Notions of metric dimension of corona products: combinatorial and computational results

Henning Fernau
Universität Trier, Germany
fernau@uni-trier.de
Juan Alberto Rodríguez-Velázquez
Universitat Rovira i Virgili, Tarragona, Spain
juanalberto.rodriguez@urv.cat

Moscow, June 2014

Overview

- Graph products and graph parameters
- Combinatorial results
- Complexity results
- Conclusions

Graph products and graph parameters

- A recurring theme in graph combinatorics:
- Bound parameters of a product graph by parameters of its constituents!
- The results (proofs) are often of a computational nature,
- but of little practical algorithmic use.

Here: Good (exact) bounds could yield computational insights.

Corona product (Frucht, Harary 1970) a lesser known asymmetric graph product
G, H : graphs of order n_{G}, n_{H}.
The corona product (graph) $G \odot H$ is obtained by

- taking one copy of G and n_{G} copies of H and
- introducing an edge between
*** each vertex from the $i^{t h}$ copy of H and
*** the $i^{\text {th }}$ vertex of G.

$P_{4} \odot P_{5}:$

An abstract detour (with applications): Let (X, d) be a metric space.
The diameter of a point set $S \subseteq X$ is diam $(S):=\sup \{d(x, y): x, y \in S\}$.
A point $z \in X$ is said to distinguish two points x and y of X if $d(z, x) \neq d(z, y)$. A generator of (X, d) is a set $S \subseteq X$ such that any pair of points of X is distinguished by some point of S.
If the only distances are $0,1, \ldots, k$, then x, y are neighbors if $d(x, y)=1$. A local generator of (X, d) is a set $S \subseteq X$ such that any pair of neighbored points of X is distinguished by some point of S.

A possible application: a traveler lost in some metric space can locate himself by knowing his distance to all generator points.
\leadsto Navigation applications of "locating sets".
Local generators help with local disorientation.

Graphs, metrices and derived parameters

Let $G=(V, E)$ be a connected graph.
$d_{G}(x, y)$: the length of a shortest path between vertices u and v.
Clearly, $\left(V, d_{G}\right)$ is a metric space. The diameter of a graph is thus understood. $S \subseteq V$ is a metric generator for G if it is a generator of $\left(V, d_{G}\right)$.
A minimum metric generator is known as a metric basis, and its cardinality is the metric dimension of G, denoted by $\operatorname{dim}(G)$.
see: Slater 1975; Harary, Melter 1976; for applications: Johnson 1993/1998
Derived notions: local metric generator, giving rise to the local metric dimension of G, denoted by $\operatorname{dim}_{l}(G)$; see Okamoto 2010.

Alternative myopic metrization of $V: d_{G, 2}(x, y)=\min \left\{d_{G}(x, y), 2\right\}$. Can only differentiate neighbors from non-neighbors. Derived notions: (local) adjacency generator, leading to the (local) adjacency dimension of G, denoted by $\operatorname{dim}_{A}(G)$ or $\operatorname{dim}_{A, l}(G)$; see Saputro 2013; very much related to that of a 1-locating dominating set Charon, Hudry, Lobstein 2003.

Simple facts

By definition, the following inequalities hold for any graph G :

- $\operatorname{dim}(G) \leq \operatorname{dim}_{A}(G)$; if $\operatorname{diam}(G) \leq 2$, then $\operatorname{dim}(G)=\operatorname{dim}_{A}(G)$;
- $\operatorname{dim}_{l}(G) \leq \operatorname{dim}_{A, l}(G)$;
- $\operatorname{dim}_{l}(G) \leq \operatorname{dim}(G)$;
- $\operatorname{dim}_{A, l}(G) \leq \operatorname{dim}_{A}(G)$;
- $\gamma(G) \leq \operatorname{dim}_{A}(G)+1$ (if S is an adjacency generator, then at most one vertex is not dominated by S);
- $\operatorname{dim}_{A, l}(G) \leq \beta(G)$ (each vertex cover is a local adjacency generator).

Concrete facts for paths and stars

1. $\operatorname{dim}_{l}\left(P_{n}\right)=\operatorname{dim}\left(P_{n}\right)=1 \leq\left\lfloor\frac{n}{4}\right\rfloor \leq \operatorname{dim}_{A, l}\left(P_{n}\right) \leq\left\lceil\frac{n}{4}\right\rceil \leq\left\lfloor\frac{2 n+2}{5}\right\rfloor=\operatorname{dim}_{A}\left(P_{n}\right), n \geq 7$;

$$
n=10: \quad \bullet-\infty-\infty-\infty \quad \text { metric versus adjacency }
$$

2. $\operatorname{dim}_{l}\left(K_{1, n}\right)=\operatorname{dim}_{A, l}\left(K_{1, n}\right)=1 \leq n-1=\operatorname{dim}\left(K_{1, n}\right)=\operatorname{dim}_{A}\left(K_{1, n}\right), n \geq 2$;

3. $\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil \leq\left\lfloor\frac{2 n+2}{5}\right\rfloor=\operatorname{dim}_{A}\left(P_{n}\right), n \geq 7$;
4. $\left\lfloor\frac{n}{4}\right\rfloor \leq \operatorname{dim}_{A, l}\left(P_{n}\right) \leq\left\lceil\frac{n}{4}\right\rceil \leq\left\lfloor\frac{n}{2}\right\rfloor=\beta\left(P_{n}\right), n \geq 2$.

A small example for the corona product

 The blue vertices forms an adjacency basis for $P_{4} \odot P_{5}$ but not a dominating set.

The metric basis is smaller in this example:

Overview

- Graph products and graph parameters
- Combinatorial results
- Complexity results
- Conclusions

The main combinatorial result

Theorem 1 For any connected graph G of order $n_{G} \geq 2$ and for any non-trivial $\operatorname{graph} H, \operatorname{dim}(G \odot H)=n_{G} \cdot \operatorname{dim}_{A}(H)$.

Hence, $\operatorname{dim}\left(P_{4} \odot P_{5}\right)=4 \cdot \operatorname{dim}_{A}\left(P_{5}\right)=4 \cdot\left\lfloor\frac{2 \cdot 5+2}{5}\right\rfloor=4 \cdot 2=8$:

If G is a connected graph with $n_{G} \geq 2$ and H is non-trivial, $\operatorname{dim}(G \odot H)=n_{G} \cdot \operatorname{dim}_{A}(H)$. Claim 1: If S is an adjacency generator of H, then n_{G} copies of S form a metric generator of $G \odot H$.
$-\{v\} \times H_{v} \subseteq G \odot H$ has $\operatorname{diam}\left(\{v\} \times H_{v}\right)=2 . \leadsto \forall x, y \in H_{v} \exists z \in S_{v} d(z, x) \neq d(z, y)$.

- Consider $u, v \in G, u \neq v$. Pick $z \in S_{v}$ so that $d(z, u)>d(z, v)$.
- Let $x \in H_{v}$ and $y \in H_{u}$. Then, for $z \in S_{v}, d(z, x) \neq d(z, y)$.
- For $v \in G$ and $x \in H_{v}$, choose $z \in S_{u}$ s.t. $d(z, x)>d(z, v)$.
- For $v \in G$ and $x \in H_{u}$, choose $z \in S_{v}$ s.t. $d(z, x)>d(z, v)$.

The last three items are due to the following Fact: G forms a separator in $G \odot H$.
This "bottleneck argument" also yields: Claim 2: The restriction of any metric generator of $G \odot H$ to some copy H_{v} is an adjacency generator of H_{v}.

More combinatorial results: Going into some technical details
Theorem 2 Let G be a connected graph of order $n_{G} \geq 2$ and let H be a nontrivial graph. If there exists an adjacency basis for H which is also a dominating set and if, for any adjacency basis S for H, there exists some $v \in V(H)-S$ such that $S \subseteq N_{H}(v)$, then

$$
\operatorname{dim}_{A}(G \odot H)=n_{G} \cdot \operatorname{dim}_{A}(H)+\gamma(G)
$$

Corollary 3 Let $r \geq 2$. Let G be a connected graph of order $n_{G} \geq 2$. Then,

$$
\operatorname{dim}_{A}\left(G \odot K_{r}\right)=n_{G}(r-1)+\gamma(G)
$$

More combinatorial results: Assume G is connected and H is non-trivial.
Theorem 4 Let $n_{G} \geq 2$. The following statements are equivalent:

1. There exists an adjacency basis S for H, which is also a dominating set, such that for every $v \in V(H)-S$ it is satisfied that $S \nsubseteq N_{H}(v)$.
2. $\operatorname{dim}_{A}(G \odot H)=n_{G} \cdot \operatorname{dim}_{A}(H)$.
3. $\operatorname{dim}_{A}(G \odot H)=\operatorname{dim}(G \odot H)$.

Theorem 5 Let $n \geq 3$. The following statements are equivalent:

1. No adjacency basis for H is a dominating set.
2. $\operatorname{dim}_{A}(G \odot H)=n_{G} \cdot \operatorname{dim}_{A}(H)+n_{G}-1$.
3. $\operatorname{dim}_{A}(G \odot H)=\operatorname{dim}(G \odot H)+n_{G}-1$.

More combinatorial results: Going local

Theorem 6 For any connected graph G of order $n_{G} \geq 2$ and any non-trivial graph $H, \operatorname{dim}_{l}(G \odot H)=n_{G} \cdot \operatorname{dim}_{A, l}(H)$.

Under the same conditions, we can obtain:
Theorem 7 The following assertions are equivalent.

1. There exists a local adjacency basis S for H such that $\forall v \in V(H)-S: S \nsubseteq N_{H}(v)$.
2. $\operatorname{dim}_{A, l}(G \odot H)=n_{G} \cdot \operatorname{dim}_{A, l}(H)$.
3. $\operatorname{dim}_{l}(G \odot H)=\operatorname{dim}_{A, l}(G \odot H)$.

Theorem 8 The following assertions are equivalent.

1. For any local adjacency basis S for H, there exists some $v \in V(H)-S$ with $S \subseteq N_{H}(v)$.
2. $\operatorname{dim}_{A, l}(G \odot H)=n_{G} \cdot \operatorname{dim}_{A, l}(H)+\gamma(G)$.
3. $\operatorname{dim}_{l}(G \odot H)=\operatorname{dim}_{A, l}(G \odot H)-\gamma(G)$.

Overview

- Graph products and graph parameters
- Combinatorial results
- Complexity results
- Conclusions

Decidability problems

DIM: Given: G and k, decide if $\operatorname{dim}(G) \leq k$ or not.
LOCDIM: Given G and k, decide if $\operatorname{dim}_{l}(G) \leq k$ or not.
ADJDIM: Given G and k, decide if $\operatorname{dim}_{A}(G) \leq k$ or not.
LocADJDIm: Given G and k, decide if $\operatorname{dim}_{A, l}(G) \leq k$ or not.

VC: Given G and k, decide if $\beta(G) \leq k$ or not.
Dom: Given G and k, decide if $\gamma(G) \leq k$ or not.

Using combinatorial results for $\mathcal{N} \mathcal{P}$-hardness proofs I

Theorem 9 ADJDIM is $\mathcal{N P}$-complete.

For the hardness, recall Cor. 3: $\operatorname{dim}_{A}\left(G \odot K_{2}\right)=n_{G}+\gamma(G)$. If $\operatorname{dim}_{A}\left(G \odot K_{2}\right)$ could be determined in poly-time, so could $\gamma(G)$.

Theorem 10 (other reductions known) DIM is $\mathcal{N} \mathcal{P}$-complete.

For the hardness, recall that Thm. 1 yields: $\operatorname{dim}\left(K_{2} \odot H\right)=2 \cdot \operatorname{dim}_{A}(H)$. If $\operatorname{dim}\left(K_{2} \odot H\right)$ could be determined in poly-time, so could $\operatorname{dim}_{A}(H)$.

Using combinatorial results for $\mathcal{N} \mathcal{P}$-hardness proofs II

Theorem 11 LocAdJDim is $\mathcal{N} \mathcal{P}$-complete.

For the hardness, check out the conditions of Thm. 8. Hence,

$$
\operatorname{dim}_{A, l}\left(G \odot K_{2}\right)=n_{G} \cdot \operatorname{dim}_{A, l}\left(K_{2}\right)+\gamma(G)=n_{G}+\gamma(G)
$$

If $\operatorname{dim}_{A, l}\left(G \odot K_{2}\right)$ could be determined in poly-time, so could $\gamma(G)$.
Theorem 12 LocDim is $\mathcal{N} \mathcal{P}$-complete.

By Thm. 6, $\operatorname{dim}_{l}\left(K_{2} \odot H\right)=2 \cdot \operatorname{dim}_{A, l}(H)$. If $\operatorname{dim}_{l}\left(K_{2} \odot H\right)$ could be determined in poly-time, so could $\operatorname{dim}_{A, l}(H)$.

Conclusions

- Precise combinatorial results (not "only" bounds) that relate different graph parameters are very useful for complexity results. \leadsto Reduction cooks, look up comb. recipes! Mathematicians, produce characterizations!
- Our reductions also yield non-existence of sub-exponential $\mathcal{O}^{*}\left(2^{o(n)}\right)$ algorithms for our problems, assuming ETH.

- Picture is less clear for approximability or parameterized complexity.

Thanks for your attention!

