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Gaussian Elimination Example
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Question: when can we avoid turning zeroes into non-zeroes
completely?
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Simplification

‘Regularity’ assumption: If we add some multiple of row i to row j,
at most one non-zero value is turned into a zero.

Exact values are not important
A problem instance is a n × n (0, 1)-matrix M (with m
non-zeroes, n ≤ m ≤ n2):

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1




. . . or an equivalent bipartite graph GM (with m edges):

c1 c2 c3 c4

r1 r2 r3 r4
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Suitable Pivots

Remark

A pivot (i , j) (with Mi ,j = 1) does not create additional
non-zeroes, if for every i ′, j ′ we have that if Mi ,j ′ = 1 and
Mi ′,j = 1, then Mi ′,j ′ = 1.

1 1 1 0

0 1 1 0

1 1 0 1

1 1 1 0




If we can find a sequence of n such pivots in distinct rows and
columns, we can perform elimination without creating new
non-zeroes.
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Bisimplicial Edges

Definition

An edge e of a bipartite graph G is called bisimplicial if the
neighbors of the vertices incident to it induce a complete bipartite
subgraph.

c1 c2 c3 c4

r1 r2 r3 r4

c1 c2 c3 c4

r1 r2 r3 r4

Bisimplicial edges in GM correspond to pivots that avoid new
non-zeroes in M.
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Perfect Elimination Bipartite Graphs

Definition

(Golumbic and Goss, (1978,1980)) A graph G is called perfect
elimination bipartite if there exists a sequence of edges
[e1, e2, . . . , en] such that:

1 e1 is a bisimplicial edge in G and ei is bisimplicial in
G − [e1, . . . , ei−1] for 2 ≤ i ≤ n;

2 G − [e1, e2, . . . , en] is empty.

Perfect elimination bipartite graphs correspond to matrices
that allow elimination without creating new non-zeroes.

Naive algorithm for recognition: O
(
n5
)
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A faster algorithm

Remark

(Goh and Rotem (1982)) Consider the matrix Q = MMT : Qi ,j

contains the inner product of rows Mi ,∗ and Mj ,∗. Let li equal the
number of elements in row Qi ,∗ with value equal to Qi ,i . Denote
by sj the column sums in M. (i , j) is bisimplicial in GM iff Mi ,j = 1
and li = sj .

This leads to a O
(
n3
)

algorithm
Spinrad (2004) subsequently improves this to O

(
n3/ log n

)

Unfortunately, a sparse M may lead to a dense Q:
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=

4 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1






Recognizing Sparse Perfect Elimination Bipartite Graphs

Perfect Elimination Bipartite Graphs

A faster algorithm

Remark

(Goh and Rotem (1982)) Consider the matrix Q = MMT : Qi ,j

contains the inner product of rows Mi ,∗ and Mj ,∗. Let li equal the
number of elements in row Qi ,∗ with value equal to Qi ,i . Denote
by sj the column sums in M. (i , j) is bisimplicial in GM iff Mi ,j = 1
and li = sj .

This leads to a O
(
n3
)

algorithm
Spinrad (2004) subsequently improves this to O

(
n3/ log n

)
Unfortunately, a sparse M may lead to a dense Q:

1 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0


×

1 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0


=

4 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1






Recognizing Sparse Perfect Elimination Bipartite Graphs

Perfect Elimination Bipartite Graphs

Summary so far

Matrices that allow elimination without new non-zeroes
correspond to perfect elimination bipartite graphs

Recognition algorithms (time complexity):

naive: O
(
n5
)

based on matrix-multiplication: O
(
n3/ log n

)

However, the result of matrix-multiplication may be a dense
matrix, while avoiding new non-zeroes is mainly useful for
sparse matrices. . .
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An Observation
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Algorithm Outline
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Up to n iterations (one for each pivot)

Each iteration, for every edge:

Continue checking other edges until blocked
If we finish checking other edges, we found a pivot
If all edges block, there is no pivot
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A New Recognition Algorithm

Implementation Details

Rows/columns of M stored as lists of column/row numbers

Consider a single edge over the entire algorithm:

1 1

0 1

1 0




1

3

1

2

3

}
step: O (m)

block: O (n)

Total work for a single edge: O (m) steps and O (n) blocks

For each pivot, we update all list items: O (m)
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Time and Space Complexities

Time complexity: O
(
m2
)

initialization: O
(
n2
)

steps: O
(
m2
)

blocks: O (nm)
updates: O (nm)

Space complexity: O (m)

lists: O (m)
edge states: O (m)
row/column data: O (n)
pivots: O (n)
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Conclusion

Existing literature: focus on time complexity

However: space complexity is important in practice

Our new algorithm:

O
(
m2
)

time
O (m) space
Both time and space improvement for sparse M(
m < n

√
n/ log n

)

Work in progress:

Thinking about possible further time complexity improvements
Work on alternative elimination procedures
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