Space Saving by Dynamic Algebraization

Martin Fürer and Huiwen Yu

Department of Compute Science and Engineering The Pennsylvania State University furer@cse.psu.edu yhw.huiwenyu@gmail.com

June 8, 2014

Space saving by dynamic algebraization

- Outline:

- Exact computations of hard problems on sparse graphs.
- One method: Tree decomposition + Dynamic programming - exponential space
- Technique: Using algebraic transform to reduce space complexity based on a tree decomposition.
- Applications: Counting perfect matchings, counting set packings, counting set covers.

Saving space using algebraization - an Example of the Fourier transform

Based on work by Lokshtanov and Nederlof, STOC 2010.

- Subset Sum:

Given a set of positive integers $I = \{i_1, i_2, ..., i_n\}$, count the number of subsets of I with element sum equal to t.

- DP in space O(t). s[j, d]: number of subsets from $\{i_1, ..., i_j\}$ with sum d.
- Define $F(x) = (1 + x^{i_1})(1 + x^{i_2}) \cdots (1 + x^{i_n}) = \sum f_i x^i$.
 - 0 $f_t = s[n, t]$ is the target number.
 - **2** DFT: $f_t = \frac{1}{m} \sum_{j=0}^{m-1} \omega^{-jt} F(\omega^j), \ \omega^m = 1, \ m > nt.$
 - $\mathbf{0}$ f_t can be evaluated in polynomial space.

Saving space using algebraization - Möbius inversion

The zeta transform of a function $f \in \mathcal{R}[2^V]$:

$$\zeta f[X] = \sum_{Y \subseteq X} f[Y].$$

The Möbius transform/inversion of f:

$$\mu f[X] = \sum_{Y \subseteq X} (-1)^{|X \setminus Y|} f[Y].$$

It is the inverse transform of the zeta transform:

$$\mu(\zeta f)[X] = f[X].$$

The union product:

$$f *_{u} g[X] = \sum_{X_{1} | J X_{2} = X} f(X_{1})g(X_{2}).$$

The union product and the zeta transform:

$$\zeta(f *_{u} g)[X] = (\zeta f)[X] \cdot (\zeta g)[X]$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 ♡Q⊙

Saving space using algebraization - the Framework

Methodology:

- Avoid large computation table for $f[Y], Y \subseteq X$.
- Work with zeta transformed values $\zeta f[Y]$ (with one component at a time).
- At the end do a Möbis transform to get f[X] back.

$$f[X] = \mu(\zeta f)[X]$$

- This is possible, as union products transform into products of the values.

$$\zeta(f *_{u} g)[X] = (\zeta f)[X] \cdot (\zeta g)[X].$$

We are interested in algorithms not computing union products, but subset convolutions.

union product:

$$f *_{u} g[X] = \sum_{X_{1} \bigcup X_{2} = X} f(X_{1})g(X_{2}).$$

Algorithms often use subset convolution:

$$f *_{\mathcal{R}} g[X] = \sum_{Y \subset X} f[Y]g[X \setminus Y].$$

But a subset convolution can be simulated by n union products, one for each size of the resulting sets.

Saving space using algebraization - the Framework

- $C \in (\mathbb{Z}[2^V]; \oplus, *)$ outputs f[V]. Gate $a \to a$ relaxation $\{a_i\}_{i=1}^{|V|}$ of a. $(a_i[X] = a[X])$ if |X| = i or 0 if |X| < i.) $a = b \oplus c \to a_i = b_i \oplus c_i$. $a = b * c \to a_i = \sum_{j=0}^{i} b_j *_u c_{i-j}$, for $0 \le i \le |V|$.
- $C_1 \in (\mathbb{Z}[2^V]; \oplus, *_u)$ outputs $f_{|V|}[V]$. * $_u$ gate $\to \odot$. constant gate $a \to \zeta a$.

- $C_2 \in (\mathbb{Z}[2^V]; \oplus, \odot)$, for every gate $a \in C_1$, the corresponding gate in C_2 outputs ζa .
- $C_2 \to 2^{|V|}$ disjoint circuits C^Y over $(\mathbb{Z}[2^V]; +, \cdot)$, $\forall Y \subseteq V$. C^Y outputs $(\zeta f)[Y]$.

$$f[V] = \sum_{X \subseteq V} (-1)^{|V \setminus X|} (\zeta f)[X].$$

Tree decomposition

G = (V, E), a tree decomposition of G is a tree $\mathcal{T} = (V_{\mathcal{T}}, E_{\mathcal{T}})$, $\forall x \in V_{\mathcal{T}}$ associate with a set B_x (a bag of x),

- **1** $\forall x, y$, node $z \in \text{path connecting } x \text{ and } y \text{ in } \mathcal{T}, B_x \cap B_y \subseteq B_z.$
- ② $\forall e = \{u, v\} \in E$, $\exists x$ such that $u, v \in B_x$. (e is associated with x.)

Treewidth: $\max_{x \in V_T} |B_x| - 1$. NP A path decomposition - \mathcal{T} is a path.

Figure: Illustrative figure for tree decomposition. (Pic. from wikipedia)

Nice tree decomposition

The degree of any node ≤ 2 . $c \rightarrow$ the only child of x. $c_1, c_2 \rightarrow$ two children of x.

Any node x in a nice tree decomposition:

- An introduce vertex node (introduce vertex v), $B_x = B_c \bigcup \{v\}$.
- ② An introduce edge node (introduce edge $e = \{u, v\}$), $u, v \in B_x$, e is associated with $x, B_x = B_c$.
- **3** A forget vertex node (forget vertex v), $B_x = B_c \setminus \{v\}$.
- A join node, x has two children, $B_x = B_{c_1} = B_{c_2}$.

Further transform the leaf nodes and the root into empty node.

Saving space on tree decomposition - the Framework

Use counting perfect matchings as an example.

- Subtree \mathcal{T}_x rooted at x;

 T_x : nodes in T_x but B_x .

 $X \subseteq B_x$: $Y_X \leftarrow X \cup T_x$.

 $f_X[X]$: # perfect matchings in Y_X .

1. An introduce vertex node. $B_x = B_c \cup \{v\}$.

$$f_{X}[X] = \begin{cases} f_{c}[X] & v \notin X \\ 0 & v \in X \end{cases}$$

$$(\zeta f_{x})[X] = \begin{cases} (\zeta f_{c})[X] & v \notin X \\ (\zeta f_{c})[X \setminus \{v\}] & v \in X \end{cases}$$

Saving space on tree decomposition - the Framework

- $f_X[X]$: \sharp perfect matchings in Y_X .
- 3. A forget vertex node (forget vertex v), $B_x = B_c \setminus \{v\}$. $f_x[X] = f_c[X \cup \{v\}]$.

$$(\zeta f_{x})[X] = \sum_{X' \subseteq X} f_{x}[X'] = \sum_{X' \subseteq X} f_{c}[X' \cup \{v\}]$$
$$= (\zeta f_{c})[X \cup \{v\}] - (\zeta f_{c})[X].$$

4. A join node, x has two children and $B_x = B_{c_1} = B_{c_2}$.

$$f_X[X] = \sum_{X' \subset X} f_{c_1}[X'] f_{c_2}[X \setminus X'] = f_{c_1} * f_{c_2}[X].$$

5. A leaf node, a leaf of \mathcal{T} . $f_{\mathsf{x}}[\emptyset] = 1$.

Saving space on tree decomposition - the Framework

2. An introduce edge node (introduce edge $e = \{u, v\}$), $B_x = B_c$.

$$f_{X}[X] = \begin{cases} f_{c}[X] & e \nsubseteq X \\ f_{c}[X] + f_{c}[X \setminus \{u, v\}] & e \subseteq X \end{cases}$$

$$(\zeta f_x)[X] = \begin{cases} (\zeta f_c)[X] & e \nsubseteq X \\ (\zeta f_c)[X] + (\zeta f_c)[X \setminus \{u, v\}] & e \subseteq X \end{cases}$$

- Modified the construction:

Add a new child node c', $B_x = B_{c'}$. Introduce e in $B_{c'}$. $x \rightarrow \text{join node}$.

Saving space on tree decomposition - Algorithm

- Algorithm:

- Follow depth-first search in-order of the tree.
- Branch on the forget vertex node.

$$(\zeta f_{\mathsf{x}})[X] = (\zeta f_{\mathsf{c}})[X \cup \{v\}] - (\zeta f_{\mathsf{c}})[X]$$

Otherwise, "point-wise" addition or multiplication.
Introduce vertex node:

$$(\zeta f_{x})[X] = \begin{cases} (\zeta f_{c})[X] & v \notin X \\ (\zeta f_{c})[X \setminus \{v\}] & v \in X \end{cases}$$

Join node:

$$(\zeta f_{\mathsf{x}})[X] = (\zeta f_{c_1})[X] \cdot (\zeta f_{c_2})[X]$$

Saving space on tree decomposition - Complexity

- Complexity:

• time: $O((|E|+|V|)2^h)$, $h=\max$ number of forget nodes along any root-to-leaf path.

$$T[j] \le 2 \cdot 2^{\max\{h_1, h_2\}} \max\{T[j_1], T[j_2]\}$$

- space: poly, handle one subset at a time.
- Parameter h:
 - max number of vertices along any root-to-leaf path.
 - Equivalent to "tree-depth".
 - $k+1 \le h \le O(\log |V|)(k+1)$.

Saving space on tree decomposition - Main result

Theorem

For any graph G = (V, E) and a modified nice tree decomposition \mathcal{T} on G. Assume the number of forget nodes along any path from the root to a leaf in \mathcal{T} is at most h. Let f be a function evaluated by a circuit C over $(\mathbb{Z}[2^V]; \oplus, *)$ with constants being singletons. Assume $f[V] \leq m$ for integer m. We can compute f[V] in time $O((|V| + |E|)2^h)$ and in space $O(|V||C|\log m)$.

Counting perfect matchings on grids - Balanced tree decomposition on grids

Monomer-Dimer problem - an important problem in statistical physics.

Figure: Illustrative figure for balanced tree decomposition on 2-dimensional grids. Always bipartition the longer side of the grid/subgrid. P_i represent a balanced vertex separator. Denote the left/top half of P_i by P_{i1} , and the right/bottom part by P_{i2} .

Counting perfect matchings on grids - Results

Lemma

The treewidth of the tree decomposition on $G_d(n)$ is $\frac{3}{2}n^{d-1}$. The maximum number of forget nodes along any path from the root to a leaf is at most $\frac{2^d-1}{2^{d-1}-1}n^{d-1}$.

Theorem

The problem of counting perfect matchings on grids of dimension d and uniform length n can be solved in time $O^*(2^{\frac{2^d-1}{2^d-1}-1}n^{d-1})$ and in polynomial space.

Comparison to other algorithms

• DP (Dynamic Programming) based on path decomposition. Construct n nodes $\{p_1, p_2, ..., p_n\}$ associated with a bag of vertices with x_1 coordinate equal to j, for j=0,1,...,n-1. For any p_j, p_{j+1} , start from p_j , add a sequence of nodes by alternating between adding a vertex of $x_1=j+1$ and deleting its neighbor with $x_1=j$. Pathwidth of n^{d-1} . Time $O^*(2^{n^{d-1}})$, space $O^*(2^{n^{d-1}})$.

Figure: Path decomposition on grids

Comparison to other algorithms

• DP based on path decomposition on a subgrid. Extract from $G_d(n)$ a subgrid of pathwidth $O(\log n)$, delete a portion of vertices from $G_d(n)$ to turn a "cube"-shaped grid into a long "stripe" with $O(\log n)$ cross-section area. Remove $O(\frac{n^d}{(\log n)^{1/(d-1)}})$ vertices.

Time
$$2^{O\left(\frac{n^d}{(\log n)^{1/(d-1)}}\right)}$$
, poly-space.

Figure: Path decomposition on subgrids.

Comparison to other algorithms

• Branching algorithm. First find a balanced separator S and partitioning the graph into $A \cup S \cup B$. Enumerate every subset $X \subseteq S$. A vertex in X either matches to vertices in A or to vertices in B. Vertices in $S \setminus X$ are matched within S. Recurse on A and B. $T_d(n) \leq 2T_d(\frac{n-|S|}{2}) \sum_{X \subseteq S} 2^{|X|} T_{d-1}(|S \setminus X|)$. Separator size $O(n^{d-1})$, $T_{d-1}(|S \setminus X|) = 2^{O(n^{d-2})}$. Time $O^*(3^{\frac{2^d-1}{2^d-1-1}} n^{d-1})$, poly-space.

Figure: Balanced graph decomposition

Summary

- Comparison:

- DP on path decomposition, pathwidth $O(n^{d-1})$: time $O^*(2^{n^{d-1}})$, space $O^*(2^{n^{d-1}})$.
- DP on path decomposition, pathwidth $O(\log n)$: time $2^{O\left(\frac{n^d}{(\log n)^{1/(d-1)}}\right)}$, poly-space.
- Branching: time $O(3^h)$, $h = \frac{2^d 1}{2^{d-1} 1} n^{d-1}$, poly-space.
- DP by algebrazation: time $O(2^h)$, poly-space.
- Results generalized to more general grids, different length in each dimension.

Extensions

- Extensions to other problems:

- YES: matching polynomial, counting set packings, counting set covers.
- NO: independent sets (not a convolution), Hamiltonian paths, Steiner tree (poly-space?).

- Open problems:

- Find other graph decompositions of large subgraphs?
- Do other problems fit in this dynamic algebraization framework?