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Godel Logic

m In 1933, Gddel introduced a sequence {Gp} of n-valued
matrices and used them to show some important
properties of intuitionistic logic.

m In 1959, Dummett embedded all the G,s in an
infinite-valued matrix G,,.

m G, is equivalent to Gjp 1}, @ natural matrix for the
truth-values [0, 1].

m The logic of Gy +; is called Gddel logic.

m Gddel logic is perhaps the most important intermediate
logic.

m Nowadays, Gédel logic is also recognized as one of the
three most basic fuzzy logics.



Many-Valued Semantics

m A structure M consists of:
m Non-empty domain D
m An interpretation I
B /[c] € D for every constant
m /[f] € D" — D for every n-ary function
m /[p] € D" — [0, 1] for every n-ary predicate



Many-Valued Semantics

m A structure M consists of:
m Non-empty domain D
m An interpretation I
B /[c] € D for every constant
m /[f] € D" — D for every n-ary function
m /[p] € D" — [0, 1] for every n-ary predicate
m An M-evaluation is a function e:
m Assigning an element of D for every free variable
m Naturally extended to all terms (according to /)
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Many-Valued Semantics

m || o |Mis defined as follows:
m |p(t, ..., tn)ll’e‘f’ = I[pl[e[t:], .. ., e[tn]]
m L] =
m [|oy vwan max{ [[1]|§", [[v2]l8"}
[ Ag2llg = min{]lyq g, v2lle’y

1 91118 < ll2l8"
M _ e ¢
|91 D vellg —{ l2l|¥  otherwise

m |vxylg =inf{||lv]g,_, | d € D}
m [ 3xylg = SUD{Ilwlle[X 4 1deD}

m M is a model of a formula if ¢ if ||¢||M = 1 for every e
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Kripke-Style Semantics

A frameis atuple W = (W, <, D, I, {ly }wew) Where:
m W - nonempty set of worlds

< - linear order on W

D - non-empty (constant) domain

I - interpretation of constants and functions
lw - is a predicate interpretation for every w € W:

m /,[p] C D" for every n-ary predicate p
m Persistence: I,[p] C ly[p] if u < w
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Kripke-Style Semantics

m Satisfaction relation for a frame, a world, and an evaluation
of the free variables:
Wv W7 € F p(t17 ] tn) Iff <e[t1]7 U e[tn]> € /W[p]
W w,ekE L
W,w,eE 1 Vi iff W w,eE ¥ or W, w, ek s
W,w,eE i A if W w, e By and W, w, e E ¢
W, w, e E 1y D o iff for every u > w:
W,u,e 1 or W, u,eE o
W, w,e VXY ift W, w, ey._q F o forevery d € D
W, w, ek xyY ift W, w, e._q F 1 forsome d € D

m )V is a model of a formula if ¢ if W, w, e F ¢ for every w
and e



Proof Theory

m Sonobe 1975 - first cut-free Gentzen-type sequent calculus

m Other calculi have been proposed later by Corsi, Avellone
et al., Dyckhoff and others

m All of them use some ad-hoc rules of a nonstandard form
m A. 1991 - hypersequent calculus with standard rules: HG

m Extended to first-order Godel logic by Baaz and Zach in
2000: HIF
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Hypersequents

m A sequent (Gentzen 1934) is an object of the form
(:017"'a§0n:>1/}1a---71/}m
m Intuition: o1 A...App DUV V...V Yy
m Single-conclusion sequent: m < 1
m A hypersequentis an object of the form s; | ... | s, where
the s;’s are sequents
m Intuition: sy V...V 8,
m Single-conclusion hypersequent consists of
single-conclusion sequents only
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HG Single-Conclusion Hypersequent System

Structural Rules

_H
H|T=E
H|IT=
H|IT=4v

p=¢ (EW)

H|IT=E

W=) HrrosE

(= 1w)

Hi|Ti=¢ Ho|Ts,p=E

(cut) Hy | Ho | T4,To = E

H1 ‘ F1,F’1 :>E1 H2|F2,F’2:>E2
H1 |H2|F1,F’2:>E1 |I‘2,F’1 :>E2

(com)
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HG Single-Conclusion Hypersequent System

Logical Rules

Hi |T1,01 = E Hy|To,9p0=E
Hi | Ho | T1,T2,91 Vipp = E

H|r=>’(/11 le:>¢2
H|T =1 Vip HI|T =1V

(V=)

(= V1) (= Va)

Hi [Ty =41 Ho|To,00=> E
Hi | Ho | T1,T2,91 Do = E

H’r7¢1:>1/}2
H|T =11 Do

(>=)

(=2)



HIF Single-Conclusion Hypersequent System

HI|T,p{t/x} = E
(V=) H|T,Vx¢o = E

HIT = oly/x}
(=) H|F:S>OVX<p

where y doesn’t occur free in any component of the conclusion.



HIF Single-Conclusion Hypersequent System

HI|T,p{t/x} = E
(V=) H|T,Vx¢o = E

HIT = oly/x}
(=) H|F:S>OVX<p

where y doesn’t occur free in any component of the conclusion.

m similar rules for 3
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Hi|Ha | T4, To = E

(cut)



Cut-Admissibility

H1|F1:><p H2]F2,<p:>E

(cut) Hi|Ha | T4, To = E

m One of the most important properties of a (hyper)sequent
calculus, provides the key for proof-search
m Traditional syntactic cut-admissibility proofs are notoriously

prone to errors, especially (but certainly not only) in the
case of hypersequent systems

m the first proof of cut-elimination for HIF was erroneous

m A semantic proof is usually more reliable and easier to
check

m A semantic proof usually provides also a proof of
completeness as well as strong cut-admissibility



MCG Multiple-Conclusion Hypersequent System

Structural Rules

H
e=e EW) SR
H|T= A HIT=A
W=) Hro=a W HFrzay
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MCG Multiple-Conclusion Hypersequent System

Structural Rules

H
e=e EW) SR
H|T= A HIT=A
W=) Hro=a W HFrzay
(cut) Hi [Ty = A1, Ho | T, 0= Ao
Hy | Ho | T1,T2 = Ay, Az
(com) H1 | F1,I”1 = A1 H2 | rg, F’2 = Ag

H1 |H2|I'1,I"2:>A1 |I'2,I"1 :>A2

. H|F:>A1,A2
($O1) —HTF A 1T = A




MCG Multiple-Conclusion Hypersequent System

Logical Rules

Hi | Ti = Ay, Ho [ T2, = Ao H|T, 91 = 4o
(5=) Hy | Ho [ T1,T2,01 Dapa = Aq, Az (=2) HIT =11 Do
H|T, p{t/x} = A HIT = A oly/x}
=) —HTrwe=a =) —HT = avxp
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Results

m MCG is strongly sound and complete with respect to the
Kripke semantics of the standard first-order Gddel logic

m MCG admits strong cut-admissibility:
for every set H of hypersequents closed under substitution
and a hypersequent H:
‘H + H iff there exists a proof of H from # in which the
cut-formula of every application of the cut rule is in frm[#]

m As a corollary, we obtain the same results for HIF, the
original single-conclusion calculus



Thank you!



