Recognizing Sparse Perfect Elimination Bipartite Graphs

Matthijs Bomhoff
University of Twente
The Netherlands

CSR 2011, June 18
(1) Introduction and Motivation
(2) Perfect Elimination Bipartite Graphs
(3) A New Recognition Algorithm

4 Conclusion

Gaussian Elimination Example

$$
\left(\begin{array}{cccc}
-24 & 7 & 4 & -6 \\
-8 & 2 & 0 & 0 \\
5 & 0 & 4 & 0 \\
1 & 0 & 0 & 3
\end{array}\right)
$$

Gaussian Elimination Example

$$
\left(\begin{array}{cccc}
-24 & 7 & 4 & -6 \\
-8 & 2 & 0 & 0 \\
5 & 0 & 4 & 0 \\
1 & 0 & 0 & 3
\end{array}\right)\left(\begin{array}{cccc}
-24 & 7 & 4 & -6 \\
0 & \neq 0 & \neq 0 & \neq 0 \\
0 & \neq 0 & \neq 0 & \neq 0 \\
0 & \neq 0 & \neq 0 & \neq 0
\end{array}\right)
$$

Gaussian Elimination Example

$$
\begin{aligned}
& \left(\begin{array}{cccc}
-24 & 7 & 4 & -6 \\
-8 & 2 & 0 & 0 \\
5 & 0 & 4 & 0 \\
1 & 0 & 0 & 3
\end{array}\right)\left(\begin{array}{cccc}
-24 & 7 & 4 & -6 \\
0 & \neq 0 & \neq 0 & \neq 0 \\
0 & \neq 0 & \neq 0 & \neq 0 \\
0 & \neq 0 & \neq 0 & \neq 0
\end{array}\right) \\
& \left(\begin{array}{cccc}
-24 & 7 & 4 & -6 \\
-8 & 2 & 0 & 0 \\
5 & 0 & 4 & 0 \\
1 & 0 & 0 & 3
\end{array}\right)
\end{aligned}
$$

Gaussian Elimination Example

$$
\begin{aligned}
& \left(\begin{array}{cccc}
-24 & 7 & 4 & -6 \\
-8 & 2 & 0 & 0 \\
5 & 0 & 4 & 0 \\
1 & 0 & 0 & 3
\end{array}\right)\left(\begin{array}{cccc}
-24 & 7 & 4 & -6 \\
0 & \neq 0 & \neq 0 & \neq 0 \\
0 & \neq 0 & \neq 0 & \neq 0 \\
0 & \neq 0 & \neq 0 & \neq 0
\end{array}\right) \\
& \left(\begin{array}{cccc}
-24 & 7 & 4 & -6 \\
-8 & 2 & 0 & 0 \\
5 & 0 & 4 & 0 \\
1 & 0 & 0 & 3
\end{array}\right) \quad\left(\begin{array}{cccc}
\neq 0 & \neq 0 & \neq 0 & 0 \\
-8 & 2 & 0 & 0 \\
5 & 0 & 4 & 0 \\
1 & 0 & 0 & 3
\end{array}\right)
\end{aligned}
$$

Gaussian Elimination Example

$$
\begin{aligned}
& \left(\begin{array}{cccc}
-24 & 7 & 4 & -6 \\
-8 & 2 & 0 & 0 \\
5 & 0 & 4 & 0 \\
1 & 0 & 0 & 3
\end{array}\right)\left(\begin{array}{cccc}
-24 & 7 & 4 & -6 \\
0 & \neq 0 & \neq 0 & \neq 0 \\
0 & \neq 0 & \neq 0 & \neq 0 \\
0 & \neq 0 & \neq 0 & \neq 0
\end{array}\right) \\
& \left(\begin{array}{cccc}
-24 & 7 & 4 & -6 \\
-8 & 2 & 0 & 0 \\
5 & 0 & 4 & 0 \\
1 & 0 & 0 & 3
\end{array}\right)\left(\begin{array}{cccc}
\neq 0 & \neq 0 & \neq 0 & 0 \\
-8 & 2 & 0 & 0 \\
5 & 0 & 4 & 0 \\
1 & 0 & 0 & 3
\end{array}\right)
\end{aligned}
$$

- Question: when can we avoid turning zeroes into non-zeroes completely?

Simplification

'Regularity' assumption: If we add some multiple of row i to row j, at most one non-zero value is turned into a zero.

Simplification

'Regularity' assumption: If we add some multiple of row i to row j, at most one non-zero value is turned into a zero.

- Exact values are not important
- A problem instance is a $n \times n(0,1)$-matrix M (with m non-zeroes, $n \leq m \leq n^{2}$):

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

Simplification

'Regularity' assumption: If we add some multiple of row i to row j, at most one non-zero value is turned into a zero.

- Exact values are not important
- A problem instance is a $n \times n(0,1)$-matrix M (with m non-zeroes, $n \leq m \leq n^{2}$):

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

- ... or an equivalent bipartite graph G_{M} (with m edges):

Suitable Pivots

Remark

A pivot (i, j) (with $M_{i, j}=1$) does not create additional non-zeroes, if for every i^{\prime}, j^{\prime} we have that if $M_{i, j^{\prime}}=1$ and $M_{i^{\prime}, j}=1$, then $M_{i^{\prime}, j^{\prime}}=1$.

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

- If we can find a sequence of n such pivots in distinct rows and columns, we can perform elimination without creating new non-zeroes.

Bisimplicial Edges

Definition

An edge e of a bipartite graph G is called bisimplicial if the neighbors of the vertices incident to it induce a complete bipartite subgraph.

- Bisimplicial edges in G_{M} correspond to pivots that avoid new non-zeroes in M.

Perfect Elimination Bipartite Graphs

Definition

(Golumbic and Goss, $(1978,1980)$) A graph G is called perfect elimination bipartite if there exists a sequence of edges $\left[e_{1}, e_{2}, \ldots, e_{n}\right]$ such that:
(1) e_{1} is a bisimplicial edge in G and e_{i} is bisimplicial in $G-\left[e_{1}, \ldots, e_{i-1}\right]$ for $2 \leq i \leq n$;
(2) $G-\left[e_{1}, e_{2}, \ldots, e_{n}\right]$ is empty.

- Perfect elimination bipartite graphs correspond to matrices that allow elimination without creating new non-zeroes.
- Naive algorithm for recognition: $\mathcal{O}\left(n^{5}\right)$

A faster algorithm

Remark

(Goh and Rotem (1982)) Consider the matrix $Q=M M^{T}: Q_{i, j}$ contains the inner product of rows $M_{i, *}$ and $M_{j, *}$. Let l_{i} equal the number of elements in row $Q_{i, *}$ with value equal to $Q_{i, i}$. Denote by s_{j} the column sums in $M .(i, j)$ is bisimplicial in G_{M} iff $M_{i, j}=1$ and $I_{i}=s_{j}$.

- This leads to a $\mathcal{O}\left(n^{3}\right)$ algorithm
- Spinrad (2004) subsequently improves this to $\mathcal{O}\left(n^{3} / \log n\right)$

A faster algorithm

Remark

(Goh and Rotem (1982)) Consider the matrix $Q=M M^{T}: Q_{i, j}$ contains the inner product of rows $M_{i, *}$ and $M_{j, *}$. Let l_{i} equal the number of elements in row $Q_{i, *}$ with value equal to $Q_{i, i}$. Denote by s_{j} the column sums in $M .(i, j)$ is bisimplicial in G_{M} iff $M_{i, j}=1$ and $l_{i}=s_{j}$.

- This leads to a $\mathcal{O}\left(n^{3}\right)$ algorithm
- Spinrad (2004) subsequently improves this to $\mathcal{O}\left(n^{3} / \log n\right)$
- Unfortunately, a sparse M may lead to a dense Q :

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \times\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
4 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

Summary so far

- Matrices that allow elimination without new non-zeroes correspond to perfect elimination bipartite graphs
- Recognition algorithms (time complexity):
- naive: $\mathcal{O}\left(n^{5}\right)$
- based on matrix-multiplication: $\mathcal{O}\left(n^{3} / \log n\right)$

Summary so far

- Matrices that allow elimination without new non-zeroes correspond to perfect elimination bipartite graphs
- Recognition algorithms (time complexity):
- naive: $\mathcal{O}\left(n^{5}\right)$
- based on matrix-multiplication: $\mathcal{O}\left(n^{3} / \log n\right)$
- However, the result of matrix-multiplication may be a dense matrix, while avoiding new non-zeroes is mainly useful for sparse matrices...

An Observation

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
\dot{\ddots} & \dot{1} & 1 & 0 \\
\vdots & \vdots & 0 & 1 \\
\vdots & 1 & \vdots & \\
1 & 1 & 1 & 0
\end{array}\right)
$$

An Observation

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
\dot{0} & 1 & 1 & 0 \\
\dot{1} & 1 & 0 & 1 \\
\dot{1} & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
\dot{0} & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

An Observation

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
\dot{0} & 1 & 1 & 0 \\
\dot{1} & \dot{1} & 0 & 1 \\
\dot{1} & \dot{1} & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
\dot{0} & 1 & 1 & 0 \\
\dot{1} & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

An Observation

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
\dot{\oplus} & 1 & 1 & 0 \\
\dot{1} & 1 & 0 & 1 \\
\dot{1} & 1 & 0 & 1 \\
\dot{1} & 1 & 1 & 0
\end{array}\right) \\
& \left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
\end{aligned}\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
\dot{0} & 1 & 1 & 0 \\
\dot{1} & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

An Observation

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
\dot{0} & \dot{1} & 1 & 0 \\
\vdots & \vdots & 0 & 1 \\
\vdots & \vdots & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
\dot{0} & 1 & 1 & 0 \\
\vdots & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \\
& \left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

An Observation

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
\dot{\oplus} & \dot{1} & 1 & 0 \\
\vdots & \vdots & 0 & 1 \\
\dot{\vdots} & \dot{\vdots} & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
\dot{\oplus} & 1 & \dot{1} & 0 \\
\dot{1} & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \\
& \left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

An Observation

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
\dot{\dot{0}} & \dot{1} & 1 & 0 \\
\dot{\vdots} & \dot{1} & 0 & 1 \\
\dot{1} & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
\dot{\oplus} & 1 & \dot{1} & 0 \\
\dot{1} & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \\
& \left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Algorithm Outline

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

- Up to n iterations (one for each pivot)
- Each iteration, for every edge:
- Continue checking other edges until blocked
- If we finish checking other edges, we found a pivot
- If all edges block, there is no pivot

Implementation Details

- Rows/columns of M stored as lists of column/row numbers
- Consider a single edge over the entire algorithm:

Implementation Details

- Rows/columns of M stored as lists of column/row numbers
- Consider a single edge over the entire algorithm:
- Total work for a single edge: $\mathcal{O}(m)$ steps and $\mathcal{O}(n)$ blocks
- For each pivot, we update all list items: $\mathcal{O}(m)$

Time and Space Complexities

- Time complexity: $\mathcal{O}\left(m^{2}\right)$
- initialization: $\mathcal{O}\left(n^{2}\right)$
- steps: $\mathcal{O}\left(m^{2}\right)$
- blocks: $\mathcal{O}(n m)$
- updates: $\mathcal{O}(n m)$
- Space complexity: $\mathcal{O}(m)$
- lists: $\mathcal{O}(m)$
- edge states: $\mathcal{O}(m)$
- row/column data: $\mathcal{O}(n)$
- pivots: $\mathcal{O}(n)$

Conclusion

- Existing literature: focus on time complexity
- However: space complexity is important in practice
- Our new algorithm:
- $\mathcal{O}\left(m^{2}\right)$ time
- $\mathcal{O}(m)$ space
- Both time and space improvement for sparse M $(m<n \sqrt{n / \log n})$

Conclusion

- Existing literature: focus on time complexity
- However: space complexity is important in practice
- Our new algorithm:
- $\mathcal{O}\left(m^{2}\right)$ time
- $\mathcal{O}(m)$ space
- Both time and space improvement for sparse M

$$
(m<n \sqrt{n / \log n})
$$

- Work in progress:
- Thinking about possible further time complexity improvements
- Work on alternative elimination procedures

