings

Applications: computational biology, image recognition,
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Introduction

String matching: finding an exact pattern in a string
String comparison: finding similar patterns in two strings
Applications: computational biology, image recognition, ...
Standard types of string comparison:

o global: whole string vs whole string

@ local: substrings vs substrings
Main focus of this work:
@ semi-local: whole string vs substrings; prefixes vs suffixes

Closely related to approximate string matching (no relation to
approximation algorithms!)

Main tool: implicit unit-Monge matrices (a.k.a. seaweed matrices)
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Introduction

Terminology and notation

Integers: ... —2,—-1,0,1,2,...
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i . 5 3
Odd half-integers: ... — 3, =35, —
(i) (",J)iff i <i" and j </

We consider finite and infinite integer matrices over integer and odd
half-integer indices. For simplicity, index range will usually be ignored.

3,
i) (') iffi<i"andj>j'

~ N

A permutation matrix is a 0/1 matrix with exactly one nonzero per row
and per column
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Introduction

Terminology and notation

Given matrix D, its distribution matrix is D*(i, ) = > isig<i D(3,))
In other words, D*(i,j) = 3 D(%, ), where (2,7) is <-dominated by (i, j)
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Introduction

Terminology and notation

Given matrix D, its distribution matrix is D*(i, ) = > isig<i D(3,))

In other words, D*(i,j) = 3 D(%, ), where (2,7) is <-dominated by (i, j)
Given matrix E, its density matrix is

where D*, E over integers; D, EY over odd half-integers
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Introduction

Terminology and notation

Given matrix D, its distribution matrix is D*(i, ) = > isig<i D(3,))
In other words, D*(i,j) = 3 D(%, ), where (2,7) is <-dominated by (i, j)

Given matrix E, its density matrix is

where D*, E over integers; D, EY over odd half-integers

O
01 0]F 01 23 0123 01 0
0112 0112
1 0 0] = =11 00
00 1 0 001 0 001 00 1
0 00O 0 00O
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Introduction

Terminology and notation

Given matrix D, its distribution matrix is D*(i, ) = > isig<i D(3,))
In other words, D*(i,j) = 3 D(%, ), where (2,7) is <-dominated by (i, j)

Given matrix E, its density matrix is

where D*, E over integers; D, EY over odd half-integers

O
01 0]F 01 23 0123 01 0
0112 0112
1 0 0] = =11 00
00 1 0 001 0 001 00 1
0 00O 0 00O

(D¥)Y = D for all D
Matrix E is simple, if (E7)* = E
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Introduction

Terminology and notation

Matrix E is Monge, if EV is nonnegative
Intuition: border-to-border distances in a (weighted) planar graph
Matrix E is unit-Monge, if EF is a permutation matrix

Intuition: border-to-border distances in a grid-like graph

Alexander Tiskin (Warwick) Approximate matching in GC-strings



Introduction

Terminology and notation

Matrix E is Monge, if EV is nonnegative

Intuition: border-to-border distances in a (weighted) planar graph
Matrix E is unit-Monge, if EF is a permutation matrix

Intuition: border-to-border distances in a grid-like graph

Simple unit-Monge matrix: P>, where P is a permutation matrix
Seaweed matrix: P*, represented implicitly by P

0102 0 2 3
1 0 0f =
0 0 1

o O O
O O = =

1 2
01
00
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Introduction

Implicit unit-Monge matrices

Efficient P* queries: range tree on nonzeros of P [Bentley: 1980]

@ binary search tree by i-coordinate

@ under every node, binary search tree by j-coordinate

[} [ J [}
([ ] — [ ] — [ ]
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Introduction

Implicit unit-Monge matrices

Efficient P* queries: (contd.)

Every node of the range tree represents a canonical range (rectangular
region), and stores its nonzero count

Overall, < nlog n canonical ranges are non-empty

A P* query means dominance counting: how many nonzeros are
dominated by query point? Answered by decomposing query range into
< log? n disjoint canonical ranges.

Total size O(nlog n), query time O(log? n)
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Introduction

Implicit unit-Monge matrices

Efficient P* queries: (contd.)

Every node of the range tree represents a canonical range (rectangular
region), and stores its nonzero count

Overall, < nlog n canonical ranges are non-empty

A P* query means dominance counting: how many nonzeros are
dominated by query point? Answered by decomposing query range into
< log? n disjoint canonical ranges.

Total size O(nlog n), query time O(log? n)
There are asymptotically more efficient (but less practical) data structures

Total size O(n), query time O(Iog’ign) [JaJa+: 2004]
[Chan, P3trascu: 2010]
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© Semi-local string comparison
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Semi-local string comparison

Semi-local LCS and edit distance

Consider strings (= sequences) over an alphabet of size o

Distinguish contiguous substrings and not necessarily contiguous
subsequences

Special cases of substring: prefix, suffix
Notation: strings a, b of length m, n respectively

Assume where necessary: m < n; m, n reasonably close
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Semi-local string comparison

Semi-local LCS and edit distance

Consider strings (= sequences) over an alphabet of size o

Distinguish contiguous substrings and not necessarily contiguous
subsequences

Special cases of substring: prefix, suffix

Notation: strings a, b of length m, n respectively
Assume where necessary: m < n; m, n reasonably close
The longest common subsequence (LCS) score:

@ length of longest string that is a subsequence of both a and b

@ equivalently, alignment score, where score(match) = 1 and
score(mismatch) = 0

In biological terms, “loss-free alignment” (unlike “lossy” BLAST)
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Semi-local string comparison

Semi-local LCS and edit distance

The LCS problem
Give the LCS score for a vs b
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Semi-local string comparison

Semi-local LCS and edit distance

The LCS problem
Give the LCS score for a vs b

LCS: running time

O(mn) [Wagner, Fischer:
O(Io’;’é’n) o= 0(1) [Masek, Paterson:

[Crochemore+:
O(—mn(lli’)i;ong n)2) [Paterson, Dantik:

[Bille, Farach-Colton:

1974]
1980]

2003]
1994]
2008]

.

Running time varies depending on the RAM model

We assume word-RAM with word size log n
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Semi-local string comparison
Semi-local LCS and edit distance

LCS on the alignment graph (directed, acyclic)
b aabcabocabaca blue =0

NN TN i
a\\\\§§ o

A NN NG NN

LCS("baabcbca”, "baabcabcabaca”) = “baabcbca”

LCS = highest-score corner-to-corner path
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Semi-local string comparison
Semi-local LCS and edit distance

LCS: dynamic programming [WF: 1974]
Sweep alignment graph by cells
Cell update: time O(1)

Overall time O(mn)
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Semi-local string comparison
Semi-local LCS and edit distance

LCS: micro-block dynamic programming [MP: 1980; BF: 2008]

Sweep alignment graph by micro-blocks

Micro-block size:

o t = O(log n) when o = O(1)

. logn .
°ot= O(J—Ioglogn) otherwise

Micro-block interface:

@ O(t) characters, each O(log o) bits, can be reduced to O(log t) bits
e O(t) small integers, each O(1) bits

Micro-block update: time O(1), via table of all possible interfaces

Overall time O(Io’g—”rn) when o = O(1), O(%bf'm) otherwise
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Semi-local string comparison
Semi-local LCS and edit distance

The semi-local LCS problem

Give the (implicit) matrix of O(m? + n?) LCS scores:
@ string-substring LCS: string a vs every substring of b
o prefix-suffix LCS: every prefix of a vs every suffix of b

o symmetrically, substring-string and suffix-prefix LCS
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Semi-local string comparison
Semi-local LCS and edit distance

The semi-local LCS problem

Give the (implicit) matrix of O(m? + n?) LCS scores:
@ string-substring LCS: string a vs every substring of b

o prefix-suffix LCS: every prefix of a vs every suffix of b

o symmetrically, substring-string and suffix-prefix LCS

v

The three-way semi-local LCS problem

Give the (implicit) matrix of O(n?) LCS scores:

@ string-substring, prefix-suffix, suffix-prefix LCS
@ no substring-string LCS
Suitable for m > n

¢
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Semi-local string comparison
Semi-local LCS and edit distance

The semi-local LCS problem

Give the (implicit) matrix of O(m? + n?) LCS scores:
@ string-substring LCS: string a vs every substring of b
o prefix-suffix LCS: every prefix of a vs every suffix of b

o symmetrically, substring-string and suffix-prefix LCS

The three-way semi-local LCS problem

| \

Give the (implicit) matrix of O(n?) LCS scores:
@ string-substring, prefix-suffix, suffix-prefix LCS
@ no substring-string LCS

Suitable for m > n )

Cf.: dynamic programming gives prefix-prefix LCS
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Semi-local string comparison
Semi-local LCS and edit distance

Semi-local LCS on the alignment graph
baabcabcabaca blue =0

b\ \- -: \ \ red =1
Al NNCUNC N N N
JERNN - \\\ AN

score("baabcbca”, “cabcaba”) = 5 (“abcba”)

Semi-local LCS = all highest-score border-to-border paths
(string-substring = top-to-bottom, etc.)
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Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H

012345667 888 8 8 3 = “baabcbca”
-10 123 4556 77777 B .
910 123 445060666 7 b = "baabcabcabaca
-3-2-10 1 2 3 3 4556 6 7 b’:b<4:11):“cabcaba”
—4-3-2-10 1 2 2 3 4 4 5 6

—5-4-3-2-101 2 3 4 4?5 6 H(4,11):LCS(a,b’):5
~6-5-4-3-2-10 1 2 3 3 4 4 5 H(i,j)=j—iifi>}j
-7-6-5-4-3-2-10 1 2 2 3 3 4

—-8-—7-6-5-4-3-2-10 1 2 3 3 4

-9-8-7-6-5-4-3-2-10 1 2 3 4

-10-9-8-7-6-5-4-3-2-10 1 2 3
—1-10-9-8-7-6-5-4-3-2-10 1 2

~1211-10-9 -8-7—-6-5-4-3-2-10 1
—13-12-1+-10-9-8-7-6-5-4-3-2-1 0
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Semi-local string comparison

Score matrices and seaweed matrices

Semi-local LCS: output representation and running time

size query time

0(n?) 0(1) trivial

O(mY2n)  O(logn) string-substring [Alves+: 2003]

O(n) O(n) string-substring [Alves+: 2005]

O(nlogn) O(log? n) [T: 2006]
..or any 2D orthogonal range counting data structure

running time

O(mn?) naive
O(mn) string-substring [Schmidt: 1998; Alves+: 2005]

O(mn) [T: 2006]

O(I ) [T: 2006]
mn Ioglog mn(log log n)? .

O(T =2t Ty ) [T: 2007]/
Alexander Tiskin (Warwick) Approximate matching in GC-strings 19 / 52



Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P
H(i,j): the number of matched characters for a vs substring b(i : j)
J—i—H(i,j): the number of unmatched characters
Properties of matrix j — i — H(i,J):
@ simple unit-Monge
o therefore, = P>, where P = —HY is a permutation matrix
P is the seaweed matrix, giving an implicit representation of H

Range tree for P: memory O(nlog n), query time O(log? n)
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Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

0123456678888Ii 2 — “baabcbca’

-10 1 2 3 4 5]5 6 7|7|7|717 . .,
o101 2 3 ala s 6lslsls™ b = "baabcabcabaca
-3-2-10 1 2 3|3 4 5|5 6|6 7 b’ = b(4 : 11) = “cabcaba”
—4-3-2-10 1 2|2 3 4]a 5 6

—5-4-3-2-10 1 2 3 4 4?5 6 H(4,11) = LC5(a, b)) = 5
—6-5-4-3-2-10 1 2 3|3 4|4 5 H(i,j)=j—iifi>}j
—7-6-5-4-3-2-10 1 2|2 3|3 4

—8-7-6-5-4-3-2-10 1 2 3|3 4

90-8-7-6-54-3-2-10 1 2 3 &

~10-9-8-7-6-5-4-3-2-10 1 2 3
~11-10-9-8-7-6-5-4-3-2-10 1 2
~12-11-10-9 -8 -7 —6 -5 -4 -3 -2-1 0 1

~13-12-11-10-9 —8 —7 —6 —5 —4 —3 —2 —1 0

Alexander Tiskin (Warwick) Approximate matching in GC-strings



Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

0123456678888Ii 2 — “baabcbca’

-10 1 2 3 4 5]5 6 7|7|7|717 . .,
o101 2 3 ala s 6lslsls™ b = "baabcabcabaca
-3-2-10 1 2 3|3 4 5|5 6|6 7 b’:b<4:11):“cabcaba”
—4-3-2-10 1 2|2 3 4|4 5 6

—5-4-3-2-10 1 2 3 4 4?5 6 H(4,11) = LC5(a, b)) = 5
—6-5-4-3-2-10 1 2 3|3 4|4 5 H(i,j)=j—iifi>}j
oS 320l 14202131314 blue: difference in H is 0
-8-7-6-5-4-3-2-10 1 2 3|3 4

9-8-7-6-5-4-3-2-10 1 2 3 4 red: difference in H is 1
-10-9-8-7-6-5-4-3-2-10 1 2 3
~11-10-9-8-7-6-5-4-3-2-10 1 2
~12-11-10-9 -8 -7 —6 -5 -4 -3 -2-1 0 1

~13-12-11-10-9 —8 —7 —6 —5 —4 —3 —2 —1 0
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Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

012 3 45 6|6 7 8|sls]s]s 2 = “baabcbea”
-10 1 2 3 4 5|5 6 7717|717 b — “baabcabcabaca”
2-10 1 2 3 4|4 5 6|6lele 7 = Dbaabcabcabaca
-3-2-10 1 2 3|3 4 5|5 6|6 7 b’ = b(4 : 11) = “cabcaba”
—4-3-2-10 1 2|2 3 4|4 ®)|5 6
: H(4,11) = LCS(a,b') =5
-5-4-3-2-10 1 2 3 4|4 5]5 6 (’) (’)
—6-5-4-3-2-10 1 2 3|3 4|4 5 H(i,j)=j—iifi>}j
—7-6-5-4-3-2-1 . ) )
01212 313 4 blue: difference in H is 0
-8-7-6-5-4-3-2-10 1 2 3|3 4
9-8-7-6-5-4-3-2-10 1 2 3 & red: difference in H is 1
~10-9-8-7-6-5-4-3-2-10 1 2 3 green: P(i,j) =1
~11-10-9-8-7—-6-5-4-3-2-10 1 2 o o s
—12-11-10-9 -8 -7 —6-5—-4-3-2-10 1 H(i,j) =j—i— P*(i,j)
—13-12-11-10-9 -8 -7 —6 —5 —4 —3 -2 —1 0
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Semi-local string comparison

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

L a = "baabcbca”
b = “baabcabcabaca”

b’ = b(4 : 11) = “cabcaba”
H(4,11) = LCS(a, b) =
11-4-— PZ(’?./) =
11-4-2=5
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Semi-local string comparison
Score matrices and seaweed matrices

The seaweeds in the alignment graph

a a cabocabaca

b\ l l\. \ l l \ ai ““baabcbca” ”
a \\\\ \ l \\\ \ \ b = “baabcabcabaca
a \\\_i'"'_\\ l AN l \_ N\ b = b(4:11) = “cabcaba’

BN NHSAN L NN H(4,11) = LCS(a, ) =
N AN l AN 11—4— PX(i,j) =

bN N l\\\\—-\\lf 11-4-2=5
al NN\ i \\ \k \\\;\\\

P(i,j) =1 corresponds to seaweed (top, i) ~> (bottom, j)
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Semi-local string comparison

Score matrices and seaweed matrices

The seaweeds in the alignment graph

aa a = “baabcbca”

b = “baabcabcabaca”
b’ = b(4 :11) = “cabcaba”

H(4,11) = LCS(a, b') =
11-4- Pz(’?./) =
11-4-2-5

ffp/»/rp

AR
F \\\\\\\@\\\\\

P(i,j) =1 corresponds to seaweed (top, i) ~> (bottom, j)
Also define top ~~ right, left ~~ right, left ~ bottom seaweeds

Gives bijection between top-left and bottom-right borders
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© Matrix distance multiplication
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Matrix distance multiplication

Seaweed braids

Distance algebra (a.k.a (min, +) or tropical algebra): @ is min, ® is +
Matrix O-multiplication
AoB=C C(i, k) = @j(A(i,j) ©® B(j, k)) = minj(A(i,j) + B(j, k))
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Matrix distance multiplication

Seaweed braids

Distance algebra (a.k.a (min, +) or tropical algebra): @ is min, ® is +
Matrix O-multiplication
AoB=C C(i, k) = @j(A(i,j) ® B(j, k)) = min;(A(i,j) + B(j, k))
Matrix classes closed under ®-multiplication (for given n):

@ general numerical (integer, real) matrices

@ Monge matrices

@ simple unit-Monge matrices

PX ® PE = PZ written as P4 Pg = Pc
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Matrix distance multiplication

Seaweed braids

The seaweed monoid Tp:

@ simple unit-Monge matrices under ®-multiplication

@ permutation matrices under [l-multiplication

[dentity: 1 x = x Zero: 0 x =0

Alexander Tiskin (Warwick) Approximate matching in GC-strings



Matrix distance multiplication

Seaweed braids

Pa[d Pg = P¢ can be seen as [J-multiplication of seaweed braids
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Matrix distance multiplication

Seaweed braids

Pa[d Pg = P¢ can be seen as [J-multiplication of seaweed braids

[ ] [ ] [ ]
[ ) [ ) [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
Pa Pg Pc
—0—0—0—0—0—0—
Pa
—0—0—0—0—0—0—
Pg
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Matrix distance multiplication

Seaweed braids

Pa[d Pg = P¢ can be seen as [J-multiplication of seaweed braids

[ ] [ ] [ ]
[ ) [ ) [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
Pa Pg Pc
—0—0—0—0—0—0— —0—0—0—0—0—0—
Pa
—0—0—0—0—0—0—
Pg
——0—0—0—0 0 ——0—0—0—0 0
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Matrix distance multiplication

Seaweed braids

Pa[d Pg = P¢ can be seen as [J-multiplication of seaweed braids
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Matrix distance multiplication

Seaweed braids

Seaweed braids: similar to standard braids, generated by crossings

Unlike in standard braids, all seaweed crossings are

@ transversal, i.e. on one level (not underpass/overpass)

@ idempotent, i.e. two seaweeds can cross at most once

Seaweed braid [J-multiplication: associative, no inverse (a crossing cannot
be undone)

[dentity: 1 x = x Zero: 0 x =0

1 SR
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Matrix distance multiplication

Seaweed braids

The seaweed monoid 7,:

e n! elements (permutations of size n)

e n— 1 generators gi, &, ..., 8r—1 (elementary crossings)

idempotence:

g/.2 =g; foralli §
_ |

far commutativity: X
gigi=gig& J—i>1 :

.
a

braid relations:
gigigi = ggg J—i=1

><:§<><

- )C
X)(X
X

X
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Matrix distance multiplication

Seaweed braids

The seaweed monoid 7,
Also known as the 0-Hecke monoid of the symmetric group Ho(Sh)
Generalisations:

@ general 0-Hecke monoids [Fomin, Greene: 1998; Buch+: 2008]
o Coxeter monoids [Tsaranov: 1990; Richardson, Springer: 1990]
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Matrix distance multiplication

Seaweed braids

Computation in the seaweed monoid: a confluent rewriting system can be
obtained by software (SEMIGROUPE, GAP)
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Matrix distance multiplication

Seaweed braids

Computation in the seaweed monoid: a confluent rewriting system can be
obtained by software (SEMIGROUPE, GAP)

T3: 1, a=g1, b= g»; ab, ba, aba=0

aa— a bb — b bab — 0 aba— 0
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Matrix distance multiplication

Seaweed braids

Computation in the seaweed monoid: a confluent rewriting system can be
obtained by software (SEMIGROUPE, GAP)

T3: 1, a=g1, b= g»; ab, ba, aba=0

aa— a bb — b bab — 0 aba— 0

Ta: 1, a=g, b= g, c = gs; ab, ac, ba, bc, cb, aba, abc, acb, bac,
beb, cba, abac, abcb, acba, bacb, bcba, abach, abcba, bacba, abacba = 0

aa— a ca — ac bab — aba cbac — bcbha
bb— b cc— ¢ cbc — bcb abacba — 0
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Matrix distance multiplication

Seaweed braids

Computation in the seaweed monoid: a confluent rewriting system can be
obtained by software (SEMIGROUPE, GAP)

T3: 1, a=g1, b= g»; ab, ba, aba=0

aa— a bb — b bab — 0 aba— 0

Ta: 1, a=g, b= g, c = gs; ab, ac, ba, bc, cb, aba, abc, acb, bac,
beb, cba, abac, abcb, acba, bacb, bcba, abach, abcba, bacba, abacba = 0

aa— a ca — ac bab — aba cbac — bcbha
bb— b cc— ¢ cbc — bcb abacba — 0

Easy to use, but not an efficient algorithm
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Matrix distance multiplication
Implicit unit-Monge ®-multiplication

The implicit unit-Monge matrix ®-multiplication problem

Given permutation matrices Py, Pg, compute Pc, such that
PE ® PE = PE (equivalently, P4 Pg = Pc¢)

Alexander Tiskin (Warwick)

Approximate matching in GC-strings



Matrix distance multiplication

Implicit unit-Monge ®-multiplication

The implicit unit-Monge matrix ®-multiplication problem

Given permutation matrices Py, Pg, compute Pc, such that

PA): ® PE = PE (equivalently, P4 Pg = Pc¢)

Matrix ®-multiplication: running time

type time

general 0o(n%) standard
O(~leejpen)’y [Chan: 2007]

Monge 0(n?) via [Aggarwal+: 1987]

implicit unit-Monge  O(n'-) [T: 2006]
O(nlog n) [T: 2010]

Alexander Tiskin (Warwick)
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Matrix distance multiplication

Implicit unit-Monge ®-multiplication

Pg
[ ] : ..
.. ° .
[ ) © ¢
... ©
[ ] ° ® . ?
.. .. -
[ ] . °
Pa Pc
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Matrix distance multiplication

Implicit unit-Monge ®-multiplication

Pajo, Pa ki
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Matrix distance multiplication

Implicit unit-Monge ®-multiplication
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Matrix distance multiplication
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Matrix distance multiplication
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Matrix distance multiplication

Implicit unit-Monge ®-multiplication
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Matrix distance multiplication

Implicit unit-Monge ®-multiplication
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Matrix distance multiplication

Implicit unit-Monge ®-multiplication

Implicit unit-Monge matrix ®-multiplication: the algorithm
PE(i, k) = min;(P%(i,j) + PE(j, k))

Divide-and-conquer on the range of j

Divide P4 horizontally, Pg vertically; two subproblems of effective size n/2:
> Yy _ ps X Y _ ps

Paio© Pglo=Pcso Pani © Pg pi = Pc pi

Conquer: most (but not alll) nonzeros of Pc j,, Pc ni appear in Pc

Missing nonzeros can be obtained in time O(n) using the Monge property

Overall time O(nlog n)
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@ Compressed string comparison
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Compressed string comparison

Grammar compression

Notation: text t of length n; pattern p of length m

A GC-string (grammar-compressed string) t is a straight-line program
(context-free grammar) generating t = tz by 71 assignments of the form

@ t, = «, where « is an alphabet character
o t) = tit;, where i,j < k
In general, n = O(2")
Example: Fibonacci string “abaababaabaab”
t="'b ty ="a’

t3 = bty tg = t3tr ts = tyt3 te = tsty t7 = tets
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Compressed string comparison

Grammar compression

Grammar-compression covers various compression types, e.g. LZ78, LZW
(not LZ77 directly)

Simplifying assumption: arithmetic up to n runs in O(1)

This assumption can be removed by careful index remapping
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Compressed string comparison
Three-way semi-local LCS on GC-strings

LCS: running time

t P
plain plain  O(mn) [Wagner, Fischer: 1974]
O(é—f—m) [Masek, Paterson: 1980]
[Crochemore+: 2003]
GC  plain O(m n+ ...)  general CFG [Myers: 1995]
O(m*'°h) 3-way semi [T: 2008]
O(m Iogm n) 3-way semi [T: NEW]
GC GC  NP-hard [Lifshits: 2005]
O(ri2rt4) [Hermelin+: 2009]
O(rlogr-T) [T: NEW]
r=m-+n r=m-+n
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Compressed string comparison
Three-way semi-local LCS on GC-strings

Three-way semi-local LCS (GC text, plain pattern): the algorithm

For every k, compute by recursion the three-way seaweed matrix for p vs
tk, using seaweed matrix [-multiplication: time O(mlog m - n)

Overall time O(mlog m - n)
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Compressed string comparison

Subsequence recognition on GC-strings

The global subsequence recognition problem
Does text t contain pattern p as a subsequence?

Global subsequence recognition: running time

t p

plain plain  O(n) greedy
GC  plain  O(mn) greedy
GC GC  NP-hard [Lifshits: 2005]
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Compressed string comparison

Subsequence recognition on GC-strings

The local subsequence recognition problem
Find all minimally matching substrings of t with respect to p

Substring of t is matching, if p is a subsequence of t

Matching substring of t is minimally matching, if none of its proper
substrings are matching

Alexander Tiskin (Warwick) Approximate matching in GC-strings



Compressed string comparison

Subsequence recognition on GC-strings

Local subsequence recognition: running time ( + output)

t P

plain  plain  O(mn) [Mannila+: 1995]
O(jeet) [Das+: 1997]
O(c™ + n) [Boasson+: 2001]
O(m+ no) [Tronitek: 2001]

GC  plain  O(m?log mn) [Cégielski+: 2006]
O(m*'5h) [T: 2008]
O(mlog m - n) [T: NEW]

GC  GC  NP-hard [Lifshits: 2005]
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Compressed string comparison

Subsequence recognition on GC-strings

b(i : j) matching iff box [/ : j] not pierced left-to-right
<-maximal seaweeds: <-chain (i%,j%) < (ig,j%) L K (isf%,jsf%)

b(i : j) minimally matching iff (i,) is in the interleaved <-chain

(L] [2:1) < (3] [35]) < < ([s-1 ) [25-3 1)
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Compressed string comparison

Subsequence recognition on GC-strings

Local subsequence recognition (GC text, plain pattern): the algorithm

For every k, compute by recursion the three-way seaweed matrix for p vs
tk, using seaweed matrix [-multiplication: time O(mlog m - n)
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Compressed string comparison

Subsequence recognition on GC-strings

Local subsequence recognition (GC text, plain pattern): the algorithm

For every k, compute by recursion the three-way seaweed matrix for p vs
tk, using seaweed matrix [-multiplication: time O(mlog m - n)

Given an assignment t = t't”, count by recursion

@ minimally matching substrings in t/

@ minimally matching substrings in t”
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Compressed string comparison

Subsequence recognition on GC-strings

Local subsequence recognition (GC text, plain pattern): the algorithm

For every k, compute by recursion the three-way seaweed matrix for p vs
tk, using seaweed matrix [-multiplication: time O(mlog m - n)

Given an assignment t = t't”, count by recursion
@ minimally matching substrings in t/
@ minimally matching substrings in t”
Then, find <-chain of <-maximal seaweeds in time - O(m) = O(mn)

The interleaved <-chain defines minimally matching substrings in t
overlapping both t’ and t”

Overall time O(mlog m- @) + O(mnA) = O(mlog m - A)
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Compressed string comparison

Subsequence recognition on GC-strings

The threshold approximate matching problem

Find all matching substrings of t with respect to p, according to a
threshold k

Substring of t is matching, if the edit distance for p vs t is at most k
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Compressed string comparison

Subsequence recognition on GC-strings

Threshold approximate matching: running time ( + output)

t P

plain  plain  O(mn) [Sellers: 1980]
O(mk) [Landau, Vishkin: 1989]
O(m+n+ "7"4) [Cole, Hariharan: 2002]

GC  plain  O(mnk?) [Karkkainen+: 2003]
O(mnk + nlog n) [LV: 1989] via [Bille+: 2010]
O(mn + nk* + filog n) [CH: 2002] via [Bille+: 2010]
O(mlogm - n) [T: NEW]

GC GC  NP-hard [Lifshits: 2005]

(Also many specialised variants for LZ compression)
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Compressed string comparison

Subsequence recognition on GC-strings

Threshold approximate matching (GC text, plain pattern): the
algorithm

Algorithm structure similar to local subsequence recognition by seaweed
matrix [l-multiplication and seaweed <-chains

Extra ingredients:

@ the blow-up technique: reduction of edit distances to LCS scores

o the “implicit SMAWK" technique: row minima in an implicit Monge

matrix by an extension of the classical "SMAWK" algorithm; replaces
< -chain interleaving

Overall time O(mlog m - i) + O(mn) = O(mlog m - n)
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© Conclusions and future work
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Conclusions and future work

A powerful alternative to dynamic programming
Implicit unit-Monge matrices:

@ the seaweed monoid
e distance multiplication in time O(nlog n)
@ next: lower bound?
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Conclusions and future work

A powerful alternative to dynamic programming
Implicit unit-Monge matrices:

@ the seaweed monoid
e distance multiplication in time O(nlog n)
@ next: lower bound?

Semi-local LCS problem:

@ representation by implicit unit-Monge matrices
@ generalisation to rational alignment scores
@ next: real alignment scores?
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Conclusions and future work

A powerful alternative to dynamic programming
Implicit unit-Monge matrices:
@ the seaweed monoid

e distance multiplication in time O(nlog n)
@ next: lower bound?

Semi-local LCS problem:

@ representation by implicit unit-Monge matrices
@ generalisation to rational alignment scores
@ next: real alignment scores?

Approximate matching in GC-text in time O(mlog m - n)
Other applications:

@ maximum clique in a circle graph in time O(nlog2 n)
o parallel LCS in time O("?), comm O(’;’f;z”) per processor

@ identification of evolutionary-conserved regions in DNA
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