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The Problem Instance
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Comparing two matchings
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Popular Matching - Definition

M is popular if AM’ more popular than M



Popular Matching - Definition

M is popular if AM’ more popular than M

(Questions

Does there always exist one? No.

Can there exist more than one? Yes.



Instances with Ties
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History

[Abraham et al. 2005] gave a poly-time algorithm to
output a popular matching



History

[Abraham et al. 2005] gave a poly-time algorithm to
output a popular matching

Studied Extensively in Different Settings

Random Popular Matching [Mahdian 2006]

Different Optimality Criteria [KNN2010, KMN20I I]
Preferences on both sides [Kavitha 2012]

Games on Popular Matching [Nasre 201 3]
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Fully Polynomial Randomised Polynomial Scheme

For problem f : X* — N, input x € X*, tolerance ¢ > 0, error probability
0 > 0 outputs N such that for all x:

Pl(l—¢e)f(x) KNS (1+¢€e)f(x) >
in time poly(|x|,1/€,1log 1/9).



Our Focus

Strict Ordering, Integer Capacities
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Popular Matching Characterisation

In every popular matching:

® cvery agent gets either its f-house or s-house



Popular Matching Characterisation

In every popular matching:
® cvery agent gets either its f-house or s-house

® cvery f-house is used to maximum capacity
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Switching Graph Characterisation

Another way to look at popular matchings!
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Moving from one Popular Matching to Another
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Moving from one Popular Matching to Another

Trick : Path Reversal
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Moving from one Popular Matching to Another

Trick : Cycle Reversal
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Moving from one Popular Matching to Another

edge-disjoint union of switching paths and
switching cycles could be reversed



Moving from one Popular Matching to Another

edge-disjoint union of switching paths and
switching cycles could be reversed

Careful: number of switching paths ending at a house
should be less than its remaining capacity



Theorem If Gr 1s the switching graph of the CHA instance G with respect
to a popular matching M, then

(i) every switching move on Gy generates another popular matching, and
(11) every popular matching of G can be generated by a switching move on M.



#P-Hardness of Counting Popular Matchings

# popular matchings
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bipartite graph
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Summary

We Give

® A ‘Switching Graph’ Characterisation for no-ties,
capacitated case and prove #P-hardness of counting
® We give an FPRAS for ties case



Summary

We Give

® A ‘Switching Graph’ Characterisation for no-ties,
capacitated case and prove #P-hardness of counting
® We give an FPRAS for ties case

Open

Algorithm for Counting in no-ties, capacitated case



