Vertex Disjoint Paths in Upward Planar Graphs

Saeed Akhoondian Amiri, Ali Golshani, Stephan Kreutzer, Sebastian Siebertz

June 3, 2014

OUTLINE

UPPLAN-VDPP is NP-complete

2 Linear Time FPT Algorithm for UPPLAN-VDPP

INTRODUCTION

- The k-vertex disjoint paths problem (VDPP):
 Given: A graph G and terminal pairs (s_i, t_i), i ∈ [k].
 Question: Are there k pairwise internally vertex disjoint paths linking s_i to t_i.
- Undirected graphs: NP-complete [Lynch; 1975], but FPT in k [Robertson, Seymour; 1995].
- Directed graphs: NP-complete for k = 2[Fortune, Hopcroft, Wyllie; 1980].
- Directed Planar graphs: FPT [Cygan et al; 2013].

INTRODUCTION

Two research directions:

- Very dense digraphs: In semi-complete digraphs is in $n^{O(k^3)}$ [Chudnovsky, Scott, Seymour; 2012].
- **2** Sparse digraphs: $2^{2^{O(k^2)}} \cdot P(n)$ in planar digraphs.

- UPWARD PLANAR GRAPHS: A planar digraph which can be drawn in a plane such that each edge is monotonically increasing in *y* axis.
- Upward Planar Testing (UPT):NP-complete.
- UPT is in P if there is a single sink [Garg, Tamassia; 1995].
- UPPLAN-VDPP: VDPP restricted on a graph G with its given upward planar drawing

Theorem 1

UPPLAN-VDPP is NP-complete on upward planar graphs.

Overall View

THE CROSSING GADGET

GENERAL IDEA OF GADGETS

- **①** Subdividing one $V_i \rightarrow V_i'$ path to some smaller paths.
- Porcing routings:

ROUTING GADGET

THE CROSSING GADGET

Theorem 2

There is an algorithm for $k\text{-}\mathrm{UPPLAN}\text{-}\mathrm{VDPP}$ which runs in time $O(k!\cdot n)$.

TO THE RIGHT RELATION

Let P and Q be two internally vertex disjoint paths in an upward planar graph G with a given upward planar drawing D.

- **1** A point p is to the right of a point q if p.y = q.y, q.x < p.x.
- ② $Q \prec P$ if there is a point $p \in P$ which is to the right of some point $q \in Q$.
- 3 \prec^* is the transitive closure of \prec .

TO THE RIGHT RELATION

Let P and Q be two internally vertex disjoint paths in an upward planar graph G with a given upward planar drawing D.

- **1** A point p is to the right of a point q if p.y = q.y, q.x < p.x.
- ② $Q \prec P$ if there is a point $p \in P$ which is to the right of some point $q \in Q$.
- 3 \prec^* is the transitive closure of \prec .

TO THE RIGHT RELATION

Let P and Q be two internally vertex disjoint paths in an upward planar graph G with a given upward planar drawing D.

- **1** A point p is to the right of a point q if p.y = q.y, q.x < p.x.
- ② $Q \prec P$ if there is a point $p \in P$ which is to the right of some point $q \in Q$.
- 3 \prec^* is the transitive closure of \prec .

RIGHTMOST PATH

GENERAL IDEA

ALGORITHM

```
Let ST \leftarrow \{(s_i, t_i) \mid i \in [k]\}.

1: function UPPLAN-VDPP(ST, G, k)

2: Candidates \leftarrow FindCandidates\{C_1, \dots, C_k\}

3: for C_i \in Candidates do

4: if UPPLAN-VDPP (ST - (s_i, t_i), G - C_i, k - 1) then

5: return TRUE

6: return FALSE
```

$\prec_{\mathcal{D}}^*$ Is a Partial Order

Let \mathcal{P} be a set of pairwise disjoint paths in upward planar drawing of G.

- **1** The relation $\prec_{\mathcal{P}}$ is a partial order.
- ② The relation $\prec^*_{\mathcal{D}}$ is an anti-symmetric.

$\prec_{\mathcal{P}}^*$ Is a Partial Order

Let \mathcal{P} be a set of pairwise disjoint paths in upward planar drawing of G.

- **1** The relation $\prec_{\mathcal{P}}$ is a partial order.
- 2 The relation $\prec_{\mathcal{P}}^*$ is an anti-symmetric.
 - (i) Create an intersection graph based on ${\mathcal P}$ and relation $\prec_{{\mathcal P}}^*$
 - (ii) Intersection graphs are chordal and they do not admit an induced cycle of lenght 4.
 - (iii) There is no cycle of length 3 by geometric argument

$\prec_{\mathcal{P}}^*$ Is a Partial Order

Let \mathcal{P} be a set of pairwise disjoint paths in upward planar drawing of G.

- **1** The relation $\prec_{\mathcal{P}}$ is a partial order.
- 2 The relation $\prec_{\mathcal{D}}^*$ is an anti-symmetric.
 - (i) Create an intersection graph based on $\mathcal P$ and relation $\prec_{\mathcal P}^*$.
 - (ii) Intersection graphs are chordal and they do not admit an induced cycle of lenght 4.
 - (iii) There is no cycle of length 3 by geometric argument.

FIND CANDIDATES IN LINEAR TIME

Given two vertices $s, t \in V(G)$ we compute the right-most s-t-path in G, if such a path exists.

- (i) DFS starts at s to compute all reachable vertices from s: Reach(s).
- (ii) Inverse DFS starts at t to compute all reachable vertices from t : $Reach^{-1}(t)$.
- (iii) Select rightmost vertex inductively starting at s from $Reach(s) \cap Reach^{-1}(t)$ untill reach t.
- (iv) First two steps are in O(n). The third step takes at most $O(\sum_{i \in [n]} deg(v_i)) = O(n)$.

FIND CANDIDATES IN LINEAR TIME

Given two vertices $s, t \in V(G)$ we compute the right-most s-t-path in G, if such a path exists.

- (i) DFS starts at s to compute all reachable vertices from s: Reach(s).
- (ii) Inverse DFS starts at t to compute all reachable vertices from t : $Reach^{-1}(t)$.
- (iii) Select rightmost vertex inductively starting at s from $Reach(s) \cap Reach^{-1}(t)$ untill reach t.
- (iv) First two steps are in O(n). The third step takes at most $O(\sum_{i \in [n]} deg(v_i)) = O(n)$.

- VDPP on semi-complete digraphs? EDPP is in FPT[Fradkin, Seymour; 2010]; Best known for VDPP is $n^{O(k^3)}$ [Chudnovsky, Scott, Seymour; 2012].
- What is a hardness of VDPP in a nowhere-crownfull digraphs[Kreutzer; Tazari; 2012]? In somewhere crownfull graph is W[1]-Hard.

- VDPP on semi-complete digraphs? EDPP is in FPT[Fradkin, Seymour; 2010]; Best known for VDPP is $n^{O(k^3)}$ [Chudnovsky, Scott, Seymour; 2012].
- What is a hardness of VDPP in a nowhere-crownfull digraphs[Kreutzer; Tazari; 2012]? In somewhere crownfull graph is W[1]-Hard.
- Second States States

- **1** VDPP on semi-complete digraphs? EDPP is in FPT[Fradkin, Seymour; 2010]; Best known for VDPP is $n^{O(k^3)}$ [Chudnovsky, Scott, Seymour; 2012].
- What is a hardness of VDPP in a nowhere-crownfull digraphs[Kreutzer; Tazari; 2012]? In somewhere crownfull graph is W[1]-Hard.
- Faster FPT algorithm on planar DAGs.
- Improving k! factor in the running time.

- VDPP on semi-complete digraphs? EDPP is in FPT[Fradkin, Seymour; 2010]; Best known for VDPP is $n^{O(k^3)}$ [Chudnovsky, Scott, Seymour; 2012].
- What is a hardness of VDPP in a nowhere-crownfull digraphs[Kreutzer; Tazari; 2012]? In somewhere crownfull graph is W[1]-Hard.
- Faster FPT algorithm on planar DAGs.
- Improving k! factor in the running time.
- Excluding an upward planar drawing requierment.

20 / 20

- VDPP on semi-complete digraphs? EDPP is in FPT[Fradkin, Seymour; 2010]; Best known for VDPP is $n^{O(k^3)}$ [Chudnovsky, Scott, Seymour; 2012].
- What is a hardness of VDPP in a nowhere-crownfull digraphs[Kreutzer; Tazari; 2012]? In somewhere crownfull graph is W[1]-Hard.
- Second Faster FPT algorithm on planar DAGs.
- Improving k! factor in the running time.
- Excluding an upward planar drawing requierment.