Approximate matching in grammar-compressed strings

Alexander Tiskin

Department of Computer Science University of Warwick http://www.dcs.warwick.ac.uk/~tiskin

- Introduction
- Semi-local string comparison
- Matrix distance multiplication
- 4 Compressed string comparison
- 5 Conclusions and future work

- Introduction
- 2 Semi-local string comparison
- Matrix distance multiplication
- 4 Compressed string comparison
- 5 Conclusions and future work

String matching: finding an exact pattern in a string

String comparison: finding similar patterns in two strings

Applications: computational biology, image recognition, \dots

String matching: finding an exact pattern in a string

String comparison: finding similar patterns in two strings

Applications: computational biology, image recognition, ...

Standard types of string comparison:

- global: whole string vs whole string
- local: substrings vs substrings

Main focus of this work:

semi-local: whole string vs substrings; prefixes vs suffixes

Closely related to approximate string matching (no relation to approximation algorithms!)

Main tool: implicit unit-Monge matrices (a.k.a. seaweed matrices)

Terminology and notation

Integers: ... -2, -1, 0, 1, 2, ...

Odd half-integers: $... - \frac{5}{2}, -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, ...$

$$(i,j) \ll (i',j')$$
 iff $i < i'$ and $j < j'$ $(i,j) \leq (i',j')$ iff $i < i'$ and $j > j'$

We consider finite and infinite integer matrices over integer and odd half-integer indices. For simplicity, index range will usually be ignored.

A permutation matrix is a 0/1 matrix with exactly one nonzero per row and per column

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Terminology and notation

Given matrix D, its distribution matrix is $D^{\Sigma}(i,j) = \sum_{\hat{\imath}>i,\hat{\jmath}< j} D(\hat{\imath},\hat{\jmath})$ In other words, $D^{\Sigma}(i,j) = \sum D(\hat{\imath},\hat{\jmath})$, where $(\hat{\imath},\hat{\jmath})$ is \leq -dominated by (i,j)

Terminology and notation

Given matrix D, its distribution matrix is $D^{\Sigma}(i,j) = \sum_{\hat{\imath} > i,\hat{\jmath} < j} D(\hat{\imath},\hat{\jmath})$ In other words, $D^{\Sigma}(i,j) = \sum D(\hat{\imath},\hat{\jmath})$, where $(\hat{\imath},\hat{\jmath})$ is \leq -dominated by (i,j) Given matrix E, its density matrix is $E^{\square}(\hat{\imath},\hat{\jmath}) = E(\hat{\imath}-\frac{1}{2},\hat{\jmath}+\frac{1}{2}) - E(\hat{\imath}-\frac{1}{2},\hat{\jmath}-\frac{1}{2}) - E(\hat{\imath}+\frac{1}{2},\hat{\jmath}+\frac{1}{2}) + E(\hat{\imath}+\frac{1}{2},\hat{\jmath}-\frac{1}{2})$

 $E^{\square}(\hat{i},\hat{j}) = E(\hat{i} - \frac{1}{2},\hat{j} + \frac{1}{2}) - E(\hat{i} - \frac{1}{2},\hat{j} - \frac{1}{2}) - E(\hat{i} + \frac{1}{2},\hat{j} + \frac{1}{2}) + E(\hat{i} + \frac{1}{2},\hat{j} - \frac{1}{2})$

where D^{Σ} , E over integers; D, E^{\square} over odd half-integers

Terminology and notation

Given matrix D, its distribution matrix is $D^{\Sigma}(i,j) = \sum_{\hat{i}>i,\hat{j}< i} D(\hat{i},\hat{j})$

In other words, $D^{\Sigma}(i,j) = \sum D(\hat{i},\hat{j})$, where (\hat{i},\hat{j}) is \leq -dominated by (i,j)

Given matrix E, its density matrix is

$$E^{\square}(\hat{\imath},\hat{\jmath}) = E(\hat{\imath} - \frac{1}{2},\hat{\jmath} + \frac{1}{2}) - E(\hat{\imath} - \frac{1}{2},\hat{\jmath} - \frac{1}{2}) - E(\hat{\imath} + \frac{1}{2},\hat{\jmath} + \frac{1}{2}) + E(\hat{\imath} + \frac{1}{2},\hat{\jmath} - \frac{1}{2})$$

where D^{Σ} , E over integers; D, E^{\square} over odd half-integers

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{\Sigma} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{\Sigma} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{\square} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Terminology and notation

Given matrix D, its distribution matrix is $D^{\Sigma}(i,j) = \sum_{\hat{i}>i,\hat{j}< i} D(\hat{i},\hat{j})$

In other words, $D^{\Sigma}(i,j) = \sum D(\hat{\imath},\hat{\jmath})$, where $(\hat{\imath},\hat{\jmath})$ is \leq -dominated by (i,j)

Given matrix E, its density matrix is

$$E^{\square}(\hat{\imath},\hat{\jmath}) = E(\hat{\imath} - \frac{1}{2},\hat{\jmath} + \frac{1}{2}) - E(\hat{\imath} - \frac{1}{2},\hat{\jmath} - \frac{1}{2}) - E(\hat{\imath} + \frac{1}{2},\hat{\jmath} + \frac{1}{2}) + E(\hat{\imath} + \frac{1}{2},\hat{\jmath} - \frac{1}{2})$$

where D^{Σ} , E over integers; D, E^{\square} over odd half-integers

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{\Sigma} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{\square} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{\square} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(D^{\Sigma})^{\square} = D$$
 for all D

Matrix E is simple, if $(E^{\square})^{\Sigma} = E$

Terminology and notation

Matrix E is Monge, if E^{\square} is nonnegative

Intuition: border-to-border distances in a (weighted) planar graph

Matrix E is unit-Monge, if E^{\square} is a permutation matrix

Intuition: border-to-border distances in a grid-like graph

Terminology and notation

Matrix E is Monge, if E^{\square} is nonnegative

Intuition: border-to-border distances in a (weighted) planar graph

Matrix E is unit-Monge, if E^{\square} is a permutation matrix

Intuition: border-to-border distances in a grid-like graph

Simple unit-Monge matrix: P^{Σ} , where P is a permutation matrix

Seaweed matrix: P^{Σ} , represented implicitly by P

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{\Sigma} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Implicit unit-Monge matrices

Efficient P^{Σ} queries: range tree on nonzeros of P

[Bentley: 1980]

- binary search tree by *i*-coordinate
- under every node, binary search tree by *j*-coordinate

Implicit unit-Monge matrices

Efficient P^{Σ} queries: (contd.)

Every node of the range tree represents a canonical range (rectangular region), and stores its nonzero count

Overall, $\leq n \log n$ canonical ranges are non-empty

A P^{Σ} query means dominance counting: how many nonzeros are dominated by query point? Answered by decomposing query range into $\leq \log^2 n$ disjoint canonical ranges.

Total size $O(n \log n)$, query time $O(\log^2 n)$

Implicit unit-Monge matrices

Efficient P^{Σ} queries: (contd.)

Every node of the range tree represents a canonical range (rectangular region), and stores its nonzero count

Overall, $\leq n \log n$ canonical ranges are non-empty

A P^{Σ} query means dominance counting: how many nonzeros are dominated by query point? Answered by decomposing query range into $\leq \log^2 n$ disjoint canonical ranges.

Total size $O(n \log n)$, query time $O(\log^2 n)$

There are asymptotically more efficient (but less practical) data structures

Total size O(n), query time $O(\frac{\log n}{\log \log n})$

[JáJá+: 2004]

[Chan, Pătrașcu: 2010]

- Introduction
- Semi-local string comparison
- Matrix distance multiplication
- 4 Compressed string comparison
- 5 Conclusions and future work

Semi-local LCS and edit distance

Consider strings (= sequences) over an alphabet of size σ

Distinguish contiguous substrings and not necessarily contiguous subsequences

Special cases of substring: prefix, suffix

Notation: strings a, b of length m, n respectively

Assume where necessary: $m \le n$; m, n reasonably close

Semi-local LCS and edit distance

Consider strings (= sequences) over an alphabet of size σ

Distinguish contiguous substrings and not necessarily contiguous subsequences

Special cases of substring: prefix, suffix

Notation: strings a, b of length m, n respectively

Assume where necessary: $m \le n$; m, n reasonably close

The longest common subsequence (LCS) score:

- ullet length of longest string that is a subsequence of both a and b
- equivalently, alignment score, where score(match) = 1 and score(mismatch) = 0

In biological terms, "loss-free alignment" (unlike "lossy" BLAST)

Semi-local LCS and edit distance

The LCS problem

Give the LCS score for a vs b

Semi-local LCS and edit distance

The LCS problem

Give the LCS score for a vs b

LCS: running time

$$O(mn) O(\frac{mn}{\log^2 n}) \sigma = O(1)$$

$$O\big(\tfrac{mn(\log\log n)^2}{\log^2 n}\big)$$

[Wagner, Fischer: 1974]

[Masek, Paterson: 1980]

[Crochemore+: 2003]

[Paterson, Dančík: 1994]

[Bille, Farach-Colton: 2008]

Running time varies depending on the RAM model

We assume word-RAM with word size $\log n$

Semi-local LCS and edit distance

LCS on the alignment graph (directed, acyclic)

LCS("baabcbca", "baabcabcabaca") = "baabcbca"

LCS = highest-score corner-to-corner path

blue = 0 red = 1

Semi-local LCS and edit distance

LCS: dynamic programming

[WF: 1974]

Sweep alignment graph by cells

Cell update: time O(1)

Overall time O(mn)

Semi-local LCS and edit distance

LCS: micro-block dynamic programming

[MP: 1980; BF: 2008]

Sweep alignment graph by micro-blocks

Micro-block size:

- $t = O(\log n)$ when $\sigma = O(1)$
- $t = O(\frac{\log n}{\log \log n})$ otherwise

Micro-block interface:

- O(t) characters, each $O(\log \sigma)$ bits, can be reduced to $O(\log t)$ bits
- O(t) small integers, each O(1) bits

Micro-block update: time O(1), via table of all possible interfaces

Overall time $O(\frac{mn}{\log^2 n})$ when $\sigma = O(1)$, $O(\frac{mn(\log\log n)^2}{\log^2 n})$ otherwise

Semi-local LCS and edit distance

The semi-local LCS problem

Give the (implicit) matrix of $O(m^2 + n^2)$ LCS scores:

- string-substring LCS: string a vs every substring of b
- prefix-suffix LCS: every prefix of a vs every suffix of b
- symmetrically, substring-string and suffix-prefix LCS

Semi-local LCS and edit distance

The semi-local LCS problem

Give the (implicit) matrix of $O(m^2 + n^2)$ LCS scores:

- string-substring LCS: string a vs every substring of b
- prefix-suffix LCS: every prefix of a vs every suffix of b
- symmetrically, substring-string and suffix-prefix LCS

The three-way semi-local LCS problem

Give the (implicit) matrix of $O(n^2)$ LCS scores:

- string-substring, prefix-suffix, suffix-prefix LCS
- no substring-string LCS

Suitable for $m \gg n$

Semi-local LCS and edit distance

The semi-local LCS problem

Give the (implicit) matrix of $O(m^2 + n^2)$ LCS scores:

- string-substring LCS: string a vs every substring of b
- prefix-suffix LCS: every prefix of a vs every suffix of b
- symmetrically, substring-string and suffix-prefix LCS

The three-way semi-local LCS problem

Give the (implicit) matrix of $O(n^2)$ LCS scores:

- string-substring, prefix-suffix, suffix-prefix LCS
- no substring-string LCS

Suitable for $m \gg n$

Cf.: dynamic programming gives prefix-prefix LCS

Semi-local LCS and edit distance

Semi-local LCS on the alignment graph

score("baabcbca", "cabcaba") = 5 ("abcba")

Semi-local LCS = all highest-score border-to-border paths (string-substring = top-to-bottom, etc.)

blue = 0 red = 1

Score matrices and seaweed matrices

The score matrix *H*

```
0 1 2 3 4 5 6 6 7 8 8 8 8 8
-1 0 1 2 3 4 5 5 6 7
-2-1 0 1 2 3 4 4 5 6 6 6 6
-3-2-1 0 1 2 3 3 4 5 5 6 6 7
-4-3-2-1 0 1 2 2 3 4 4 (5) 5 6
-5 - 4 - 3 - 2 - 1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 4 \ 5 \ 5 \ 6
-6-5-4-3-2-1 0 1 2 3 3 4 4 5
-7 - 6 - 5 - 4 - 3 - 2 - 1 \ 0 \ 1 \ 2 \ 2 \ 3 \ 3 \ 4
-8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 \ 0 \ 1 \ 2 \ 3 \ 3 \ 4
-9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 \ 0 \ 1 \ 2 \ 3 \ 4
-10-9-8-7-6-5-4-3-2-1 0 1 2 3
-11-10-9-8-7-6-5-4-3-2-1 0 1 2
-12-11-10-9-8-7-6-5-4-3-2-1 0 1
-13-12-11-10-9-8-7-6-5-4-3-2-1 0
```

$$a =$$
 "baabcbca"
 $b =$ "baabcabcabaca"
 $b' = b\langle 4: 11 \rangle =$ "cabcaba"
 $H(4,11) = LCS(a,b') = 5$
 $H(i,j) = j-i$ if $i>j$

Score matrices and seaweed matrices

Semi-local	LCS:	output	representation	and	running	time
			•			

size	query time		
$O(n^2)$	O(1)		trivial
$O(m^{1/2}n)$	$O(\log n)$	string-substring	[Alves+: 2003]
O(n)	O(n)	string-substring	[Alves+: 2005]
$O(n \log n)$	$O(\log^2 n)$		[T: 2006]
or any	2D orthogon	al range counting data structure	
running tim	ie		

 $\frac{\text{running time}}{O(mn^2)}$

 $O(mn^2)$ naive O(mn) string-substring [Schmidt: 1998; Alves+: 2005]

O(mn) [T: 2006]

 $O\left(\frac{mn}{\log^{0.5} n}\right)$ [T: 2006]

 $O\left(\frac{mn(\log\log n)^2}{\log^2 n}\right)$ [T: 2007]

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

H(i,j): the number of matched characters for a vs substring $b\langle i:j\rangle$

j - i - H(i, j): the number of unmatched characters

Properties of matrix j - i - H(i,j):

- simple unit-Monge
- therefore, $=P^{\Sigma}$, where $P=-H^{\square}$ is a permutation matrix

P is the seaweed matrix, giving an implicit representation of H

Range tree for P: memory $O(n \log n)$, query time $O(\log^2 n)$

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

0	1	2	3	4	5	6	6	7	8	8	8	8	8
-1	0	1	2	3	4	5	5	6	7	7	7	7	7
-2	-1	0	1	2	3	4	4	5	6	6	6	6	7
-3	-2	-1	0	1	2	3	3	4	5	5	6	6	7
-4	-3	-2	-1	0	1	2	2	3	4	4	(5)	5	6
-5	-4	-3	-2	-1	0	1	2	3	4	4	5	5	6
-6	-5	-4	-3	-2	-1	0	1	2	3	3	4	4	5
-7	-6	-5	-4	-3	-2	-1	0	1	2	2	3	3	4
-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	3	4
-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4
-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3
-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2
-12	-11	-10	_9	-8	-7	-6	-5	-4	-3	-2	-1	0	1
-13	-12	-11	-10	- 9	-8	-7	-6	-5	-4	-3	-2	-1	0

$$a =$$
 "baabcbca"
 $b =$ "baabcabcabaca"
 $b' = b\langle 4: 11 \rangle =$ "cabcaba"
 $H(4,11) = LCS(a,b') = 5$
 $H(i,j) = j-i$ if $i > j$

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

0	1	2	3	4	5	6	6	7	8	8	8	8	8
-1	0	1	2	3	4	5	5	6	7	7	7	7	7
-2	-1	0	1	2	3	4	4	5	6	6	6	6	7
-3	-2	-1	0	1	2	3	3	4	5	5	6	6	7
-4	-3	-2	-1	0	1	2	2	3	4	4	(5)	5	6
-5	-4	-3	-2	-1	0	1	2	3	4	4	5	5	6
-6	-5	-4	-3	-2	-1	0	1	2	3	3	4	4	5
-7	-6	-5	-4	-3	-2	-1	0	1	2	2	3	3	4
-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	3	4
-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4
-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3
-11	-10	<u> </u>	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2
-12	-11	-10	9	-8	-7	-6	-5	-4	-3	-2	-1	0	1
-13	-12	-11	-10	_9	-8	-7	-6	-5	-4	-3	-2	-1	0

$$a =$$
 "baabcbca"
 $b =$ "baabcabcabaca"
 $b' = b\langle 4: 11 \rangle =$ "cabcaba"
 $H(4,11) = LCS(a,b') = 5$
 $H(i,j) = j - i$ if $i > j$
blue: difference in H is 0
red: difference in H is 1

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

0	1	2	3	4	5	6	6	7	8	8	8	8	8
-1	0	1	2	3	4	5	5	6	7	7	7	7	7
-2	-1	0	1	2	3	4	4	5	6	6	6	6	7
-3	-2	-1	0	1	2	3	3	4	5	5	6	6	7
-4	-3	-2	-1	0	1	2	2	3	4	4	(5)	5	6
-5	-4	-3	-2	-1	0	1	2	3	4	4	5	5	6
-6	-5	-4	-3	-2	-1	0	1	2	3	3	4	4	5
-7	-6	-5	-4	-3	-2	-1	0	1	2	2	3	3	4
-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	3	4
-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4
-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3
-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2
-12	-11	-10	_9	-8	-7	-6	-5	-4	-3	-2	-1	0	1
-13	-12	-11	-10	9	-8	-7	-6	-5	-4	-3	-2	-1	0

$$a =$$
 "baabcbca"
 $b =$ "baabcabcabaca"
 $b' = b\langle 4: 11 \rangle =$ "cabcaba"
 $H(4, 11) = LCS(a, b') = 5$
 $H(i,j) = j - i$ if $i > j$

red: difference in H is 1

green:
$$P(i,j) = 1$$

$$H(i,j) = j - i - P^{\Sigma}(i,j)$$

Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

$$a =$$
 "baabcbca"
 $b =$ "baabcabcabaca"
 $b' = b\langle 4: 11 \rangle =$ "cabcaba"
 $H(4,11) = LCS(a,b') =$
 $11-4-P^{\Sigma}(i,j) =$
 $11-4-2=5$

Score matrices and seaweed matrices

The seaweeds in the alignment graph

P(i,j) = 1 corresponds to seaweed $(top, i) \rightsquigarrow (bottom, j)$

Score matrices and seaweed matrices

The seaweeds in the alignment graph

a = "baabcbca"

b = "baab**cabaca**"

 $b' = b\langle 4:11\rangle =$ "cabcaba"

$$H(4,11) = LCS(a,b') =$$

$$11 - 4 - P^{\Sigma}(i,j) =$$

$$11 - 4 - 2 = 5$$

$$P(i,j) = 1$$
 corresponds to seaweed $(top, i) \rightsquigarrow (bottom, j)$

Also define top → right, left → right, left → bottom seaweeds

Gives bijection between top-left and bottom-right borders

- Introduction
- 2 Semi-local string comparison
- Matrix distance multiplication
- 4 Compressed string comparison
- 5 Conclusions and future work

Seaweed braids

Distance algebra (a.k.a (min, +) or tropical algebra): \oplus is min, \odot is +

Matrix ⊙-multiplication

$$A \odot B = C$$
 $C(i,k) = \bigoplus_{j} (A(i,j) \odot B(j,k)) = \min_{j} (A(i,j) + B(j,k))$

Seaweed braids

Distance algebra (a.k.a (min, +) or tropical algebra): \oplus is min, \odot is +

Matrix ⊙-multiplication

$$A \odot B = C$$
 $C(i, k) = \bigoplus_{j} (A(i, j) \odot B(j, k)) = \min_{j} (A(i, j) + B(j, k))$

Matrix classes closed under \odot -multiplication (for given n):

- general numerical (integer, real) matrices
- Monge matrices
- simple unit-Monge matrices

$$P_A^{\Sigma} \odot P_B^{\Sigma} = P_C^{\Sigma}$$
 written as $P_A \odot P_B = P_C$

Seaweed braids

The seaweed monoid \mathcal{T}_n :

- simple unit-Monge matrices under ⊙-multiplication
- permutation matrices under ⊡-multiplication

Identity:
$$1 \odot x = x$$

$$1 = \begin{bmatrix} \bullet & \cdot & \cdot & \cdot \\ \cdot & \bullet & \cdot & \cdot \\ \cdot & \cdot & \bullet & \cdot \\ \cdot & \cdot & \cdot & \bullet \end{bmatrix}$$

Zero:
$$0 \boxdot x = 0$$

$$0 = \begin{bmatrix} \cdot & \cdot & \cdot & \bullet \\ \cdot & \cdot & \bullet & \cdot \\ \cdot & \bullet & \cdot & \cdot \\ \bullet & \cdot & \cdot & \cdot \end{bmatrix}$$

Seaweed braids

Seaweed braids

Seaweed braids

Seaweed braids

Seaweed braids

Seaweed braids: similar to standard braids, generated by crossings

Unlike in standard braids, all seaweed crossings are

- transversal, i.e. on one level (not underpass/overpass)
- idempotent, i.e. two seaweeds can cross at most once

Seaweed braid \odot -multiplication: associative, no inverse (a crossing cannot be undone)

Identity:
$$1 \boxdot x = x$$

Zero:
$$0 \boxdot x = 0$$

Seaweed braids

The seaweed monoid \mathcal{T}_n :

- n! elements (permutations of size n)
- n-1 generators $g_1, g_2, \ldots, g_{n-1}$ (elementary crossings)

idempotence:

$$g_i^2 = g_i$$
 for all i

far commutativity:

$$g_ig_j=g_jg_i$$
 $j-i>1$

braid relations:

$$g_ig_jg_i=g_jg_ig_j$$
 $j-i=1$

Seaweed braids

The seaweed monoid \mathcal{T}_n

Also known as the 0-Hecke monoid of the symmetric group $H_0(S_n)$

Generalisations:

- general 0-Hecke monoids [Fomin, Greene: 1998; Buch+: 2008]
- Coxeter monoids [Tsaranov: 1990; Richardson, Springer: 1990]

Seaweed braids

Computation in the seaweed monoid: a confluent rewriting system can be obtained by software (SEMIGROUPE, GAP)

Seaweed braids

Computation in the seaweed monoid: a confluent rewriting system can be obtained by software (SEMIGROUPE, GAP)

$$\mathcal{T}_3$$
: 1, $a = g_1$, $b = g_2$; ab , ba , $aba = 0$

$$bb \rightarrow b$$

Seaweed braids

Computation in the seaweed monoid: a confluent rewriting system can be obtained by software (SEMIGROUPE, GAP)

$$\mathcal{T}_3$$
: 1, $a = g_1$, $b = g_2$; ab , ba , $aba = 0$

$$bb \rightarrow b$$

$$\mathcal{T}_4$$
: 1, $a=g_1$, $b=g_2$, $c=g_3$; ab, ac, ba, bc, cb, aba, abc, acb, bac, bcb, cba, abac, abcb, acba, bacb, bcba, abacb, abcba, bacba, abacba = 0

$$\mathit{ca} o \mathit{ac}$$

$$cbac \rightarrow bcba$$

$$bab
ightarrow aba$$

 $cbc
ightarrow bcb$

Seaweed braids

Computation in the seaweed monoid: a confluent rewriting system can be obtained by software (SEMIGROUPE, GAP)

$$\mathcal{T}_3$$
: 1, $a = g_1$, $b = g_2$; ab , ba , $aba = 0$

$$bb \rightarrow b$$

$$\mathcal{T}_4$$
: 1, $a=g_1$, $b=g_2$, $c=g_3$; ab , ac , ba , bc , cb , aba , abc , acb , bac , bcb , cba , $abac$, $abcb$, $acba$, $abacb$,

$$bb \rightarrow b$$

$$cc \rightarrow c$$

Easy to use, but not an efficient algorithm

Implicit unit-Monge ①-multiplication

The implicit unit-Monge matrix ①-multiplication problem

Given permutation matrices P_A , P_B , compute P_C , such that $P_A^{\Sigma} \odot P_B^{\Sigma} = P_C^{\Sigma}$ (equivalently, $P_A \odot P_B = P_C$)

Implicit unit-Monge ⊙-multiplication

The implicit unit-Monge matrix ①-multiplication problem

Given permutation matrices P_A , P_B , compute P_C , such that $P_A^{\Sigma} \odot P_B^{\Sigma} = P_C^{\Sigma}$ (equivalently, $P_A \odot P_B = P_C$)

Matrix ①-multiplication: running time

type	time	
general	$O(n^3)$	standard
	$O\left(\frac{n^3(\log\log n)^3}{\log^2 n}\right)$	[Chan: 2007]
Monge	$O(n^2)$	via [Aggarwal+: 1987]
implicit unit-Monge	$O(n^{1.5})$	[T: 2006]
	$O(n \log n)$	[T: 2010]

Implicit unit-Monge ①-multiplication

Implicit unit-Monge matrix ①-multiplication: the algorithm

$$P_C^{\Sigma}(i,k) = \min_j \left(P_A^{\Sigma}(i,j) + P_B^{\Sigma}(j,k) \right)$$

Divide-and-conquer on the range of j

Divide P_A horizontally, P_B vertically; two subproblems of effective size n/2:

$$P_{A,lo}^{\Sigma}\odot P_{B,lo}^{\Sigma}=P_{C,lo}^{\Sigma} \qquad P_{A,hi}^{\Sigma}\odot P_{B,hi}^{\Sigma}=P_{C,hi}^{\Sigma}$$

Conquer: most (but not all!) nonzeros of $P_{C,lo}$, $P_{C,hi}$ appear in P_C

Missing nonzeros can be obtained in time O(n) using the Monge property

Overall time $O(n \log n)$

- Introduction
- 2 Semi-local string comparison
- Matrix distance multiplication
- 4 Compressed string comparison
- 5 Conclusions and future work

Grammar compression

Notation: text t of length n; pattern p of length m

A GC-string (grammar-compressed string) t is a straight-line program (context-free grammar) generating $t=t_{\bar{n}}$ by \bar{n} assignments of the form

- $t_k = \alpha$, where α is an alphabet character
- $t_k = t_i t_i$, where i, j < k

In general, $n = O(2^{\bar{n}})$

Example: Fibonacci string "abaababaabaab"

$$t_1 = \text{`b'} \qquad t_2 = \text{`a'}$$

$$t_3 = t_2 t_1$$
 $t_4 = t_3 t_2$ $t_5 = t_4 t_3$ $t_6 = t_5 t_4$ $t_7 = t_6 t_5$

$$t_5 = t_4 t_3$$

$$t_6 = t_5 t_4$$

$$t_7 = t_6 t_5$$

Grammar compression

Grammar-compression covers various compression types, e.g. LZ78, LZW (not LZ77 directly)

Simplifying assumption: arithmetic up to n runs in O(1)

This assumption can be removed by careful index remapping

Three-way semi-local LCS on GC-strings

LCS: running time				
t	р			
plain	plain	O(mn)		[Wagner, Fischer: 1974]
		$O\left(\frac{mn}{\log^2 m}\right)$		[Masek, Paterson: 1980]
				[Crochemore+: 2003]
GC	plain	$O(m^3\bar{n}+\ldots)$	general CFG	[Myers: 1995]
		$O(m^{1.5}\bar{n})$	3-way semi	[T: 2008]
		$O(m \log m \cdot \bar{n})$	3-way semi	[T: NEW]
GC	GC	NP-hard		[Lifshits: 2005]
		$O(r^{1.2}\bar{r}^{1.4})$		[Hermelin+: 2009]
		$O(r \log r \cdot \bar{r})$		[T: NEW]

$$r = m + n$$
 $\bar{r} = \bar{m} + \bar{n}$

Three-way semi-local LCS on GC-strings

Three-way semi-local LCS (GC text, plain pattern): the algorithm

For every k, compute by recursion the three-way seaweed matrix for p vs t_k , using seaweed matrix \Box -multiplication: time $O(m \log m \cdot \bar{n})$

Overall time $O(m \log m \cdot \bar{n})$

Subsequence recognition on GC-strings

The global subsequence recognition problem

Does text t contain pattern p as a subsequence?

Global subsequence recognition: running time

t	p		
plain	plain	O(n)	greedy
GC	plain	$O(m\bar{n})$	greedy
GC	GC	NP-hard	[Lifshits: 2005]

Subsequence recognition on GC-strings

The local subsequence recognition problem

Find all minimally matching substrings of t with respect to p

Substring of t is matching, if p is a subsequence of t

Matching substring of t is minimally matching, if none of its proper substrings are matching

Subsequence recognition on GC-strings

Local subsequence recognition: running time (+output)

```
plain
        plain
                 O(mn)
                                                                  [Mannila+: 1995]
                 O(\frac{mn}{\log m})
                                                                       [Das+: 1997]
                 O(c^{m}+n)
                                                                  [Boasson+: 2001]
                 O(m + n\sigma)
                                                                    [Troniček: 2001]
                 O(m^2 \log m\bar{n})
GC
                                                                 [Cégielski+: 2006]
        plain
                 O(m^{1.5}\bar{n})
                                                                            [T: 2008]
                                                                           [T: NEW]
                 O(m \log m \cdot \bar{n})
                                                                     [Lifshits: 2005]
GC
        GC
                 NP-hard
```

Subsequence recognition on GC-strings

 $b\langle i:j\rangle$ matching iff box [i:j] not pierced left-to-right

$$\lessgtr \text{-maximal seaweeds: } \ll \text{-chain } \left(\hat{\imath}_{\frac{1}{2}},\hat{\jmath}_{\frac{1}{2}}\right) \ll \left(\hat{\imath}_{\frac{3}{2}},\hat{\jmath}_{\frac{3}{2}}\right) \ll \cdots \ll \left(\hat{\imath}_{\mathsf{s}-\frac{1}{2}},\hat{\jmath}_{\mathsf{s}-\frac{1}{2}}\right)$$

 $\begin{array}{l} b\langle i:j\rangle \text{ minimally matching iff } (i,j) \text{ is in the interleaved } \ll\text{-chain} \\ \left(\left\lfloor \hat{\imath}_{\frac{3}{2}}\right\rfloor, \left\lceil \hat{\jmath}_{\frac{1}{2}}\right\rceil\right) \ll \left(\left\lfloor \hat{\imath}_{\frac{5}{2}}\right\rfloor, \left\lceil \hat{\jmath}_{\frac{3}{2}}\right\rceil\right) \ll \cdots \ll \left(\left\lfloor \hat{\imath}_{s-\frac{1}{2}}\right\rfloor, \left\lceil \hat{\jmath}_{s-\frac{3}{2}}\right\rceil\right) \end{array}$

Subsequence recognition on GC-strings

Local subsequence recognition (GC text, plain pattern): the algorithm

For every k, compute by recursion the three-way seaweed matrix for p vs t_k , using seaweed matrix \Box -multiplication: time $O(m \log m \cdot \bar{n})$

Subsequence recognition on GC-strings

Local subsequence recognition (GC text, plain pattern): the algorithm

For every k, compute by recursion the three-way seaweed matrix for p vs t_k , using seaweed matrix \Box -multiplication: time $O(m \log m \cdot \bar{n})$

Given an assignment t = t't'', count by recursion

- minimally matching substrings in t'
- ullet minimally matching substrings in $t^{\prime\prime}$

Subsequence recognition on GC-strings

Local subsequence recognition (GC text, plain pattern): the algorithm

For every k, compute by recursion the three-way seaweed matrix for p vs t_k , using seaweed matrix \Box -multiplication: time $O(m \log m \cdot \bar{n})$

Given an assignment t = t't'', count by recursion

- ullet minimally matching substrings in t'
- ullet minimally matching substrings in t''

Then, find \ll -chain of \lessgtr -maximal seaweeds in time $\bar{n} \cdot O(m) = O(m\bar{n})$

The interleaved \ll -chain defines minimally matching substrings in t overlapping both t' and t''

Overall time $O(m \log m \cdot \bar{n}) + O(m\bar{n}) = O(m \log m \cdot \bar{n})$

Subsequence recognition on GC-strings

The threshold approximate matching problem

Find all matching substrings of t with respect to p, according to a threshold k

Substring of t is matching, if the edit distance for p vs t is at most k

Subsequence recognition on GC-strings

Threshold approximate matching: running time (+ output)

```
[Sellers: 1980]
plain
        plain
                 O(mn)
                 O(mk)
                                                           [Landau, Vishkin: 1989]
                 O(m+n+\frac{nk^4}{m})
                                                            [Cole, Hariharan: 2002]
                 O(m\bar{n}k^2)
GC
        plain
                                                              [Kärkkäinen+: 2003]
                 O(m\bar{n}k + \bar{n}\log n)
                                                     [LV: 1989] via [Bille+: 2010]
                 O(m\bar{n} + \bar{n}k^4 + \bar{n}\log n)
                                                     [CH: 2002] via [Bille+: 2010]
                 O(m \log m \cdot \bar{n})
                                                                            [T: NEW]
GC
        GC
                 NP-hard
                                                                      [Lifshits: 2005]
```

(Also many specialised variants for LZ compression)

Subsequence recognition on GC-strings

Threshold approximate matching (GC text, plain pattern): the algorithm

Algorithm structure similar to local subsequence recognition by seaweed matrix \boxdot -multiplication and seaweed \ll -chains

Extra ingredients:

- the blow-up technique: reduction of edit distances to LCS scores
- the "implicit SMAWK" technique: row minima in an implicit Monge matrix by an extension of the classical "SMAWK" algorithm; replaces «-chain interleaving

Overall time
$$O(m \log m \cdot \bar{n}) + O(m\bar{n}) = O(m \log m \cdot \bar{n})$$

- Introduction
- 2 Semi-local string comparison
- Matrix distance multiplication
- 4 Compressed string comparison
- 5 Conclusions and future work

Conclusions and future work

A powerful alternative to dynamic programming Implicit unit-Monge matrices:

- the seaweed monoid
- distance multiplication in time $O(n \log n)$
- next: lower bound?

Conclusions and future work

A powerful alternative to dynamic programming Implicit unit-Monge matrices:

- the seaweed monoid
- distance multiplication in time $O(n \log n)$
- next: lower bound?

Semi-local LCS problem:

- representation by implicit unit-Monge matrices
- generalisation to rational alignment scores
- next: real alignment scores?

Conclusions and future work

A powerful alternative to dynamic programming Implicit unit-Monge matrices:

- the seaweed monoid
- distance multiplication in time $O(n \log n)$
- next: lower bound?

Semi-local LCS problem:

- representation by implicit unit-Monge matrices
- generalisation to rational alignment scores
- next: real alignment scores?

Approximate matching in GC-text in time $O(m \log m \cdot \bar{n})$

Other applications:

- maximum clique in a circle graph in time $O(n \log^2 n)$
- parallel LCS in time $O(\frac{mn}{p})$, comm $O(\frac{m+n}{p^{1/2}})$ per processor
- identification of evolutionary-conserved regions in DNA