A Multiple-Conclusion Calculus for First-Order Gödel Logic

Arnon Avron Ori Lahav

Tel Aviv University

CSR June 2011

Gödel Logic

- In 1933, Gödel introduced a sequence $\{G_n\}$ of n-valued matrices and used them to show some important properties of intuitionistic logic.
- In 1959, Dummett embedded all the G_ns in an infinite-valued matrix G_{ω} .
- G_{ω} is equivalent to $G_{[0,1]}$, a natural matrix for the truth-values [0, 1].
- The logic of $G_{[0,1]}$ is called Gödel logic.
- Gödel logic is perhaps the most important intermediate logic.
- Nowadays, Gödel logic is also recognized as one of the three most basic fuzzy logics.

- A structure M consists of:
 - Non-empty domain *D*
 - An interpretation I:
 - $I[c] \in D$ for every constant
 - $I[f] \in D^n \to D$ for every *n*-ary function
 - $I[p] \in D^n \rightarrow [0,1]$ for every *n*-ary predicate

- A structure M consists of:
 - Non-empty domain D
 - An interpretation I:
 - $I[c] \in D$ for every constant
 - $I[f] \in D^n \to D$ for every *n*-ary function
 - $I[p] \in D^n \rightarrow [0, 1]$ for every *n*-ary predicate
- An *M-evaluation* is a function *e*:
 - Assigning an element of D for every free variable
 - Naturally extended to all terms (according to I)

- $\| \bullet \|_e^M$ is defined as follows:
 - $\|p(t_1,\ldots,t_n)\|_e^M = I[p][e[t_1],\ldots,e[t_n]]$
 - $\blacksquare \ \|\bot\|_e^M = 0$

- $\| \bullet \|_e^M$ is defined as follows:
 - $\|p(t_1,\ldots,t_n)\|_e^M = I[p][e[t_1],\ldots,e[t_n]]$
 - $\|\bot\|_{e}^{M}=0$

 $\| \bullet \|_e^M$ is defined as follows:

$$\|p(t_1,\ldots,t_n)\|_e^M = I[p][e[t_1],\ldots,e[t_n]]$$

$$\|\bot\|_{P}^{M}=0$$

$$\|\psi_1 \vee \psi_2\|_{\mathbf{A}}^M = \max\{\|\psi_1\|_{\mathbf{A}}^M, \|\psi_2\|_{\mathbf{A}}^M\}$$

$$\|\psi_1 \wedge \psi_2\|_e^M = \min\{\|\psi_1\|_e^M, \|\psi_2\|_e^M\}$$

- $\| \bullet \|_e^M$ is defined as follows:
 - $\|p(t_1,\ldots,t_n)\|_e^M = I[p][e[t_1],\ldots,e[t_n]]$
 - $\|\bot\|_{e}^{M}=0$
 - $\|\psi_1 \vee \psi_2\|_{e}^M = \max\{\|\psi_1\|_{e}^M, \|\psi_2\|_{e}^M\}$
 - $\|\psi_1 \wedge \psi_2\|_e^M = \min\{\|\psi_1\|_e^M, \|\psi_2\|_e^M\}$

$$\blacksquare \ \|\exists x\psi\|_{\mathbf{e}}^{\mathbf{M}} = \sup\{\|\psi\|_{\mathbf{e}_{[x:=\mathbf{d}]}}^{\mathbf{M}} \mid \mathbf{d} \in \mathbf{D}\}$$

- $\| \bullet \|_e^M$ is defined as follows:
 - $\|p(t_1,\ldots,t_n)\|_e^M = I[p][e[t_1],\ldots,e[t_n]]$
 - $\|\bot\|_{e}^{M}=0$
 - $\|\psi_1 \vee \psi_2\|_e^M = \max\{\|\psi_1\|_e^M, \|\psi_2\|_e^M\}$
 - $\|\psi_1 \wedge \psi_2\|_{e}^{M} = \min\{\|\psi_1\|_{e}^{M}, \|\psi_2\|_{e}^{M}\}$
- M is a model of a formula if φ if $\|\varphi\|_e^M = 1$ for every e

A *frame* is a tuple $W = \langle W, \leq, D, I, \{I_w\}_{w \in W} \rangle$ where:

- *W* nonempty set of worlds
- $\blacksquare \le$ linear order on W
- D non-empty (constant) domain
- I interpretation of constants and functions

A *frame* is a tuple $W = \langle W, \leq, D, I, \{I_w\}_{w \in W} \rangle$ where:

- W nonempty set of worlds
- $\blacksquare \le$ linear order on W
- *D* non-empty (constant) domain
- I interpretation of constants and functions
- I_w is a predicate interpretation for every $w \in W$:
 - $I_w[p] \subseteq D^n$ for every n-ary predicate p
 - Persistence: $I_u[p] \subseteq I_w[p]$ if $u \le w$

- Satisfaction relation for a frame, a world, and an evaluation of the free variables:
 - \blacksquare \mathcal{W} , \mathbf{w} , $\mathbf{e} \models p(t_1, \ldots, t_n)$ iff $\langle \mathbf{e}[t_1], \ldots, \mathbf{e}[t_n] \rangle \in I_{\mathbf{w}}[p]$
 - $\blacksquare \mathcal{W}, \mathbf{w}, \mathbf{e} \not\models \bot$

- Satisfaction relation for a frame, a world, and an evaluation of the free variables:
 - $\blacksquare \mathcal{W}, w, e \models p(t_1, \ldots, t_n) \text{ iff } \langle e[t_1], \ldots, e[t_n] \rangle \in I_w[p]$
 - $\blacksquare \mathcal{W}, w, e \not\vdash \bot$
 - \blacksquare \mathcal{W} , \mathbf{w} , $\mathbf{e} \vDash \psi_1 \lor \psi_2$ iff \mathcal{W} , \mathbf{w} , $\mathbf{e} \vDash \psi_1$ or \mathcal{W} , \mathbf{w} , $\mathbf{e} \vDash \psi_2$
 - W, w, $e \models \psi_1 \land \psi_2$ iff W, w, $e \models \psi_1$ and W, w, $e \models \psi_2$

- Satisfaction relation for a frame, a world, and an evaluation of the free variables:
 - $\blacksquare \mathcal{W}, w, e \models p(t_1, \ldots, t_n) \text{ iff } \langle e[t_1], \ldots, e[t_n] \rangle \in I_w[p]$
 - $\blacksquare \mathcal{W}, \mathbf{w}, \mathbf{e} \not\models \bot$
 - \blacksquare \mathcal{W} , \mathbf{w} , $\mathbf{e} \vDash \psi_1 \lor \psi_2$ iff \mathcal{W} , \mathbf{w} , $\mathbf{e} \vDash \psi_1$ or \mathcal{W} , \mathbf{w} , $\mathbf{e} \vDash \psi_2$
 - W, w, $e \models \psi_1 \land \psi_2$ iff W, w, $e \models \psi_1$ and W, w, $e \models \psi_2$
 - \mathcal{W} , \mathbf{w} , $\mathbf{e} \vDash \psi_1 \supset \psi_2$ iff for every $\mathbf{u} \ge \mathbf{w}$: \mathcal{W} , \mathbf{u} , $\mathbf{e} \not\vDash \psi_1$ or \mathcal{W} , \mathbf{u} , $\mathbf{e} \vDash \psi_2$

- Satisfaction relation for a frame, a world, and an evaluation of the free variables:
 - $\blacksquare \mathcal{W}, w, e \models p(t_1, \ldots, t_n) \text{ iff } \langle e[t_1], \ldots, e[t_n] \rangle \in I_w[p]$
 - $\blacksquare \mathcal{W}, \mathbf{w}, \mathbf{e} \not\models \bot$
 - $\blacksquare \mathcal{W}, \mathbf{w}, \mathbf{e} \vDash \psi_1 \lor \psi_2 \text{ iff } \mathcal{W}, \mathbf{w}, \mathbf{e} \vDash \psi_1 \text{ or } \mathcal{W}, \mathbf{w}, \mathbf{e} \vDash \psi_2$
 - W, w, $e \models \psi_1 \land \psi_2$ iff W, w, $e \models \psi_1$ and W, w, $e \models \psi_2$
 - W, w, $e \vDash \psi_1 \supset \psi_2$ iff for every $u \ge w$: W, u, $e \nvDash \psi_1$ or W, u, $e \vDash \psi_2$
 - $\blacksquare \mathcal{W}, \mathbf{w}, \mathbf{e} \vDash \forall \mathbf{x} \psi \text{ iff } \mathcal{W}, \mathbf{w}, \mathbf{e}_{[\mathbf{x}:=\mathbf{d}]} \vDash \psi \text{ for every } \mathbf{d} \in D$
 - W, w, $e \models \exists x \psi$ iff W, w, $e_{[x:=d]} \models \psi$ for some $d \in D$

- Satisfaction relation for a frame, a world, and an evaluation of the free variables:
 - $\blacksquare \mathcal{W}, w, e \models p(t_1, \ldots, t_n) \text{ iff } \langle e[t_1], \ldots, e[t_n] \rangle \in I_w[p]$
 - $\blacksquare \mathcal{W}, w, e \not\models \bot$
 - \blacksquare \mathcal{W} , \mathbf{w} , $\mathbf{e} \vDash \psi_1 \lor \psi_2$ iff \mathcal{W} , \mathbf{w} , $\mathbf{e} \vDash \psi_1$ or \mathcal{W} , \mathbf{w} , $\mathbf{e} \vDash \psi_2$
 - W, w, $e \models \psi_1 \land \psi_2$ iff W, w, $e \models \psi_1$ and W, w, $e \models \psi_2$
 - W, w, $e \vDash \psi_1 \supset \psi_2$ iff for every $u \ge w$: W, u, $e \nvDash \psi_1$ or W, u, $e \vDash \psi_2$
 - $\blacksquare \mathcal{W}, \mathbf{w}, \mathbf{e} \vDash \forall \mathbf{x} \psi \text{ iff } \mathcal{W}, \mathbf{w}, \mathbf{e}_{[\mathbf{x}:=\mathbf{d}]} \vDash \psi \text{ for every } \mathbf{d} \in D$
 - W, w, $e \models \exists x \psi$ iff W, w, $e_{[x:=d]} \models \psi$ for some $d \in D$
- W is a model of a formula if φ if W, w, $e \models \varphi$ for every w and e

Proof Theory

- Sonobe 1975 first cut-free Gentzen-type sequent calculus
- Other calculi have been proposed later by Corsi, Avellone et al., Dyckhoff and others
- All of them use some ad-hoc rules of a nonstandard form
- A. 1991 hypersequent calculus with standard rules: HG
- Extended to first-order Gödel logic by Baaz and Zach in 2000: HIF

Hypersequents

- A sequent (Gentzen 1934) is an object of the form $\varphi_1, \dots, \varphi_n \Rightarrow \psi_1, \dots, \psi_m$
 - Intuition: $\varphi_1 \wedge \ldots \wedge \varphi_n \supset \psi_1 \vee \ldots \vee \psi_m$
 - Single-conclusion sequent: $m \le 1$

Hypersequents

A sequent (Gentzen 1934) is an object of the form

$$\varphi_1,\ldots,\varphi_n\Rightarrow\psi_1,\ldots,\psi_m$$

- Intuition: $\varphi_1 \wedge \ldots \wedge \varphi_n \supset \psi_1 \vee \ldots \vee \psi_m$
- Single-conclusion sequent: *m* ≤ 1
- A *hypersequent* is an object of the form $s_1 \mid ... \mid s_n$ where the s_i 's are sequents
 - Intuition: $s_1 \lor ... \lor s_n$
 - Single-conclusion hypersequent consists of single-conclusion sequents only

HG Single-Conclusion Hypersequent System Structural Rules

$$\varphi \Rightarrow \varphi \qquad (EW) \quad \frac{H}{H \mid \Gamma \Rightarrow E}$$

$$(IW \Rightarrow) \quad \frac{H \mid \Gamma \Rightarrow E}{H \mid \Gamma, \psi \Rightarrow E} \qquad (\Rightarrow IW) \quad \frac{H \mid \Gamma \Rightarrow}{H \mid \Gamma \Rightarrow \psi}$$

HG Single-Conclusion Hypersequent System Structural Rules

$$\varphi \Rightarrow \varphi \qquad (EW) \quad \frac{H}{H \mid \Gamma \Rightarrow E}$$

$$(IW \Rightarrow) \quad \frac{H \mid \Gamma \Rightarrow E}{H \mid \Gamma, \psi \Rightarrow E} \qquad (\Rightarrow IW) \quad \frac{H \mid \Gamma \Rightarrow}{H \mid \Gamma \Rightarrow \psi}$$

$$(cut) \quad \frac{H_1 \mid \Gamma_1 \Rightarrow \varphi \quad H_2 \mid \Gamma_2, \varphi \Rightarrow E}{H_1 \mid H_2 \mid \Gamma_1, \Gamma_2 \Rightarrow E}$$

HG Single-Conclusion Hypersequent System Structural Rules

$$\varphi \Rightarrow \varphi \qquad (EW) \quad \frac{H}{H \mid \Gamma \Rightarrow E}$$

$$(IW \Rightarrow) \quad \frac{H \mid \Gamma \Rightarrow E}{H \mid \Gamma, \psi \Rightarrow E} \qquad (\Rightarrow IW) \quad \frac{H \mid \Gamma \Rightarrow}{H \mid \Gamma \Rightarrow \psi}$$

$$(cut) \quad \frac{H_1 \mid \Gamma_1 \Rightarrow \varphi \quad H_2 \mid \Gamma_2, \varphi \Rightarrow E}{H_1 \mid H_2 \mid \Gamma_1, \Gamma_2 \Rightarrow E}$$

$$(com) \quad \frac{H_1 \mid \Gamma_1, \Gamma_1' \Rightarrow E_1 \quad H_2 \mid \Gamma_2, \Gamma_2' \Rightarrow E_2}{H_1 \mid H_2 \mid \Gamma_1, \Gamma_2' \Rightarrow E_1 \mid \Gamma_2, \Gamma_1' \Rightarrow E_2}$$

HG Single-Conclusion Hypersequent System Logical Rules

$$(\lor \Rightarrow) \qquad \frac{H_1 \mid \Gamma_1, \psi_1 \Rightarrow E \quad H_2 \mid \Gamma_2, \psi_2 \Rightarrow E}{H_1 \mid H_2 \mid \Gamma_1, \Gamma_2, \psi_1 \lor \psi_2 \Rightarrow E}$$
$$(\Rightarrow \lor_1) \quad \frac{H \mid \Gamma \Rightarrow \psi_1}{H \mid \Gamma \Rightarrow \psi_1 \lor \psi_2} \qquad (\Rightarrow \lor_2) \quad \frac{H \mid \Gamma \Rightarrow \psi_2}{H \mid \Gamma \Rightarrow \psi_1 \lor \psi_2}$$

HG Single-Conclusion Hypersequent System Logical Rules

$$(\vee \Rightarrow) \qquad \frac{H_{1} \mid \Gamma_{1}, \psi_{1} \Rightarrow E \quad H_{2} \mid \Gamma_{2}, \psi_{2} \Rightarrow E}{H_{1} \mid H_{2} \mid \Gamma_{1}, \Gamma_{2}, \psi_{1} \vee \psi_{2} \Rightarrow E}$$

$$(\Rightarrow \vee_{1}) \qquad \frac{H \mid \Gamma \Rightarrow \psi_{1}}{H \mid \Gamma \Rightarrow \psi_{1} \vee \psi_{2}} \qquad (\Rightarrow \vee_{2}) \qquad \frac{H \mid \Gamma \Rightarrow \psi_{2}}{H \mid \Gamma \Rightarrow \psi_{1} \vee \psi_{2}}$$

$$(\Rightarrow \Rightarrow) \qquad \frac{H_{1} \mid \Gamma_{1} \Rightarrow \psi_{1} \quad H_{2} \mid \Gamma_{2}, \psi_{2} \Rightarrow E}{H_{1} \mid H_{2} \mid \Gamma_{1}, \Gamma_{2}, \psi_{1} \supset \psi_{2} \Rightarrow E}$$

$$(\Rightarrow \Rightarrow) \qquad \frac{H \mid \Gamma, \psi_{1} \Rightarrow \psi_{2}}{H \mid \Gamma \Rightarrow \psi_{1} \supset \psi_{2}}$$

HIF Single-Conclusion Hypersequent System

$$(\forall \Rightarrow) \quad \frac{H \mid \Gamma, \varphi\{t/x\} \Rightarrow E}{H \mid \Gamma, \forall x \varphi \Rightarrow E}$$
$$(\Rightarrow \forall) \quad \frac{H \mid \Gamma \Rightarrow \varphi\{y/x\}}{H \mid \Gamma \Rightarrow \forall x \varphi}$$

where y doesn't occur free in any component of the conclusion.

HIF Single-Conclusion Hypersequent System

$$(\forall \Rightarrow) \quad \frac{H \mid \Gamma, \varphi\{t/x\} \Rightarrow E}{H \mid \Gamma, \forall x \varphi \Rightarrow E}$$
$$(\Rightarrow \forall) \quad \frac{H \mid \Gamma \Rightarrow \varphi\{y/x\}}{H \mid \Gamma \Rightarrow \forall x \varphi}$$

where y doesn't occur free in any component of the conclusion.

■ similar rules for ∃

Cut-Admissibility

(cut)
$$\frac{H_1 \mid \Gamma_1 \Rightarrow \varphi \quad H_2 \mid \Gamma_2, \varphi \Rightarrow E}{H_1 \mid H_2 \mid \Gamma_1, \Gamma_2 \Rightarrow E}$$

Cut-Admissibility

(cut)
$$\frac{H_1 \mid \Gamma_1 \Rightarrow \varphi \quad H_2 \mid \Gamma_2, \varphi \Rightarrow E}{H_1 \mid H_2 \mid \Gamma_1, \Gamma_2 \Rightarrow E}$$

- One of the most important properties of a (hyper)sequent calculus, provides the key for proof-search
- Traditional syntactic cut-admissibility proofs are notoriously prone to errors, especially (but certainly not only) in the case of hypersequent systems
 - the first proof of cut-elimination for HIF was erroneous
- A semantic proof is usually more reliable and easier to check
- A semantic proof usually provides also a proof of completeness as well as strong cut-admissibility

MCG Multiple-Conclusion Hypersequent System Structural Rules

$$\varphi \Rightarrow \varphi \qquad (EW) \quad \frac{H}{H \mid \Gamma \Rightarrow \Delta}$$

$$(IW \Rightarrow) \quad \frac{H \mid \Gamma \Rightarrow \Delta}{H \mid \Gamma, \psi \Rightarrow \Delta} \quad (\Rightarrow IW) \quad \frac{H \mid \Gamma \Rightarrow \Delta}{H \mid \Gamma \Rightarrow \Delta, \psi}$$

$$(cut) \quad \frac{H_1 \mid \Gamma_1 \Rightarrow \Delta_1, \varphi \quad H_2 \mid \Gamma_2, \varphi \Rightarrow \Delta_2}{H_1 \mid H_2 \mid \Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2}$$

$$(com) \quad \frac{H_1 \mid \Gamma_1, \Gamma_1' \Rightarrow \Delta_1 \quad H_2 \mid \Gamma_2, \Gamma_2' \Rightarrow \Delta_2}{H_1 \mid H_2 \mid \Gamma_1, \Gamma_2' \Rightarrow \Delta_1 \mid \Gamma_2, \Gamma_1' \Rightarrow \Delta_2}$$

MCG Multiple-Conclusion Hypersequent System Structural Rules

$$\varphi \Rightarrow \varphi \qquad (EW) \quad \frac{H}{H \mid \Gamma \Rightarrow \Delta}$$

$$(IW \Rightarrow) \quad \frac{H \mid \Gamma \Rightarrow \Delta}{H \mid \Gamma, \psi \Rightarrow \Delta} \quad (\Rightarrow IW) \quad \frac{H \mid \Gamma \Rightarrow \Delta}{H \mid \Gamma \Rightarrow \Delta, \psi}$$

$$(cut) \quad \frac{H_1 \mid \Gamma_1 \Rightarrow \Delta_1, \varphi \quad H_2 \mid \Gamma_2, \varphi \Rightarrow \Delta_2}{H_1 \mid H_2 \mid \Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2}$$

$$(com) \quad \frac{H_1 \mid \Gamma_1, \Gamma_1' \Rightarrow \Delta_1 \quad H_2 \mid \Gamma_2, \Gamma_2' \Rightarrow \Delta_2}{H_1 \mid H_2 \mid \Gamma_1, \Gamma_2' \Rightarrow \Delta_1 \mid \Gamma_2, \Gamma_1' \Rightarrow \Delta_2}$$

$$(split) \quad \frac{H \mid \Gamma \Rightarrow \Delta_1, \Delta_2}{H \mid \Gamma \Rightarrow \Delta_1 \mid \Gamma \Rightarrow \Delta_2}$$

MCG Multiple-Conclusion Hypersequent System Logical Rules

$$(\supset\Rightarrow) \quad \frac{H_1 \mid \Gamma_1 \Rightarrow \Delta_1, \psi_1 \quad H_2 \mid \Gamma_2, \psi_2 \Rightarrow \Delta_2}{H_1 \mid H_2 \mid \Gamma_1, \Gamma_2, \psi_1 \supset \psi_2 \Rightarrow \Delta_1, \Delta_2} \qquad (\Rightarrow\supset) \quad \frac{H \mid \Gamma, \psi_1 \Rightarrow \psi_2}{H \mid \Gamma \Rightarrow \psi_1 \supset \psi_2}$$
$$(\forall\Rightarrow) \quad \frac{H \mid \Gamma, \varphi\{t/x\} \Rightarrow \Delta}{H \mid \Gamma, \forall x\varphi \Rightarrow \Delta} \qquad (\Rightarrow\forall) \quad \frac{H \mid \Gamma \Rightarrow \Delta, \varphi\{y/x\}}{H \mid \Gamma \Rightarrow \Delta, \forall x\varphi}$$

MCG is strongly sound and complete with respect to the Kripke semantics of the standard first-order Gödel logic

- MCG is strongly sound and complete with respect to the Kripke semantics of the standard first-order Gödel logic
- MCG admits strong cut-admissibility:

- MCG is strongly sound and complete with respect to the Kripke semantics of the standard first-order Gödel logic
- MCG admits strong cut-admissibility: for every set H of hypersequents closed under substitution and a hypersequent H:
 - $\mathcal{H} \vdash H$ iff there exists a proof of H from \mathcal{H} in which the cut-formula of every application of the cut rule is in $frm[\mathcal{H}]$

- MCG is strongly sound and complete with respect to the Kripke semantics of the standard first-order Gödel logic
- MCG admits strong cut-admissibility: for every set H of hypersequents closed under substitution and a hypersequent H:
 - $\mathcal{H} \vdash H$ iff there exists a proof of H from \mathcal{H} in which the cut-formula of every application of the cut rule is in $frm[\mathcal{H}]$
- As a corollary, we obtain the same results for HIF, the original single-conclusion calculus

Thank you!