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The Problem Instance
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The Problem Instance
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A Matching
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Comparing two matchings
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Voting
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Popular Matching - Definition
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Popular Matching - Definition

M is popular if @M 0
more popular than M

Does there always exist one? No.

Can there exist more than one? Yes.

Questions



Instances with Ties
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History

[Abraham et al.  2005] gave a poly-time algorithm to 
output a popular matching



History

[Abraham et al.  2005] gave a poly-time algorithm to 
output a popular matching

Studied Extensively in Different Settings

• Random Popular Matching [Mahdian 2006]	

• Different Optimality Criteria [KNN2010, KMN2011]	

• Preferences on both sides [Kavitha 2012]	

• Games on Popular Matching [Nasre 2013]	
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Hardness Approximation

no ties,  
capacities = 1 poly-time

Exact Count in O(n) 
[McDermid and Irving 

2011]

 ties,  
capacities = 1

#P-hard 
[Nasre 2013]

FPRAS 
[Acharyya, 

Chakraborty, J]

no ties, 
integer capacities

#P-hard 
[Acharyya, 

Chakraborty, J]
OPEN

Counting Popular Matchings



Fully Polynomial Randomised Polynomial Scheme

For problem f : ⌃

⇤ ! N, input x 2 ⌃

⇤
, tolerance ✏ > 0, error probability

� > 0 outputs N such that for all x:

P [(1� ✏)f(x)  N  (1 + ✏)f(x)] � �

in time poly(|x|, 1/✏, log 1/�).



Our Focus

Strict Ordering,  Integer Capacities
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Preferences Capacities

 f-houses = {h1, h2}
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Popular Matching Characterisation

• every agent gets either its f-house or s-house
In every popular matching:



Popular Matching Characterisation

• every agent gets either its f-house or s-house
In every popular matching:

• every f-house is used to maximum capacity
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Switching Graph Characterisation

Another way to look at popular matchings!
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edge-disjoint union of switching paths and 	
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edge-disjoint union of switching paths and 	

switching cycles could be reversed

Moving from one Popular Matching to Another

Careful:  number of switching paths ending at a house 
should be less than its remaining capacity



let S := S \ C
2. while (S is non-empty):
(a) find a longest path P in S which alternates between weights +1 and �1
(b) let S := S \ P

At the end of every iteration of the while loop in Step 1, Lemma 9 still holds
true. We now prove a very crucial invariant of the while loop in Step 2.

Lemma 10. In every iteration of the while loop in Step 2 of the algorithm
Reduction, the longest path in step 2(a) is a switching path for GM .

Proof. Let us denote the stages of the run of algorithm Reduction by t. Initially,
at t = 0, before any of the while loops run, S is exactly the di↵erence of edges
in EM and E0

M . Let the while loop in Step 1 runs t1 times and the while loop
in Step 2 runs t2 times.

Let the current stage be t = t1+ i. Let P be the maximal path in step 2(a) at
this stage. We show that P starts with an edge of weight +1. For contradiction,
let (hi, hj) be an edge of weight �1 and that this is the first edge of path P . Let
aij be the agent associated with the edge (hi, hj).

The Property 5 of switching sets precludes any incoming edge of weight �1
on the vertex hi. Hence, no switching path could have ended at hi at any stage
t < t1 + i. Similarly, no switching cycle with an incoming edge �1 was incident
on hi at an earlier stage.

Let us assume that there were r cycles that were incident at hi at t = 0. At
stage t = t1 + i, let the number of outgoing �1 edges be m. Hence at t = 0,
hi had r incoming +1 edges and r +m outgoing �1 edges. But this would also
imply that at t = 0, hi had r +m incoming +1 edges in GM 0 . This contradicts
Property 2, requiring the number of incoming +1 edges to be constant in the
switching graphs corresponding to di↵erent popular matchings.

A similar argument can be made for the fact that the path P can only end
at an edge with weight �1 and that P ends at an unsaturated vertex.

The following theorem establishes the characterization for popular matchings in
CHA.

Theorem 3. If GM is the switching graph of the CHA instance G with respect
to a popular matching M , then
(i) every switching move on GM generates another popular matching, and
(ii) every popular matching of G can be generated by a switching move on M .

Proof.

(i) We verify that the new matching generated by applying a switching move on
GM satisfies the characterization in Lemma 8. Call the new switching graph
GM 0 and the associated matching M 0. First, observe that M 0 is indeed an
agent complete matching since GM 0 still has a directed edge for each agent
in A. Next, each agent a is still matched to f(a) or s(a) as the switching
move either reverses an edge of GM or leaves it as it is. Finally, for each

10



#P-Hardness of Counting Popular Matchings

# matchings in 	

bipartite graph

# popular matchings	

in no-ties, integer 	

capacity instance



#P-Hardness of Counting Popular Matchings



#P-Hardness of Counting Popular Matchings



#P-Hardness of Counting Popular Matchings
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Summary

We Give

• A ‘Switching Graph’ Characterisation for no-ties,  
capacitated case and prove #P-hardness of counting	


• We give an FPRAS for ties case



Summary

We Give

• A ‘Switching Graph’ Characterisation for no-ties,  
capacitated case and prove #P-hardness of counting	


• We give an FPRAS for ties case

Open

Algorithm for Counting in no-ties, capacitated case


