A Multiple-Conclusion Calculus for First-Order Gödel Logic

Arnon Avron Ori Lahav

Tel Aviv University
CSR June 2011

Gödel Logic

■ In 1933, Gödel introduced a sequence $\left\{G_{n}\right\}$ of n-valued matrices and used them to show some important properties of intuitionistic logic.
■ In 1959, Dummett embedded all the $G_{n} s$ in an infinite-valued matrix G_{ω}.
■ G_{ω} is equivalent to $G_{[0,1]}$, a natural matrix for the truth-values $[0,1]$.

- The logic of $G_{[0,1]}$ is called Gödel logic.

■ Gödel logic is perhaps the most important intermediate logic.
■ Nowadays, Gödel logic is also recognized as one of the three most basic fuzzy logics.

Many-Valued Semantics

■ A structure M consists of:
■ Non-empty domain D

- An interpretation I:
- $I[c] \in D$ for every constant
- $I[f] \in D^{n} \rightarrow D$ for every n-ary function
- $I[p] \in D^{n} \rightarrow[0,1]$ for every n-ary predicate

Many-Valued Semantics

- A structure M consists of:

■ Non-empty domain D

- An interpretation I:
- $I[c] \in D$ for every constant
- $I[f] \in D^{n} \rightarrow D$ for every n-ary function
- $I[p] \in D^{n} \rightarrow[0,1]$ for every n-ary predicate

■ An M-evaluation is a function e:

- Assigning an element of D for every free variable

■ Naturally extended to all terms (according to I)

Many-Valued Semantics

- $\|\bullet\|_{e}^{M}$ is defined as follows:

$$
\begin{aligned}
& ■ p\left(t_{1}, \ldots, t_{n}\right) \|_{e}^{M}=l[p]\left[e\left[t_{1}\right], \ldots, e\left[t_{n}\right]\right] \\
& \square\|\perp\|_{e}^{M}=0
\end{aligned}
$$

Many-Valued Semantics

- \| • $\|_{e}^{M}$ is defined as follows:

$$
\begin{aligned}
■ & \left\|p\left(t_{1}, \ldots, t_{n}\right)\right\|_{e}^{M}=l[p]\left[e\left[t_{1}\right], \ldots, e\left[t_{n}\right]\right] \\
■ & \|\perp\|_{e}^{M}=0 \\
■ & \left\|\psi_{1} \vee \psi_{2}\right\|_{e}^{M}=\max \left\{\left\|\psi_{1}\right\|_{e}^{M},\left\|\psi_{2}\right\|_{e}^{M}\right\} \\
■ & \left\|\psi_{1} \wedge \psi_{2}\right\|_{e}^{M}=\min \left\{\left\|\psi_{1}\right\|_{e}^{M},\left\|\psi_{2}\right\|_{e}^{M}\right\}
\end{aligned}
$$

Many-Valued Semantics

- \| • $\|_{e}^{M}$ is defined as follows:

■ $\left\|p\left(t_{1}, \ldots, t_{n}\right)\right\|_{e}^{M}=l[p]\left[e\left[t_{1}\right], \ldots, e\left[t_{n}\right]\right]$

- $\|\perp\|_{e}^{M}=0$

■ $\left\|\psi_{1} \vee \psi_{2}\right\|_{e}^{M}=\max \left\{\left\|\psi_{1}\right\|_{e}^{M},\left\|\psi_{2}\right\|_{e}^{M}\right\}$
■ $\left\|\psi_{1} \wedge \psi_{2}\right\|_{e}^{M}=\min \left\{\left\|\psi_{1}\right\|_{e}^{M},\left\|\psi_{2}\right\|_{e}^{M}\right\}$
■ $\left\|\psi_{1} \supset \psi_{2}\right\|_{e}^{M}= \begin{cases}1 & \left\|\psi_{1}\right\|_{e}^{M} \leq\left\|\psi_{2}\right\|_{e}^{M} \\ \left\|\psi_{2}\right\|_{e}^{M} & \text { otherwise }\end{cases}$

Many-Valued Semantics

- $\|\bullet\|_{e}^{M}$ is defined as follows:
$■\left\|p\left(t_{1}, \ldots, t_{n}\right)\right\|_{e}^{M}=l[p]\left[e\left[t_{1}\right], \ldots, e\left[t_{n}\right]\right]$
- $\|\perp\|_{e}^{M}=0$

■ $\left\|\psi_{1} \vee \psi_{2}\right\|_{e}^{M}=\max \left\{\left\|\psi_{1}\right\|_{e}^{M},\left\|\psi_{2}\right\|_{e}^{M}\right\}$
■ $\left\|\psi_{1} \wedge \psi_{2}\right\|_{e}^{M}=\min \left\{\left\|\psi_{1}\right\|_{e}^{M},\left\|\psi_{2}\right\|_{e}^{M}\right\}$
■ $\left\|\psi_{1} \supset \psi_{2}\right\|_{e}^{M}= \begin{cases}1 & \left\|\psi_{1}\right\|_{e}^{M} \leq\left\|\psi_{2}\right\|_{e}^{M} \\ \left\|\psi_{2}\right\|_{e}^{M} & \text { otherwise }\end{cases}$
■ $\|\forall x \psi\|_{e}^{M}=\inf \left\{\|\psi\|_{e_{[x:=d]}}^{M} \mid d \in D\right\}$
■ $\|\exists x \psi\|_{e}^{M}=\sup \left\{\|\psi\|_{e_{[x:=d]}^{M}}^{M} \mid d \in D\right\}$

Many-Valued Semantics

- $\|\bullet\|_{e}^{M}$ is defined as follows:

$$
\begin{aligned}
& ■\left\|p\left(t_{1}, \ldots, t_{n}\right)\right\|_{e}^{M}=I[p]\left[e\left[t_{1}\right], \ldots, e\left[t_{n}\right]\right] \\
& ■\|\perp\|_{e}^{M}=0 \\
& \square\left\|\psi_{1} \vee \psi_{2}\right\|_{e}^{M}=\max \left\{\left\|\psi_{1}\right\|_{e}^{M},\left\|\psi_{2}\right\|_{e}^{M}\right\} \\
& \square\left\|\psi_{1} \wedge \psi_{2}\right\|_{e}^{M}=\min \left\{\left\|\psi_{1}\right\|_{e}^{M},\left\|\psi_{2}\right\|_{e}^{M}\right\} \\
& ■\left\|\psi_{1} \supset \psi_{2}\right\|_{e}^{M}= \begin{cases}1 & \left\|\psi_{1}\right\|_{e}^{M} \leq\left\|\psi_{2}\right\|_{e}^{M} \\
\left\|\psi_{2}\right\|_{e}^{M} & \text { otherwise }\end{cases} \\
& \square\|\forall x \psi\|_{e}^{M}=\inf \left\{\|\psi\|_{\left.e_{[x:=a]}^{M} \mid d \in D\right\}} \mid d \exists x \psi \|_{e}^{M}=\sup \left\{\|\psi\|_{e_{[x:=a]}}^{M} \mid d \in D\right\}\right.
\end{aligned}
$$

$\square M$ is a model of a formula if φ if $\|\varphi\|_{e}^{M}=1$ for every e

Kripke-Style Semantics

A frame is a tuple $\mathcal{W}=\left\langle W, \leq, D, I,\left\{I_{w}\right\}_{w \in W}\right\rangle$ where:
■ W - nonempty set of worlds
■ \leq - linear order on W
■ D - non-empty (constant) domain
■ I - interpretation of constants and functions

Kripke-Style Semantics

A frame is a tuple $\mathcal{W}=\left\langle W, \leq, D, I,\left\{I_{w}\right\}_{w \in W}\right\rangle$ where:
■ W - nonempty set of worlds
$■ \leq-$ linear order on W
■ D - non-empty (constant) domain
■ I - interpretation of constants and functions
$\square I_{w}$ - is a predicate interpretation for every $w \in W$:

- $I_{w}[p] \subseteq D^{n}$ for every n-ary predicate p
- Persistence: $I_{u}[p] \subseteq I_{w}[p]$ if $u \leq w$

Kripke-Style Semantics

- Satisfaction relation for a frame, a world, and an evaluation of the free variables:
$■ \mathcal{W}, w, e \vDash p\left(t_{1}, \ldots, t_{n}\right)$ iff $\left\langle e\left[t_{1}\right], \ldots, e\left[t_{n}\right]\right\rangle \in I_{w}[p]$
■ $\mathcal{W}, w, e \nLeftarrow \perp$

Kripke-Style Semantics

- Satisfaction relation for a frame, a world, and an evaluation of the free variables:
$■ \mathcal{W}, w, e \vDash p\left(t_{1}, \ldots, t_{n}\right)$ iff $\left\langle e\left[t_{1}\right], \ldots, e\left[t_{n}\right]\right\rangle \in I_{w}[p]$
- $\mathcal{W}, \boldsymbol{w}, \boldsymbol{e} \not \forall \perp$
$■ \mathcal{W}, w, e \vDash \psi_{1} \vee \psi_{2}$ iff $\mathcal{W}, w, e \vDash \psi_{1}$ or $\mathcal{W}, w, e \vDash \psi_{2}$
$■ \mathcal{W}, w, e \vDash \psi_{1} \wedge \psi_{2}$ iff $\mathcal{W}, w, e \vDash \psi_{1}$ and $\mathcal{W}, \boldsymbol{w}, \boldsymbol{e} \vDash \psi_{2}$

Kripke-Style Semantics

- Satisfaction relation for a frame, a world, and an evaluation of the free variables:
$■ \mathcal{W}, w, e \vDash p\left(t_{1}, \ldots, t_{n}\right)$ iff $\left\langle e\left[t_{1}\right], \ldots, e\left[t_{n}\right]\right\rangle \in I_{w}[p]$
- $\mathcal{W}, \boldsymbol{w}, \boldsymbol{e} \not \forall \perp$
$■ \mathcal{W}, w, e \vDash \psi_{1} \vee \psi_{2}$ iff $\mathcal{W}, w, e \vDash \psi_{1}$ or $\mathcal{W}, w, e \vDash \psi_{2}$
$■ \mathcal{W}, w, e \vDash \psi_{1} \wedge \psi_{2}$ iff $\mathcal{W}, w, e \vDash \psi_{1}$ and $\mathcal{W}, w, e \vDash \psi_{2}$
■ $\mathcal{W}, w, e \vDash \psi_{1} \supset \psi_{2}$ iff for every $u \geq w$:
$\mathcal{W}, u, \boldsymbol{e} \nexists \psi_{1}$ or $\mathcal{W}, u, \boldsymbol{e} \vDash \psi_{2}$

Kripke-Style Semantics

- Satisfaction relation for a frame, a world, and an evaluation of the free variables:
$■ \mathcal{W}, \boldsymbol{w}, \boldsymbol{e} \vDash p\left(t_{1}, \ldots, t_{n}\right)$ iff $\left\langle e\left[t_{1}\right], \ldots, e\left[t_{n}\right]\right\rangle \in I_{w}[p]$
- $\mathcal{W}, w, e \nLeftarrow \perp$
$■ \mathcal{W}, w, e \vDash \psi_{1} \vee \psi_{2}$ iff $\mathcal{W}, w, e \vDash \psi_{1}$ or $\mathcal{W}, w, e \vDash \psi_{2}$
$\square \mathcal{W}, w, e \vDash \psi_{1} \wedge \psi_{2}$ iff $\mathcal{W}, w, e \vDash \psi_{1}$ and $\mathcal{W}, w, e \vDash \psi_{2}$
■ $\mathcal{W}, w, \boldsymbol{e} \vDash \psi_{1} \supset \psi_{2}$ iff for every $u \geq w$:

$$
\mathcal{W}, u, e \not \forall \psi_{1} \text { or } \mathcal{W}, u, e \vDash \psi_{2}
$$

- $\mathcal{W}, \boldsymbol{w}, \boldsymbol{e} \vDash \forall x \psi$ iff $\mathcal{W}, \boldsymbol{w}, e_{[x:=d]} \vDash \psi$ for every $d \in D$

■ $\mathcal{W}, \boldsymbol{w}, \boldsymbol{e} \vDash \exists x \psi$ iff $\mathcal{W}, w, e_{[x:=d]} \vDash \psi$ for some $d \in D$

Kripke-Style Semantics

■ Satisfaction relation for a frame, a world, and an evaluation of the free variables:
$\square \mathcal{W}, w, e \vDash p\left(t_{1}, \ldots, t_{n}\right)$ iff $\left\langle e\left[t_{1}\right], \ldots, e\left[t_{n}\right]\right\rangle \in I_{w}[p]$

- $\mathcal{W}, w, e \nLeftarrow \perp$
$■ \mathcal{W}, w, e \vDash \psi_{1} \vee \psi_{2}$ iff $\mathcal{W}, w, e \vDash \psi_{1}$ or $\mathcal{W}, w, e \vDash \psi_{2}$
■ $\mathcal{W}, w, e \vDash \psi_{1} \wedge \psi_{2}$ iff $\mathcal{W}, w, e \vDash \psi_{1}$ and $\mathcal{W}, w, e \vDash \psi_{2}$
■ $\mathcal{W}, w, \boldsymbol{e} \vDash \psi_{1} \supset \psi_{2}$ iff for every $u \geq w$:

$$
\mathcal{W}, u, e \not \forall \psi_{1} \text { or } \mathcal{W}, u, e \vDash \psi_{2}
$$

- $\mathcal{W}, \boldsymbol{w}, \boldsymbol{e} \vDash \forall x \psi$ iff $\mathcal{W}, \boldsymbol{w}, e_{[x:=d]} \vDash \psi$ for every $d \in D$
- $\mathcal{W}, w, e \vDash \exists x \psi$ iff $\mathcal{W}, w, e_{[x:=d]} \vDash \psi$ for some $d \in D$
$\square \mathcal{W}$ is a model of a formula if φ if $\mathcal{W}, w, e \vDash \varphi$ for every w and e

Proof Theory

■ Sonobe 1975 - first cut-free Gentzen-type sequent calculus
■ Other calculi have been proposed later by Corsi, Avellone et al., Dyckhoff and others
■ All of them use some ad-hoc rules of a nonstandard form
■ A. 1991 - hypersequent calculus with standard rules: HG
■ Extended to first-order Gödel logic by Baaz and Zach in 2000: HIF

Hypersequents

- A sequent (Gentzen 1934) is an object of the form $\varphi_{1}, \ldots, \varphi_{n} \Rightarrow \psi_{1}, \ldots, \psi_{m}$

■ Intuition: $\varphi_{1} \wedge \ldots \wedge \varphi_{n} \supset \psi_{1} \vee \ldots \vee \psi_{m}$
■ Single-conclusion sequent: $m \leq 1$

Hypersequents

- A sequent (Gentzen 1934) is an object of the form $\varphi_{1}, \ldots, \varphi_{n} \Rightarrow \psi_{1}, \ldots, \psi_{m}$

■ Intuition: $\varphi_{1} \wedge \ldots \wedge \varphi_{n} \supset \psi_{1} \vee \ldots \vee \psi_{m}$
■ Single-conclusion sequent: $m \leq 1$
■ A hypersequent is an object of the form $s_{1}|\ldots| s_{n}$ where the s_{i} 's are sequents

■ Intuition: $s_{1} \vee \ldots \vee s_{n}$

- Single-conclusion hypersequent consists of single-conclusion sequents only

HG Single-Conclusion Hypersequent System

 Structural Rules$$
\begin{aligned}
\varphi \Rightarrow \varphi \quad(E W) & \frac{H}{H \mid \Gamma \Rightarrow E} \\
(I W \Rightarrow) \frac{H \mid \Gamma \Rightarrow E}{H \mid \Gamma, \psi \Rightarrow E} & (\Rightarrow I W) \frac{H \mid \Gamma \Rightarrow}{H \mid \Gamma \Rightarrow \psi}
\end{aligned}
$$

HG Single-Conclusion Hypersequent System

 Structural Rules$$
\begin{gathered}
\varphi \Rightarrow \varphi \quad(E W) \frac{H}{H \mid \Gamma \Rightarrow E} \\
(I W \Rightarrow) \frac{H \mid \Gamma \Rightarrow E}{H \mid \Gamma, \psi \Rightarrow E} \quad(\Rightarrow I W) \quad \frac{H \mid \Gamma \Rightarrow}{H \mid \Gamma \Rightarrow \psi} \\
(\text { cut }) \frac{H_{1} \mid \Gamma_{1} \Rightarrow \varphi}{H_{1}\left|H_{2}\right| \Gamma_{1}, \Gamma_{2} \Rightarrow E}
\end{gathered}
$$

HG Single-Conclusion Hypersequent System

 Structural Rules$$
\begin{gathered}
\varphi \Rightarrow \varphi \quad(E W) \quad \frac{H}{H \mid \Gamma \Rightarrow E} \\
(I W \Rightarrow) \frac{H \mid \Gamma \Rightarrow E}{H \mid \Gamma, \psi \Rightarrow E} \quad(\Rightarrow I W) \quad \frac{H \mid \Gamma \Rightarrow}{H \mid \Gamma \Rightarrow \psi} \\
\text { (cut) } \frac{H_{1} \mid \Gamma_{1} \Rightarrow \varphi}{H_{1}\left|H_{2}\right| \Gamma_{1}, \Gamma_{2} \Rightarrow E} \\
\text { (com) } \frac{H_{2} \mid \Gamma_{2}, \varphi \Rightarrow E}{H_{1}\left|\Gamma_{1}, \Gamma_{1}^{\prime} \Rightarrow \Gamma_{1}, \Gamma_{2}^{\prime} \Rightarrow E_{1}\right| \Gamma_{2}, \Gamma_{1}^{\prime} \Rightarrow E_{2}}
\end{gathered}
$$

HG Single-Conclusion Hypersequent System

Logical Rules

$$
\begin{gathered}
(\vee \Rightarrow) \quad \frac{H_{1}\left|\Gamma_{1}, \psi_{1} \Rightarrow E \quad H_{2}\right| \Gamma_{2}, \psi_{2} \Rightarrow E}{H_{1}\left|H_{2}\right| \Gamma_{1}, \Gamma_{2}, \psi_{1} \vee \psi_{2} \Rightarrow E} \\
\left(\Rightarrow \vee_{1}\right) \frac{H \mid \Gamma \Rightarrow \psi_{1}}{H \mid \Gamma \Rightarrow \psi_{1} \vee \psi_{2}} \quad\left(\Rightarrow \vee_{2}\right) \frac{H \mid \Gamma \Rightarrow \psi_{2}}{H \mid \Gamma \Rightarrow \psi_{1} \vee \psi_{2}}
\end{gathered}
$$

HG Single-Conclusion Hypersequent System
Logical Rules

$$
\begin{gathered}
(\vee \Rightarrow) \quad \frac{H_{1}\left|\Gamma_{1}, \psi_{1} \Rightarrow E \quad H_{2}\right| \Gamma_{2}, \psi_{2} \Rightarrow E}{H_{1}\left|H_{2}\right| \Gamma_{1}, \Gamma_{2}, \psi_{1} \vee \psi_{2} \Rightarrow E} \\
\left(\Rightarrow \vee_{1}\right) \frac{H \mid \Gamma \Rightarrow \psi_{1}}{H \mid \Gamma \Rightarrow \psi_{1} \vee \psi_{2}} \quad\left(\Rightarrow \vee_{2}\right) \frac{H \mid \Gamma \Rightarrow \psi_{2}}{H \mid \Gamma \Rightarrow \psi_{1} \vee \psi_{2}} \\
(\supset \Rightarrow) \quad \frac{H_{1}\left|\Gamma_{1} \Rightarrow \psi_{1} \quad H_{2}\right| \Gamma_{2}, \psi_{2} \Rightarrow E}{H_{1}\left|H_{2}\right| \Gamma_{1}, \Gamma_{2}, \psi_{1} \supset \psi_{2} \Rightarrow E} \\
(\Rightarrow \supset) \quad \frac{H \mid \Gamma, \psi_{1} \Rightarrow \psi_{2}}{H \mid \Gamma \Rightarrow \psi_{1} \supset \psi_{2}}
\end{gathered}
$$

HIF Single-Conclusion Hypersequent System

$$
\begin{aligned}
& (\forall \Rightarrow) \frac{H \mid \Gamma, \varphi\{t / x\} \Rightarrow E}{H \mid \Gamma, \forall x \varphi \Rightarrow E} \\
& (\Rightarrow \forall) \frac{H \mid \Gamma \Rightarrow \varphi\{y / x\}}{H \mid \Gamma \Rightarrow \forall x \varphi}
\end{aligned}
$$

where y doesn't occur free in any component of the conclusion.

HIF Single-Conclusion Hypersequent System

$$
\begin{aligned}
& (\forall \Rightarrow) \frac{H \mid \Gamma, \varphi\{t / x\} \Rightarrow E}{H \mid \Gamma, \forall x \varphi \Rightarrow E} \\
& (\Rightarrow \forall) \frac{H \mid \Gamma \Rightarrow \varphi\{y / x\}}{H \mid \Gamma \Rightarrow \forall x \varphi}
\end{aligned}
$$

where y doesn't occur free in any component of the conclusion.

■ similar rules for \exists

Cut-Admissibility

$$
\text { (cut) } \frac{H_{1}\left|\Gamma_{1} \Rightarrow \varphi \quad H_{2}\right| \Gamma_{2}, \varphi \Rightarrow E}{H_{1}\left|H_{2}\right| \Gamma_{1}, \Gamma_{2} \Rightarrow E}
$$

Cut-Admissibility

$$
\text { (cut) } \frac{H_{1}\left|\Gamma_{1} \Rightarrow \varphi \quad H_{2}\right| \Gamma_{2}, \varphi \Rightarrow E}{H_{1}\left|H_{2}\right| \Gamma_{1}, \Gamma_{2} \Rightarrow E}
$$

■ One of the most important properties of a (hyper)sequent calculus, provides the key for proof-search
■ Traditional syntactic cut-admissibility proofs are notoriously prone to errors, especially (but certainly not only) in the case of hypersequent systems

- the first proof of cut-elimination for HIF was erroneous

■ A semantic proof is usually more reliable and easier to check

■ A semantic proof usually provides also a proof of completeness as well as strong cut-admissibility

MCG Multiple-Conclusion Hypersequent System

 Structural Rules$$
\begin{gathered}
\varphi \Rightarrow \varphi \quad(E W) \frac{H}{H \mid \Gamma \Rightarrow \Delta} \\
(I W \Rightarrow) \frac{H \mid \Gamma \Rightarrow \Delta}{H \mid \Gamma, \psi \Rightarrow \Delta} \quad(\Rightarrow I W) \frac{H \mid \Gamma \Rightarrow \Delta}{H \mid \Gamma \Rightarrow \Delta, \psi} \\
\text { (cut) } \frac{H_{1} \mid \Gamma_{1} \Rightarrow \Delta_{1}, \varphi}{H_{1}\left|H_{2}\right| \Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2}} \\
\text { (com) } \frac{H_{1} \mid \Gamma_{1}, \Gamma_{1}^{\prime} \Rightarrow \Delta_{1}}{H_{1}\left|H_{2}\right| \Gamma_{1}, \Gamma_{2}^{\prime} \Rightarrow \Delta_{1} \mid \Gamma_{2}, \Gamma_{2}^{\prime} \Rightarrow \Gamma_{1}^{\prime} \Rightarrow \Delta_{2}}
\end{gathered}
$$

MCG Multiple-Conclusion Hypersequent System

 Structural Rules$$
\begin{gathered}
\varphi \Rightarrow \varphi \quad(E W) \frac{H}{H \mid \Gamma \Rightarrow \Delta} \\
(I W \Rightarrow) \frac{H \mid \Gamma \Rightarrow \Delta}{H \mid \Gamma, \psi \Rightarrow \Delta} \quad(\Rightarrow I W) \frac{H \mid \Gamma \Rightarrow \Delta}{H \mid \Gamma \Rightarrow \Delta, \psi} \\
\text { (cut) } \frac{H_{1} \mid \Gamma_{1} \Rightarrow \Delta_{1}, \varphi}{H_{1}\left|H_{2}\right| \Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2}} \\
\text { (com) } \frac{H_{1}\left|\Gamma_{1}, \Gamma_{1}^{\prime} \Rightarrow \Delta_{1}, H_{2}\right| \Gamma_{2}, \Gamma_{2}^{\prime} \Rightarrow \Delta_{2}}{H_{1}\left|H_{2}\right| \Gamma_{1}, \Gamma_{2}^{\prime} \Rightarrow \Delta_{1} \mid \Gamma_{2}, \Gamma_{1}^{\prime} \Rightarrow \Delta_{2}} \\
\text { (split) } \frac{H \mid \Gamma \Rightarrow \Delta_{1}, \Delta_{2}}{H\left|\Gamma \Rightarrow \Delta_{1}\right| \Gamma \Rightarrow \Delta_{2}}
\end{gathered}
$$

MCG Multiple-Conclusion Hypersequent System Logical Rules

$$
\begin{aligned}
&(\supset \Rightarrow) \frac{H_{1}\left|\Gamma_{1} \Rightarrow \Delta_{1}, \psi_{1} \quad H_{2}\right| \Gamma_{2}, \psi_{2} \Rightarrow \Delta_{2}}{H_{1}\left|H_{2}\right| \Gamma_{1}, \Gamma_{2}, \psi_{1} \supset \psi_{2} \Rightarrow \Delta_{1}, \Delta_{2}} \quad(\Rightarrow \supset) \quad \frac{H \mid \Gamma, \psi_{1} \Rightarrow \psi_{2}}{H \mid \Gamma \Rightarrow \psi_{1} \supset \psi_{2}} \\
&(\forall \Rightarrow) \quad \frac{H \mid \Gamma, \varphi\{t / x\} \Rightarrow \Delta}{H \mid \Gamma, \forall x \varphi \Rightarrow \Delta} \quad(\Rightarrow \forall) \quad \frac{H \mid \Gamma \Rightarrow \Delta, \varphi\{y / x\}}{H \mid \Gamma \Rightarrow \Delta, \forall x \varphi}
\end{aligned}
$$

Results

- MCG is strongly sound and complete with respect to the Kripke semantics of the standard first-order Gödel logic

Results

- MCG is strongly sound and complete with respect to the Kripke semantics of the standard first-order Gödel logic
■ MCG admits strong cut-admissibility:

Results

■ MCG is strongly sound and complete with respect to the Kripke semantics of the standard first-order Gödel logic
■ MCG admits strong cut-admissibility: for every set \mathcal{H} of hypersequents closed under substitution and a hypersequent H :
$\mathcal{H} \vdash H$ iff there exists a proof of H from \mathcal{H} in which the cut-formula of every application of the cut rule is in $\operatorname{frm}[\mathcal{H}]$

Results

\square MCG is strongly sound and complete with respect to the Kripke semantics of the standard first-order Gödel logic
■ MCG admits strong cut-admissibility: for every set \mathcal{H} of hypersequents closed under substitution and a hypersequent H :
$\mathcal{H} \vdash H$ iff there exists a proof of H from \mathcal{H} in which the cut-formula of every application of the cut rule is in $\operatorname{frm}[\mathcal{H}]$

■ As a corollary, we obtain the same results for HIF, the original single-conclusion calculus

Thank you!

