Space Saving by Dynamic Algebraization

Martin Fürer and Huiwen Yu

Department of Compute Science and Engineering
The Pennsylvania State University
furer@cse.psu.edu
yhw.huiwenyu@gmail.com
June 8, 2014

Space saving by dynamic algebraization

- Outline:
- Exact computations of hard problems on sparse graphs.
- One method: Tree decomposition + Dynamic programming - exponential space
- Technique: Using algebraic transform to reduce space complexity based on a tree decomposition.
- Applications: Counting perfect matchings, counting set packings, counting set covers.

Saving space using algebraization - an Example of the Fourier transform

Based on work by Lokshtanov and Nederlof, STOC 2010.

- Subset Sum:

Given a set of positive integers $I=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$, count the number of subsets of I with element sum equal to t.

- DP in space $O(t)$. $s[j, d]$: number of subsets from $\left\{i_{1}, \ldots, i_{j}\right\}$ with sum d.
- Define $F(x)=\left(1+x^{i_{1}}\right)\left(1+x^{i_{2}}\right) \cdots\left(1+x^{i_{n}}\right)=\sum f_{i} x^{i}$.
(1) $f_{t}=s[n, t]$ is the target number.
(2) DFT: $f_{t}=\frac{1}{m} \sum_{j=0}^{m-1} \omega^{-j t} F\left(\omega^{j}\right), \omega^{m}=1, m>n t$.
(3) f_{t} can be evaluated in polynomial space.

The zeta transform of a function $f \in \mathcal{R}\left[2^{V}\right]$:

$$
\zeta f[X]=\sum_{Y \subseteq X} f[Y] .
$$

The Möbius transform/inversion of f :

$$
\mu f[X]=\sum_{Y \subseteq X}(-1)^{|X \backslash Y|} f[Y] .
$$

It is the inverse transform of the zeta transform:

$$
\mu(\zeta f)[X]=f[X] .
$$

The union product:

$$
f *_{u} g[X]=\sum_{X_{1} \cup X_{2}=X} f\left(X_{1}\right) g\left(X_{2}\right) .
$$

The union product and the zeta transform:

$$
\zeta\left(f *_{u} g\right)[X]=(\zeta f)[X] \cdot(\zeta g)[X]
$$

Saving space using algebraization - the Framework

Methodology:

- Avoid large computation table for $f[Y], Y \subseteq X$.
- Work with zeta transformed values $\zeta f[Y]$ (with one component at a time).
- At the end do a Möbis transform to get $f[X]$ back.

$$
f[X]=\mu(\zeta f)[X]
$$

- This is possible, as union products transform into products of the values.

$$
\zeta\left(f *_{u} g\right)[X]=(\zeta f)[X] \cdot(\zeta g)[X]
$$

We are interested in algorithms not computing union products, but subset convolutions.
union product:

$$
f *_{u} g[X]=\sum_{X_{1} \cup X_{2}=X} f\left(X_{1}\right) g\left(X_{2}\right)
$$

Algorithms often use subset convolution:

$$
f *_{\mathcal{R}} g[X]=\sum_{Y \subseteq X} f[Y] g[X \backslash Y] .
$$

But a subset convolution can be simulated by n union products, one for each size of the resulting sets.

- $C \in\left(\mathbb{Z}\left[2^{V}\right] ; \oplus, *\right)$ outputs $f[V]$.

Gate $a \rightarrow$ a relaxation $\left\{a_{i}\right\}_{i=1}^{|V|}$ of a. $\left(a_{i}[X]=a[X]\right.$ if $|X|=i$ or 0 if $|X|<i$.)
$a=b \oplus c \rightarrow a_{i}=b_{i} \oplus c_{i}$.
$a=b * c \rightarrow a_{i}=\sum_{j=0}^{i} b_{j} *_{u} c_{i-j}$, for $0 \leq i \leq|V|$.

- $C_{1} \in\left(\mathbb{Z}\left[2^{V}\right] ; \oplus, *_{u}\right)$ outputs $f_{|V|}[V]$.
${ }_{*}$ gate $\rightarrow \odot$.
constant gate $a \rightarrow \zeta$ a.
- $C_{2} \in\left(\mathbb{Z}\left[2^{V}\right] ; \oplus, \odot\right)$, for every gate $a \in C_{1}$, the corresponding gate in C_{2} outputs ζ a.
- $C_{2} \rightarrow 2^{|V|}$ disjoint circuits C^{Y} over $\left(\mathbb{Z}\left[2^{V}\right] ;+, \cdot\right), \forall Y \subseteq V$. C^{Y} outputs ($(f)[Y]$.
-

$$
f[V]=\sum_{X \subseteq V}(-1)^{|V \backslash X|}(\zeta f)[X] .
$$

Tree decomposition

$G=(V, E)$, a tree decomposition of G is a tree $\mathcal{T}=\left(V_{\mathcal{T}}, E_{\mathcal{T}}\right)$, $\forall x \in V_{\mathcal{T}}$ associate with a set B_{x} (a bag of x),
(1) $\forall x, y$, node $z \in$ path connecting x and y in $\mathcal{T}, B_{x} \cap B_{y} \subseteq B_{z}$.
(2) $\forall e=\{u, v\} \in E, \exists x$ such that $u, v \in B_{x}$. (e is associated with x.)
(3) $\bigcup_{x \in V_{\mathcal{T}}} B_{x}=V$.

Treewidth: $\max _{x \in V_{\mathcal{T}}}\left|B_{x}\right|-1$. NP
A path decomposition $-\mathcal{T}$ is a path.

Figure: Illustrative figure for tree decomposition. (Pic. from wikipedia)

Nice tree decomposition

The degree of any node ≤ 2.
$c \rightarrow$ the only child of x.
$c_{1}, c_{2} \rightarrow$ two children of x.
Any node x in a nice tree decomposition:
(1) An introduce vertex node (introduce vertex v), $B_{x}=B_{c} \bigcup\{v\}$.
(2) An introduce edge node (introduce edge $e=\{u, v\}$), $u, v \in B_{x}, e$ is associated with $x, B_{x}=B_{c}$.
(3) A forget vertex node (forget vertex v), $B_{x}=B_{c} \backslash\{v\}$.
(1) A join node, x has two children, $B_{x}=B_{c_{1}}=B_{c_{2}}$.

Further transform the leaf nodes and the root into empty node.

Saving space on tree decomposition - the Framework

Use counting perfect matchings as an example.

- Subtree \mathcal{T}_{x} rooted at x;
T_{x} : nodes in \mathcal{T}_{x} but B_{x}.
$X \subseteq B_{x}: Y_{X} \leftarrow X \cup T_{x}$.
$f_{X}[X]: \sharp$ perfect matchings in Y_{X}.

1. An introduce vertex node. $B_{x}=B_{c} \cup\{v\}$.

$$
\begin{gathered}
f_{x}[X]= \begin{cases}f_{c}[X] & v \notin X \\
0 & v \in X\end{cases} \\
\left(\zeta f_{x}\right)[X]= \begin{cases}\left(\zeta f_{c}\right)[X] & v \notin X \\
\left(\zeta f_{c}\right)[X \backslash\{v\}] & v \in X\end{cases}
\end{gathered}
$$

Saving space on tree decomposition - the Framework

- $f_{X}[X]: \sharp$ perfect matchings in Y_{X}.

3. A forget vertex node (forget vertex v), $B_{x}=B_{c} \backslash\{v\}$. $f_{x}[X]=f_{c}[X \cup\{v\}]$.

$$
\begin{aligned}
\left(\zeta f_{x}\right)[X] & =\sum_{X^{\prime} \subseteq X} f_{x}\left[X^{\prime}\right]=\sum_{X^{\prime} \subseteq X} f_{c}\left[X^{\prime} \cup\{v\}\right] \\
& =\left(\zeta f_{c}\right)[X \cup\{v\}]-\left(\zeta f_{c}\right)[X] .
\end{aligned}
$$

4. A join node, x has two children and $B_{x}=B_{c_{1}}=B_{c_{2}}$.

$$
f_{x}[X]=\sum_{X^{\prime} \subseteq X} f_{c_{1}}\left[X^{\prime}\right] f_{c_{2}}\left[X \backslash X^{\prime}\right]=f_{c_{1}} * f_{c_{2}}[X]
$$

5. A leaf node, a leaf of $\mathcal{T} . f_{x}[\emptyset]=1$.

Saving space on tree decomposition - the Framework

2. An introduce edge node (introduce edge $e=\{u, v\}$), $B_{x}=B_{c}$.

$$
\begin{gathered}
f_{x}[X]= \begin{cases}f_{c}[X] & e \nsubseteq X \\
f_{c}[X]+f_{c}[X \backslash\{u, v\}] & e \subseteq X\end{cases} \\
\left(\zeta f_{x}\right)[X]= \begin{cases}\left(\zeta f_{c}\right)[X] & e \nsubseteq X \\
\left(\zeta f_{c}\right)[X]+\left(\zeta f_{c}\right)[X \backslash\{u, v\}] & e \subseteq X\end{cases}
\end{gathered}
$$

- Modified the construction:

Add a new child node $c^{\prime}, B_{x}=B_{c^{\prime}}$. Introduce e in $B_{c^{\prime}}$. $x \rightarrow$ join node.

Saving space on tree decomposition - Algorithm

- Algorithm:
- Follow depth-first search in-order of the tree.
- Branch on the forget vertex node.

$$
\left(\zeta f_{x}\right)[X]=\left(\zeta f_{c}\right)[X \cup\{v\}]-\left(\zeta f_{c}\right)[X]
$$

- Otherwise, "point-wise" addition or multiplication. Introduce vertex node:

$$
\left(\zeta f_{x}\right)[X]= \begin{cases}\left(\zeta f_{c}\right)[X] & v \notin X \\ \left(\zeta f_{c}\right)[X \backslash\{v\}] & v \in X\end{cases}
$$

Join node:

$$
\left(\zeta f_{x}\right)[X]=\left(\zeta f_{c_{1}}\right)[X] \cdot\left(\zeta f_{c_{2}}\right)[X]
$$

Saving space on tree decomposition - Complexity

- Complexity:
- time: $O\left((|E|+|V|) 2^{h}\right), h=$ max number of forget nodes along any root-to-leaf path.

$$
T[j] \leq 2 \cdot 2^{\max \left\{h_{1}, h_{2}\right\}} \max \left\{T\left[j_{1}\right], T\left[j_{2}\right]\right\}
$$

- space: poly, handle one subset at a time.
- Parameter h:
- max number of vertices along any root-to-leaf path.
- Equivalent to "tree-depth".
- $k+1 \leq h \leq O(\log |V|)(k+1)$.

Saving space on tree decomposition - Main result

Theorem

For any graph $G=(V, E)$ and a modified nice tree decomposition \mathcal{T} on G. Assume the number of forget nodes along any path from the root to a leaf in \mathcal{T} is at most h. Let f be a function evaluated by a circuit C over $\left(\mathbb{Z}\left[2^{V}\right] ; \oplus, *\right)$ with constants being singletons. Assume $f[V] \leq m$ for integer m. We can compute $f[V]$ in time $O\left((|V|+|E|) 2^{h}\right)$ and in space $O(|V||C| \log m)$.

Counting perfect matchings on grids - Balanced tree decomposition on grids

Monomer-Dimer problem - an important problem in statistical physics.

Partition on 2-Dim Grid

Tree decomposition on 2-Dim Grid

Figure : Illustrative figure for balanced tree decomposition on 2-dimensional grids. Always bipartition the longer side of the grid/subgrid. P_{i} represent a balanced vertex separator. Denote the left/top half of P_{i} by $P_{i 1}$, and the right/bottom part by $P_{i 2}$.

Counting perfect matchings on grids - Results

Lemma

The treewidth of the tree decomposition on $G_{d}(n)$ is $\frac{3}{2} n^{d-1}$. The maximum number of forget nodes along any path from the root to a leaf is at most $\frac{2^{d}-1}{2^{d-1}-1} n^{d-1}$.

Theorem

The problem of counting perfect matchings on grids of dimension d and uniform length n can be solved in time $O^{*}\left(2^{\frac{2^{d}-1}{2^{d-1}-1} n^{d-1}}\right)$ and in polynomial space.

Comparison to other algorithms

- DP (Dynamic Programming) based on path decomposition. Construct n nodes $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ associated with a bag of vertices with x_{1} coordinate equal to j, for $j=0,1, \ldots, n-1$. For any p_{j}, p_{j+1}, start from p_{j}, add a sequence of nodes by alternating between adding a vertex of $x_{1}=j+1$ and deleting its neighbor with $x_{1}=j$. Pathwidth of n^{d-1}.
Time $O^{*}\left(2^{n^{d-1}}\right)$, space $O^{*}\left(2^{n^{d-1}}\right)$.

Figure: Path decomposition on grids

Comparison to other algorithms

- DP based on path decomposition on a subgrid. Extract from $G_{d}(n)$ a subgrid of pathwidth $O(\log n)$, delete a portion of vertices from $G_{d}(n)$ to turn a "cube"-shaped grid into a long "stripe" with $O(\log n)$ cross-section area. Remove $O\left(\frac{n^{d}}{(\log n)^{1 /(d-1)}}\right)$ vertices.
Time $2^{O}\left(\frac{n^{d}}{(\log n)^{1 /(d-1)}}\right)$, poly-space.

Figure : Path decomposition on subgrids.

Comparison to other algorithms

- Branching algorithm. First find a balanced separator S and partitioning the graph into $A \cup S \cup B$. Enumerate every subset $X \subseteq S$. A vertex in X either matches to vertices in A or to vertices in B. Vertices in $S \backslash X$ are matched within S. Recurse on A and B. $T_{d}(n) \leq 2 T_{d}\left(\frac{n-|S|}{2}\right) \sum_{X \subseteq S} 2^{|X|} T_{d-1}(|S \backslash X|)$. Separator size $O\left(n^{d-1}\right), T_{d-1}(|S \backslash X|)=2^{O\left(n^{d-2}\right)}$.
Time $O^{*}\left(3^{\frac{2^{d}-1}{2^{d-1}-1} n^{d-1}}\right)$, poly-space.

Figure: Balanced graph decomposition

- Comparison:
- DP on path decomposition, pathwidth $O\left(n^{d-1}\right)$: time $O^{*}\left(2^{n^{d-1}}\right)$, space $O^{*}\left(2^{n^{d-1}}\right)$.
- DP on path decomposition, pathwidth $O(\log n)$: time $2^{O\left(\frac{n^{d}}{(\log n)^{1 /(d-1)}}\right)}$, poly-space.
- Branching: time $O\left(3^{h}\right), h=\frac{2^{d}-1}{2^{d-1}-1} n^{d-1}$, poly-space.
- DP by algebrazation: time $O\left(2^{h}\right)$, poly-space.
- Results generalized to more general grids, different length in each dimension.
- Extensions to other problems:
- YES: matching polynomial, counting set packings, counting set covers.
- NO: independent sets (not a convolution), Hamiltonian paths, Steiner tree (poly-space?).
- Open problems:
- Find other graph decompositions of large subgraphs?
- Do other problems fit in this dynamic algebraization framework?

