
Space Saving by Dynamic Algebraization

Martin Fürer and Huiwen Yu

Department of Compute Science and Engineering
The Pennsylvania State University

furer@cse.psu.edu
yhw.huiwenyu@gmail.com

June 8, 2014

1 / 22

Space saving by dynamic algebraization

- Outline:

Exact computations of hard problems on sparse graphs.

One method: Tree decomposition + Dynamic programming
– exponential space

Technique: Using algebraic transform to reduce space
complexity based on a tree decomposition.

Applications: Counting perfect matchings, counting set
packings, counting set covers.

2 / 22

Saving space using algebraization - an Example of the
Fourier transform

Based on work by Lokshtanov and Nederlof, STOC 2010.

- Subset Sum:
Given a set of positive integers I = {i1, i2, ..., in}, count the
number of subsets of I with element sum equal to t.

DP in space O(t).
s[j , d]: number of subsets from {i1, ..., ij} with sum d .

Define F (x) = (1 + x i1)(1 + x i2) · · · (1 + x in) =
∑

fix
i .

1 ft = s[n, t] is the target number.

2 DFT: ft = 1
m

∑m−1
j=0 ω−jtF (ωj), ωm = 1, m > nt.

3 ft can be evaluated in polynomial space.

3 / 22

Saving space using algebraization - Möbius inversion

The zeta transform of a function f ∈ R[2V]:

ζf [X] =
∑
Y⊆X

f [Y].

The Möbius transform/inversion of f :

µf [X] =
∑
Y⊆X

(−1)|X\Y |f [Y].

It is the inverse transform of the zeta transform:

µ(ζf)[X] = f [X].

The union product:

f ∗u g [X] =
∑

X1
⋃

X2=X

f (X1)g(X2).

The union product and the zeta transform:

ζ(f ∗u g)[X] = (ζf)[X] · (ζg)[X]

.
4 / 22

Saving space using algebraization - the Framework

Methodology:
- Avoid large computation table for f [Y],Y ⊆ X .
- Work with zeta transformed values ζf [Y] (with one component
at a time).
- At the end do a Möbis transform to get f [X] back.

f [X] = µ(ζf)[X]

- This is possible, as union products transform into products of the
values.

ζ(f ∗u g)[X] = (ζf)[X] · (ζg)[X].

5 / 22

We are interested in algorithms not computing union products, but
subset convolutions.
union product:

f ∗u g [X] =
∑

X1
⋃

X2=X

f (X1)g(X2).

Algorithms often use subset convolution:

f ∗R g [X] =
∑
Y⊆X

f [Y]g [X \ Y].

But a subset convolution can be simulated by n union products,
one for each size of the resulting sets.

6 / 22

Saving space using algebraization - the Framework

C ∈ (Z[2V];⊕, ∗) outputs f [V].

Gate a → a relaxation {ai}
|V |
i=1 of a. (ai [X] = a[X] if |X | = i

or 0 if |X | < i .)
a = b ⊕ c → ai = bi ⊕ ci .
a = b ∗ c → ai =

∑i
j=0 bj ∗u ci−j , for 0 ≤ i ≤ |V |.

C1 ∈ (Z[2V];⊕, ∗u) outputs f|V |[V].
∗u gate → �.
constant gate a → ζa.

C2 ∈ (Z[2V];⊕,�), for every gate a ∈ C1, the corresponding
gate in C2 outputs ζa.

C2 → 2|V | disjoint circuits CY over (Z[2V]; +, ·), ∀Y ⊆ V .
CY outputs (ζf)[Y].

f [V] =
∑
X⊆V

(−1)|V \X |(ζf)[X].

7 / 22

Tree decomposition

G = (V ,E), a tree decomposition of G is a tree T = (VT ,ET),
∀x ∈ VT associate with a set Bx (a bag of x),

1 ∀x , y , node z ∈ path connecting x and y in T , Bx ∩ By ⊆ Bz .
2 ∀e = {u, v} ∈ E , ∃x such that u, v ∈ Bx . (e is associated

with x .)
3
⋃

x∈VT Bx = V .

Treewidth: maxx∈VT |Bx | − 1. NP
A path decomposition - T is a path.

Figure : Illustrative figure for tree decomposition. (Pic. from wikipedia)

8 / 22

Nice tree decomposition

The degree of any node ≤2.
c → the only child of x .
c1, c2 → two children of x .

Any node x in a nice tree decomposition:

1 An introduce vertex node (introduce vertex v),
Bx = Bc

⋃
{v}.

2 An introduce edge node (introduce edge e = {u, v}),
u, v ∈ Bx , e is associated with x , Bx = Bc .

3 A forget vertex node (forget vertex v), Bx = Bc \ {v}.
4 A join node, x has two children, Bx = Bc1 = Bc2 .

Further transform the leaf nodes and the root into empty node.

9 / 22

Saving space on tree decomposition - the Framework

Use counting perfect matchings as an example.

- Subtree Tx rooted at x ;

Tx : nodes in Tx but Bx .
X ⊆ Bx : YX ← X ∪ Tx .
fx [X] :] perfect matchings in YX .

1. An introduce vertex node. Bx = Bc ∪ {v}.

fx [X] =

{
fc [X] v /∈ X
0 v ∈ X

(ζfx)[X] =

{
(ζfc)[X] v /∈ X
(ζfc)[X \ {v}] v ∈ X

10 / 22

Saving space on tree decomposition - the Framework

- fx [X] :] perfect matchings in YX .

3. A forget vertex node (forget vertex v), Bx = Bc \ {v}.
fx [X] = fc [X ∪ {v}].

(ζfx)[X] =
∑
X ′⊆X

fx [X ′] =
∑
X ′⊆X

fc [X ′ ∪ {v}]

= (ζfc)[X ∪ {v}]− (ζfc)[X].

4. A join node, x has two children and Bx = Bc1 = Bc2 .

fx [X] =
∑
X ′⊆X

fc1 [X ′]fc2 [X \ X ′] = fc1 ∗ fc2 [X].

5. A leaf node, a leaf of T . fx [∅] = 1.

11 / 22

Saving space on tree decomposition - the Framework

2. An introduce edge node (introduce edge e = {u, v}), Bx = Bc .

fx [X] =

{
fc [X] e * X
fc [X] + fc [X \ {u, v}] e ⊆ X

(ζfx)[X] =

{
(ζfc)[X] e * X
(ζfc)[X] + (ζfc)[X \ {u, v}] e ⊆ X

- Modified the construction:
Add a new child node c ′, Bx = Bc ′ . Introduce e in Bc ′ .
x → join node.

u v

u v

x

c

x

c' c

12 / 22

Saving space on tree decomposition - Algorithm

- Algorithm:

Follow depth-first search in-order of the tree.

Branch on the forget vertex node.

(ζfx)[X] = (ζfc)[X ∪ {v}]− (ζfc)[X]

Otherwise, “point-wise” addition or multiplication.

Introduce vertex node:

(ζfx)[X] =

{
(ζfc)[X] v /∈ X
(ζfc)[X \ {v}] v ∈ X

Join node:
(ζfx)[X] = (ζfc1)[X] · (ζfc2)[X]

13 / 22

Saving space on tree decomposition - Complexity

- Complexity:

time: O((|E |+ |V |)2h), h = max number of forget nodes
along any root-to-leaf path.

T [j] ≤ 2 · 2max{h1,h2}max{T [j1],T [j2]}

space: poly, handle one subset at a time.

- Parameter h:

max number of vertices along any root-to-leaf path.

Equivalent to “tree-depth”.

k + 1 ≤ h ≤ O(log |V |)(k + 1).

14 / 22

Saving space on tree decomposition - Main result

Theorem

For any graph G = (V ,E) and a modified nice tree decomposition
T on G . Assume the number of forget nodes along any path from
the root to a leaf in T is at most h. Let f be a function evaluated
by a circuit C over (Z[2V];⊕, ∗) with constants being singletons.
Assume f [V] ≤ m for integer m. We can compute f [V] in time
O((|V |+ |E |)2h) and in space O(|V ||C | log m).

15 / 22

Counting perfect matchings on grids - Balanced tree
decomposition on grids

Monomer-Dimer problem - an important problem in statistical
physics.

P1

P2

P3

P4

P1

P2, P1

P3, P2, P11 P3, P12

P3, P22, P11, P4

......

Partition on 2-Dim Grid Tree decomposition on 2-Dim Grid

P21, P3

P112, P22,
P32, P4

P111, P31, P4

Figure : Illustrative figure for balanced tree decomposition on
2-dimensional grids. Always bipartition the longer side of the
grid/subgrid. Pi represent a balanced vertex separator. Denote the
left/top half of Pi by Pi1, and the right/bottom part by Pi2.

16 / 22

Counting perfect matchings on grids - Results

Lemma

The treewidth of the tree decomposition on Gd(n) is 3
2nd−1. The

maximum number of forget nodes along any path from the root to
a leaf is at most 2d−1

2d−1−1nd−1.

Theorem

The problem of counting perfect matchings on grids of dimension

d and uniform length n can be solved in time O∗(2
2d−1

2d−1−1
nd−1

) and
in polynomial space.

17 / 22

Comparison to other algorithms

DP (Dynamic Programming) based on path decomposition.
Construct n nodes {p1, p2, ..., pn} associated with a bag of
vertices with x1 coordinate equal to j , for j = 0, 1, ..., n − 1.
For any pj , pj+1, start from pj , add a sequence of nodes by
alternating between adding a vertex of x1 = j + 1 and deleting
its neighbor with x1 = j . Pathwidth of nd−1.
Time O∗(2n

d−1
), space O∗(2n

d−1
).

j j+1

Figure : Path decomposition on grids

18 / 22

Comparison to other algorithms

DP based on path decomposition on a subgrid. Extract from
Gd(n) a subgrid of pathwidth O(log n), delete a portion of
vertices from Gd(n) to turn a ”cube”-shaped grid into a long
”stripe” with O(log n) cross-section area. Remove

O(nd

(log n)1/(d−1)) vertices.

Time 2
O

(
nd

(log n)1/(d−1)

)
, poly-space.

logn

Figure : Path decomposition on subgrids.

19 / 22

Comparison to other algorithms

Branching algorithm. First find a balanced separator S and
partitioning the graph into A∪ S ∪B. Enumerate every subset
X ⊆ S . A vertex in X either matches to vertices in A or to
vertices in B. Vertices in S \X are matched within S . Recurse

on A and B. Td(n) ≤ 2Td(n−|S |2)
∑

X⊆S 2|X |Td−1(|S \ X |).

Separator size O(nd−1), Td−1(|S \ X |) = 2O(nd−2).

Time O∗(3
2d−1

2d−1−1
nd−1

), poly-space.

A B

S

X

S\X

Figure : Balanced graph decomposition

20 / 22

Summary

- Comparison:

DP on path decomposition, pathwidth O(nd−1): time

O∗(2n
d−1

), space O∗(2n
d−1

).

DP on path decomposition, pathwidth O(log n): time

2
O

(
nd

(log n)1/(d−1)

)
, poly-space.

Branching: time O(3h), h = 2d−1
2d−1−1nd−1, poly-space.

DP by algebrazation: time O(2h), poly-space.

- Results generalized to more general grids, different length in each
dimension.

21 / 22

Extensions

- Extensions to other problems:

YES: matching polynomial, counting set packings, counting
set covers.

NO: independent sets (not a convolution), Hamiltonian paths,
Steiner tree (poly-space?).

- Open problems:

Find other graph decompositions of large subgraphs?

Do other problems fit in this dynamic algebraization
framework?

22 / 22

