Recognizing Sparse Perfect Elimination Bipartite Graphs

Matthijs Bomhoff

University of Twente The Netherlands

CSR 2011, June 18

2 Perfect Elimination Bipartite Graphs

3 A New Recognition Algorithm

$$\left(\begin{array}{ccccc} -24 & 7 & 4 & -6 \\ -8 & 2 & 0 & 0 \\ 5 & 0 & 4 & 0 \\ 1 & 0 & 0 & 3 \end{array}\right)$$

$$\left(\begin{array}{ccccc} -24 & 7 & 4 & -6 \\ -8 & 2 & 0 & 0 \\ 5 & 0 & 4 & 0 \\ 1 & 0 & 0 & 3 \end{array}\right) \quad \left(\begin{array}{ccccc} -24 & 7 & 4 & -6 \\ 0 & \neq 0 & \neq 0 & \neq 0 \\ 0 & \neq 0 & \neq 0 & \neq 0 \\ 0 & \neq 0 & \neq 0 & \neq 0 \end{array}\right)$$

$$\left(\begin{array}{cccc} -24 & 7 & 4 & -6 \\ -8 & 2 & 0 & 0 \\ 5 & 0 & 4 & 0 \\ 1 & 0 & 0 & 3 \end{array}\right) \quad \left(\begin{array}{cccc} -24 & 7 \\ 0 & \neq 0 \\ 0 & \neq 0 \\ 0 & \neq 0 \end{array}\right)$$
$$\left(\begin{array}{cccc} -24 & 7 & 4 & -6 \\ -8 & 2 & 0 & 0 \\ 5 & 0 & 4 & 0 \\ 1 & 0 & 0 & 3 \end{array}\right)$$

$$\begin{array}{cccc} -24 & 7 & 4 & -6 \\ 0 & \neq 0 & \neq 0 & \neq 0 \\ 0 & \neq 0 & \neq 0 & \neq 0 \\ 0 & \neq 0 & \neq 0 & \neq 0 \end{array} \right)$$

$$\left(\begin{array}{cccc} -24 & 7 & 4 & -6 \\ -8 & 2 & 0 & 0 \\ 5 & 0 & 4 & 0 \\ 1 & 0 & 0 & 3 \end{array}\right) \quad \left(\begin{array}{cccc} -24 & 7 & 4 & -6 \\ 0 & \neq 0 & \neq 0 & \neq 0 \\ 0 & \neq 0 & \neq 0 & \neq 0 \\ 0 & \neq 0 & \neq 0 & \neq 0 \end{array}\right)$$
$$\left(\begin{array}{cccc} -24 & 7 & 4 & -6 \\ 0 & \neq 0 & \neq 0 & \neq 0 \\ 0 & \neq 0 & \neq 0 & \neq 0 \end{array}\right)$$
$$\left(\begin{array}{cccc} -24 & 7 & 4 & -6 \\ -8 & 2 & 0 & 0 \\ 5 & 0 & 4 & 0 \\ 1 & 0 & 0 & 3 \end{array}\right) \quad \left(\begin{array}{cccc} 40 & \neq 0 & 2 \\ 0 & \neq 0 & \neq 0 & \neq 0 \\ -8 & 2 & 0 & 0 \\ 5 & 0 & 4 & 0 \\ 1 & 0 & 0 & 3 \end{array}\right)$$

Gaussian Elimination Example

$$\left(\begin{array}{ccccc} -24 & 7 & 4 & -6 \\ -8 & 2 & 0 & 0 \\ 5 & 0 & 4 & 0 \\ 1 & 0 & 0 & 3 \end{array}\right) \quad \left(\begin{array}{ccccc} -24 & 7 & 4 & -6 \\ 0 & \neq 0 & \neq 0 & \neq 0 \\ 0 & \neq 0 & \neq 0 & \neq 0 \\ 0 & \neq 0 & \neq 0 & \neq 0 \end{array}\right)$$
$$\left(\begin{array}{ccccc} -24 & 7 & 4 & -6 \\ 0 & \neq 0 & \neq 0 & \neq 0 \\ 0 & \neq 0 & \neq 0 & \neq 0 \end{array}\right)$$
$$\left(\begin{array}{cccccc} -24 & 7 & 4 & -6 \\ 0 & \neq 0 & \neq 0 & \neq 0 \\ 0 & \neq 0 & \neq 0 & \neq 0 \end{array}\right)$$
$$\left(\begin{array}{ccccccccc} -24 & 7 & 4 & -6 \\ 0 & \neq 0 & \neq 0 & \neq 0 \\ -8 & 2 & 0 & 0 \\ 5 & 0 & 4 & 0 \\ 1 & 0 & 0 & 3 \end{array}\right)$$

• Question: when can we avoid turning zeroes into non-zeroes completely?

Simplification

'Regularity' assumption: *If we add some multiple of row i to row j, at most one non-zero value is turned into a zero.*

Simplification

'Regularity' assumption: *If we add some multiple of row i to row j, at most one non-zero value is turned into a zero.*

- Exact values are not important
- A problem instance is a n × n (0, 1)-matrix M (with m non-zeroes, n ≤ m ≤ n²):

Simplification

'Regularity' assumption: *If we add some multiple of row i to row j, at most one non-zero value is turned into a zero.*

- Exact values are not important
- A problem instance is a n × n (0, 1)-matrix M (with m non-zeroes, n ≤ m ≤ n²):

$$\left(\begin{array}{cccc}1&1&1&1\\&1&1&0&0\\&1&0&1&0\\&1&0&0&1\end{array}\right)$$

• ... or an equivalent bipartite graph G_M (with m edges):

Suitable Pivots

Remark

A pivot (i, j) (with $M_{i,j} = 1$) does not create additional non-zeroes, if for every i', j' we have that if $M_{i,j'} = 1$ and $M_{i',j} = 1$, then $M_{i',j'} = 1$.

• If we can find a sequence of *n* such pivots in distinct rows and columns, we can perform elimination without creating new non-zeroes.

Bisimplicial Edges

Definition

An edge e of a bipartite graph G is called *bisimplicial* if the neighbors of the vertices incident to it induce a complete bipartite subgraph.

• Bisimplicial edges in G_M correspond to pivots that avoid new non-zeroes in M.

Perfect Elimination Bipartite Graphs

Definition

(Golumbic and Goss, (1978,1980)) A graph G is called *perfect* elimination bipartite if there exists a sequence of edges $[e_1, e_2, \ldots, e_n]$ such that:

 e₁ is a bisimplicial edge in G and e_i is bisimplicial in G − [e₁,..., e_{i−1}] for 2 ≤ i ≤ n;

2
$$G - [e_1, e_2, ..., e_n]$$
 is empty.

- Perfect elimination bipartite graphs correspond to matrices that allow elimination without creating new non-zeroes.
- Naive algorithm for recognition: $\mathcal{O}\left(n^{5}\right)$

A faster algorithm

Remark

(Goh and Rotem (1982)) Consider the matrix $Q = MM^T$: $Q_{i,j}$ contains the inner product of rows $M_{i,*}$ and $M_{j,*}$. Let l_i equal the number of elements in row $Q_{i,*}$ with value equal to $Q_{i,i}$. Denote by s_j the column sums in M. (i,j) is bisimplicial in G_M iff $M_{i,j} = 1$ and $l_i = s_j$.

- This leads to a $\mathcal{O}\left(n^3
 ight)$ algorithm
- Spinrad (2004) subsequently improves this to $\mathcal{O}\left(n^3/\log n\right)$

A faster algorithm

Remark

(Goh and Rotem (1982)) Consider the matrix $Q = MM^T$: $Q_{i,j}$ contains the inner product of rows $M_{i,*}$ and $M_{j,*}$. Let l_i equal the number of elements in row $Q_{i,*}$ with value equal to $Q_{i,i}$. Denote by s_j the column sums in M. (i,j) is bisimplicial in G_M iff $M_{i,j} = 1$ and $l_i = s_j$.

- This leads to a $\mathcal{O}\left(n^3
 ight)$ algorithm
- Spinrad (2004) subsequently improves this to $O(n^3/\log n)$
- Unfortunately, a sparse M may lead to a dense Q:

Summary so far

- Matrices that allow elimination without new non-zeroes correspond to perfect elimination bipartite graphs
- Recognition algorithms (time complexity):
 - naive: $\mathcal{O}\left(n^{5}\right)$
 - based on matrix-multiplication: $\mathcal{O}\left(n^3/\log n\right)$

Summary so far

- Matrices that allow elimination without new non-zeroes correspond to perfect elimination bipartite graphs
- Recognition algorithms (time complexity):
 - naive: $\mathcal{O}\left(n^{5}\right)$
 - based on matrix-multiplication: $O(n^3/\log n)$
- However, the result of matrix-multiplication may be a dense matrix, while avoiding new non-zeroes is mainly useful for sparse matrices...

Algorithm Outline

- Up to *n* iterations (one for each pivot)
- Each iteration, for every edge:
 - Continue checking other edges until blocked
 - If we finish checking other edges, we found a pivot
 - If all edges block, there is no pivot

Implementation Details

- Rows/columns of *M* stored as lists of column/row numbers
- Consider a single edge over the entire algorithm:

Implementation Details

- Rows/columns of *M* stored as lists of column/row numbers
- Consider a single edge over the entire algorithm:

- Total work for a single edge: $\mathcal{O}(m)$ steps and $\mathcal{O}(n)$ blocks
- For each pivot, we update all list items: $\mathcal{O}(m)$

Time and Space Complexities

- Time complexity: $\mathcal{O}(m^2)$
 - initialization: $\mathcal{O}\left(n^2\right)$
 - steps: $O(m^2)$
 - blocks: O(nm)
 - updates: $\mathcal{O}(nm)$
- Space complexity: $\mathcal{O}(m)$
 - lists: $\mathcal{O}(m)$
 - edge states: $\mathcal{O}(m)$
 - row/column data: $\mathcal{O}(n)$
 - pivots: $\mathcal{O}(n)$

Conclusion

- Existing literature: focus on time complexity
- However: space complexity is important in practice
- Our new algorithm:
 - $\mathcal{O}\left(m^2\right)$ time
 - $\mathcal{O}(m)$ space
 - Both time and space improvement for sparse M

 $\left(m < n\sqrt{n/\log n}\right)$

Conclusion

- Existing literature: focus on time complexity
- However: space complexity is important in practice
- Our new algorithm:
 - $\mathcal{O}\left(m^2
 ight)$ time
 - $\mathcal{O}(m)$ space
 - Both time and space improvement for sparse M

 $\left(m < n\sqrt{n/\log n}\right)$

- Work in progress:
 - Thinking about possible further time complexity improvements
 - Work on alternative elimination procedures