Recognizing Sparse Perfect Elimination Bipartite Graphs

Recognizing Sparse Perfect Elimination Bipartite

Graphs

Matthijs Bomhoff

University of Twente
The Netherlands

CSR 2011, June 18



Recognizing Sparse Perfect Elimination Bipartite Graphs
Outline

@ Introduction and Motivation
e Perfect Elimination Bipartite Graphs
© A New Recognition Algorithm

@ Conclusion



Recognizing Sparse Perfect Elimination Bipartite Graphs
Introduction and Motivation

Gaussian Elimination Example

o
oo N~
o~ o i~
w o o



Recognizing Sparse Perfect Elimination Bipartite Graphs
Introduction and Motivation

Gaussian Elimination Example

24 7 4 —6

—24 7 4 —6
820 0 0 #0 #£0 #0
5 04 0 0 #0 #0 #0
1 00 3 0 #0 #0 #0



Recognizing Sparse Perfect Elimination Bipartite Graphs
Introduction and Motivation

Gaussian Elimination Example

24 7 4 —6

—24 7 4 —6
820 0 0 #0 #£0 #0
5 04 0 0 #0 #0 #0
1 00 3 0 #0 #0 #0
—24 7 4 —6
-8 20 0
5 04 0
1 00 3




Recognizing Sparse Perfect Elimination Bipartite Graphs
Introduction and Motivation

Gaussian Elimination Example

24 7 4 —6

—24 7 4 —6
820 0 0 #0 #£0 #0
5 04 0 0 #0 #0 #0
1 00 3 0 #0 #0 #0
—24 7 4 —6 40 #0 #0 0
-8 20 0 -8 2 0 0
5 04 0 5 0 4 0
1 00 3 1 0 0 3




Recognizing Sparse Perfect Elimination Bipartite Graphs
Introduction and Motivation

Gaussian Elimination Example

24 7 4 —6

24 7 4 —6
820 0 0 #0 #£0 #£0
5 04 0 0 #0 #0 #0
1 00 3 0 #0 #0 #0
—24 7 4 —6 #0 #0 #0 0
-8 20 0 -8 2 0 0
5 04 0 5 0 4 0
1 00 3 1 0 0 3

@ Question: when can we avoid turning zeroes into non-zeroes
completely?
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‘Regularity’ assumption: If we add some multiple of row i to row j,
at most one non-zero value is turned into a zero.
@ Exact values are not important
@ A problem instance is a n x n (0,1)-matrix M (with m
non-zeroes, n < m < n?):
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Simplification

‘Regularity’ assumption: If we add some multiple of row i to row j,
at most one non-zero value is turned into a zero.
@ Exact values are not important
@ A problem instance is a n x n (0,1)-matrix M (with m
non-zeroes, n < m < n?):

1111
1100
1010
1001

@ ...or an equivalent bipartite graph Gy (with m edges):
n r r3 ra

1 Co c3 Cy4
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Suitable Pivots

A pivot (i, /) (with M; j = 1) does not create additional
non-zeroes, if for every i, /' we have that if M; y =1 and
M,‘/’j =1, then M,'/’j/ = 1.

1110
0110
1101
1110

@ If we can find a sequence of n such pivots in distinct rows and
columns, we can perform elimination without creating new
non-zeroes.
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Bisimplicial Edges

Definition

An edge e of a bipartite graph G is called bisimplicial if the
neighbors of the vertices incident to it induce a complete bipartite
subgraph.

rn rn r3 rg rn rn r3 rg
N ]~ \
B S
2NN
C1 () C3 C4 C1 (@) C3 C4

@ Bisimplicial edges in Gy, correspond to pivots that avoid new
non-zeroes in M.
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Perfect Elimination Bipartite Graphs

Definition

(Golumbic and Goss, (1978,1980)) A graph G is called perfect
elimination bipartite if there exists a sequence of edges

[e1, €2, ..., en] such that:

© e is a bisimplicial edge in G and ¢; is bisimplicial in
G—ler,...,ei—1] for2 <i<n;

Q@ G — e, e,...,e) is empty.

@ Perfect elimination bipartite graphs correspond to matrices
that allow elimination without creating new non-zeroes.

@ Naive algorithm for recognition: O (n5)
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A faster algorithm

Remark

(Goh and Rotem (1982)) Consider the matrix @ = MM T: Q; ;
contains the inner product of rows M; ., and M; .. Let /; equal the
number of elements in row Q; . with value equal to Q; ;. Denote
by s;j the column sums in M. (i,j) is bisimplicial in Gp iff M;j =1
and /; = s;.

e This leads to a O (n®) algorithm
e Spinrad (2004) subsequently improves this to O (n3/ log n)
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A faster algorithm

Remark

(Goh and Rotem (1982)) Consider the matrix @ = MM T: Q; ;
contains the inner product of rows M; ., and M; .. Let /; equal the
number of elements in row Q; . with value equal to Q; ;. Denote
by s;j the column sums in M. (i,j) is bisimplicial in Gp iff M;j =1
and /; = s;.

V.

e This leads to a O (n®) algorithm
e Spinrad (2004) subsequently improves this to O (n3/ log n)
@ Unfortunately, a sparse M may lead to a dense Q:
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@ Matrices that allow elimination without new non-zeroes
correspond to perfect elimination bipartite graphs
@ Recognition algorithms (time complexity):
e naive: O (n®)

o based on matrix-multiplication: O (n®/ log n)
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Summary so far

@ Matrices that allow elimination without new non-zeroes
correspond to perfect elimination bipartite graphs
@ Recognition algorithms (time complexity):
e naive: O (n®)
o based on matrix-multiplication: O (n®/ log n)
@ However, the result of matrix-multiplication may be a dense
matrix, while avoiding new non-zeroes is mainly useful for
sparse matrices. . .
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Algorithm Outline

1110

0110 111
1101 011
1110 111

e Up to n iterations (one for each pivot)
@ Each iteration, for every edge:

o Continue checking other edges until blocked
e If we finish checking other edges, we found a pivot
o If all edges block, there is no pivot
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Implementation Details

@ Rows/columns of M stored as lists of column/row numbers

o Consider a single edge over the entire algorithm:

step: O (m)

} block: O (n)
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Implementation Details

Rows/columns of M stored as lists of column/row numbers

Consider a single edge over the entire algorithm:

step: O (m)

} block: O (n)

Total work for a single edge: O (m) steps and O (n) blocks

—_ o
o = =

For each pivot, we update all list items: O (m)
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Time and Space Complexities

o Time complexity: O (m?)
e initialization: O(nz)
o steps: O (m?)
e blocks: O (nm)
o updates: O (nm)
@ Space complexity: O (m)
lists: O (m)
edge states: O (m)
row/column data: O (n)
pivots: O (n)
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Conclusion

o Existing literature: focus on time complexity
@ However: space complexity is important in practice
@ Our new algorithm:

o O(m?) time

o O (m) space

e Both time and space improvement for sparse M

(m < ny/n/logn)
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Conclusion

o Existing literature: focus on time complexity
@ However: space complexity is important in practice
@ Our new algorithm:

o O(m?) time

o O (m) space

e Both time and space improvement for sparse M

(m < ny/n/log n)
@ Work in progress:

e Thinking about possible further time complexity improvements
o Work on alternative elimination procedures
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