Space Saving by Dynamic Algebraization

Martin Furer and Huiwen Yu

Department of Compute Science and Engineering
The Pennsylvania State University
furer@cse.psu.edu
yhw.huiwenyu@gmail.com

June 8, 2014

1/22

Space saving by dynamic algebraization

- QOutline:

@ Exact computations of hard problems on sparse graphs.

@ One method: Tree decomposition + Dynamic programming
— exponential space

@ Technique: Using algebraic transform to reduce space
complexity based on a tree decomposition.

@ Applications: Counting perfect matchings, counting set
packings, counting set covers.

2/22

Saving space using algebraization - an Example of the

Fourier transform

Based on work by Lokshtanov and Nederlof, STOC 2010.
- Subset Sum:
Given a set of positive integers | = {i1, iz, ..., in}, count the
number of subsets of / with element sum equal to t.
@ DP in space O(t).
s[j, d]: number of subsets from {i1, ..., ij} with sum d.
o Define F(x) = (1 + x)(L + x2) .- (1 + x) = 3" fix".
Q f,=5s[n, t] is the target number.
Q DFT: =+ Jmo wtF (W), w™ =1, m > nt.

@ f; can be evaluated in polynomial space.

3/22

Saving space using algebraization - Mobius inversion

The zeta transform of a function f € R[2Y]:
CFIX] =) fIY]
YCX
The Mobius transform /inversion of f:
pfIX]= D (=L)WY,
YCX
It is the inverse transform of the zeta transform:
p(CH)X] = FIX].
The union product:
frglX]= > f(X)g%)
Xi U Xo=X

The union product and the zeta transform:
C(f *u 8)[X] = (CHIX] - (C8)IX]

4/22

Saving space using algebraization - the Framework

Methodology:
- Avoid large computation table for f[Y], Y C X.
- Work with zeta transformed values (f[Y] (with one component

at a time).
- At the end do a Mdbis transform to get f[X] back.

FIX] = w(CHIX]

- This is possible, as union products transform into products of the
values.

C(f +u g)IX] = (CHIXT - (C&)IXI.

5/22

We are interested in algorithms not computing union products, but
subset convolutions.
union product:

froglXl= D f(X)g(Xe).
X1 U Xo=X

Algorithms often use subset convolution:

frglX]=>_ f[YIg[X\ Y]
YCX

But a subset convolution can be simulated by n union products,
one for each size of the resulting sets.

6/22

Saving space using algebraization - the Framework

o C € (Z[2V]; @, *) outputs f[V].

Gate a — a relaxation {a,-}',i‘l of a. (ai[X] = a[X] if [X| =i
or 0if |[X| < i.)

a=bd®c—a=>bdc.

a:b*c—>a,-:ZJ'-:0bj*uc,-,j, for0<i<|V|.

G € (Z[2V]; @, *u) outputs fy[V].

*, gate — O©.

constant gate a — (a.

G € (Z[2Y]; @,), for every gate a € Cy, the corresponding
gate in G, outputs (a.

Co — 2!Vl disjoint circuits CY over (Z[2V]; +,-), VY C V.
CY outputs (CF)[Y].

fIVi= Y (~1)V(¢hIX).

XCV

7/22

Tree decomposition

G = (V,E), a tree decomposition of G is a tree T = (Vr, ET),
Vx € Vi associate with a set By (a bag of x),
Q Vx,y, node z € path connecting x and y in 7, B,N B, C B,.
@ Ve = {u,v} € E, 3x such that u,v € Bx. (e is associated
with x.)
o UXEVT BX =V.
Treewidth: max,cv, [Bx| —1. NP
A path decomposition - 7 is a path.

/A B (8 F)
NN S
o
\)_E E.
‘/’6‘/ - AT
\» ") " n

Figure : lIllustrative figure for tree decomposition. (Pic. from wikipedia)

8/22

Nice tree decomposition

The degree of any node <2.
¢ — the only child of x.
c1, ¢ — two children of x.

Any node x in a nice tree decomposition:

@ An introduce vertex node (introduce vertex v),
B« = B J{v}.

@ An introduce edge node (introduce edge e = {u, v}),
u,v € By, e is associated with x, By = B..

© A forget vertex node (forget vertex v), By = B. \ {v}.
@ A join node, x has two children, Bx = B, = B,,.

Further transform the leaf nodes and the root into empty node.

9/22

Saving space on tree decomposition - the Framework

Use counting perfect matchings as an example.
- Subtree T, rooted at x;

T,: nodes in T but B,.
X C By Yx & XUT,.
f[X] : & perfect matchings in Yx.

1. An introduce vertex node. By = B. U {v}.

= { 165

NEGAL v ¢ X
(CRIIX] = { COX\{v)] veX

10/22

Saving space on tree decomposition - the Framework

- £ [X] : § perfect matchings in Yx.

3. A forget vertex node (forget vertex v), By = B\ {v}.
FlX] = fe[X U{v}].

CRIXT = > A&XT= Y £[X U{v}]

X'CX X'CX

= (Cfc)[X U {V}] - (Cfc)[X]'

4. A join node, x has two children and B, = B, = B,,.

KIX] = Z fCl[X/]fcz[X\X/] = fo, * fo[X].
X'CX

5. A leaf node, a leaf of 7. £ [0] = 1.

11/22

Saving space on tree decomposition - the Framework

2. An introduce edge node (introduce edge e = {u,v}), By = B..

fc[X] e X
AlX] = { EIX] + £1X\ {0, v}] e % X

_ [€RIX 9
(Cfx)[X] - { (Cfc)[X] dL (Cfc)[X \ {u, v}] eCX

- Modified the construction:
Add a new child node ¢/, By = B... Introduce e in B..

X — join node.

12/22

Saving space on tree decomposition - Algorithm

- Algorithm:
@ Follow depth-first search in-order of the tree.

@ Branch on the forget vertex node.

(CRIIXT = (C)IX U {v}] = (¢F)IX]

o Otherwise, “point-wise” addition or multiplication.

Introduce vertex node:

(CE)IX] véX
(Chlx) = { CEIX\ [V} vex

Join node:

(CRIIXT = (¢fe)X - (CFe,) X1

13/22

Saving space on tree decomposition - Complexity

- Complexity:
o time: O((|E| + |V[)2"), h = max number of forget nodes
along any root-to-leaf path.
T[] < 2 2madhuhal may (T[], Tll}
@ space: poly, handle one subset at a time.
- Parameter h:

@ max number of vertices along any root-to-leaf path.
e Equivalent to “tree-depth”.
@ k+1< h<O(log|V|)(k +1).

14/22

Saving space on tree decomposition - Main result

Theorem

For any graph G = (V, E) and a modified nice tree decomposition
T on G. Assume the number of forget nodes along any path from
the root to a leaf in T is at most h. Let f be a function evaluated
by a circuit C over (Z[2"]; @, *) with constants being singletons.
Assume f[V] < m for integer m. We can compute f[V] in time
O((|V| + |E|)2") and in space O(|V||C|log m).

15/22

Counting perfect matchings on grids - Balanced tree

decomposition on grids

Monomer-Dimer problem - an important problem in statistical
physics.

PR3 P1
T T
1 1
1 1
!
P4\----{
1 1
1 1
pal S __.|
1
1
1
1
1
1
1
1
Partition on 2-Dim Grid Tree decomposition on 2-Dim Grid

Figure : lllustrative figure for balanced tree decomposition on
2-dimensional grids. Always bipartition the longer side of the
grid/subgrid. P; represent a balanced vertex separator. Denote the
left/top half of P; by P;;, and the right/bottom part by Pj,.

16 /22

Counting perfect matchings on grids - Results

The treewidth of the tree decomposition on Gg(n) is 3n9=1. The
maximum number of forget nodes along any path from the root to

) d_q oy
a leaf is at most s5—r-n"1,

The problem of counting perfect matchings on grids of dimension
P |

- d—1
d and uniform length n can be solved in time 0*(22- 11") and
in polynomial space.

17/22

Comparison to other algorithms

e DP (Dynamic Programming) based on path decomposition.
Construct n nodes {p1, p2, ..., pn} associated with a bag of
vertices with x; coordinate equal to j, for j =0,1,...,n — 1.
For any pj, pj+1, start from p;, add a sequence of nodes by
alternating between adding a vertex of x; = j + 1 and deleting
its neighbor with x; = j. Pathwidth of n91.

Time 0*(2""), space O*(2"").

Figure : Path decomposition on grids

18/22

Comparison to other algorithms

@ DP based on path decomposition on a subgrid. Extract from
Gg(n) a subgrid of pathwidth O(log n), delete a portion of
vertices from Gg(n) to turn a "cube”-shaped grid into a long
"stripe” With O(log n) cross-section area. Remove

((Iogn =) Vvertices.

Time 2 (("’g")l/ o) , poly-space.

ooo0o0

Figure : Path decomposition on subgrids.

19/22

Comparison to other algorithms

@ Branching algorithm. First find a balanced separator S and
partitioning the graph into AU S U B. Enumerate every subset
X C S. A vertex in X either matches to vertices in A or to
vertices in B. Vertices in S\ X are matched within S. Recurse

on A and B. Td(n) < 2Td(n—2|5\)zxgs 2|X‘Td_1(|S\X|).
Separator size O(n?1), Ty_1(|S\ X|) = 2007,

= dl

Time O*(32" 1"), poly-space.

Figure : Balanced graph decomposition

20/22

- Comparison:

o DP on path decomposition, pathwidth O(n?=1): time
0*(2""), space O*(2"").

@ DP on path decomposition, pathwidth O(log n): time
d

20(('°g ")1/(‘171)) , poly-space.
@ Branching: time O(3"), h = %nd_l, poly-space.
o DP by algebrazation: time O(2"), poly-space.

- Results generalized to more general grids, different length in each
dimension.

21/22

Extensions

- Extensions to other problems:

@ YES: matching polynomial, counting set packings, counting
set covers.
@ NO: independent sets (not a convolution), Hamiltonian paths,
Steiner tree (poly-space?).
- Open problems:

@ Find other graph decompositions of large subgraphs?

@ Do other problems fit in this dynamic algebraization
framework?

22/22

