Counting Popular Matchings in House Allocation Problems Rupam Acharyya, Sourav Chakraborty and Nitesh Jha Chennai Mathematical Institute India **CSR 2014** #### The Problem Agents $a_1 \bullet$ $a_2 \bullet$ *a*₃ • *a*₄ • *a*₅ • *a*₆ • Houses \Box h_1 h_3 h_4 h_5 #### The Problem #### The Problem $a_1 : h_1 h_2 h_3 h_4$ #### The Problem Instance #### **Preferences** | a_1 | h_1 | h_2 | h_3 | h_4 | |-------|-------|-------|-------|-------| | a_2 | h_1 | h_3 | h_2 | | | a_3 | h_2 | h_1 | h_3 | | | a_4 | h_2 | h_4 | h_3 | | | a_5 | h_5 | h_1 | | | | a_6 | h_5 | h_2 | | | #### The Problem Instance #### **Preferences** | a_1 | h_1 | h_2 | h_3 | h_4 | |-------|-------|-------|-------|-------| | a_2 | h_1 | h_3 | h_2 | | | a_3 | h_2 | h_1 | h_3 | | | a_4 | h_2 | h_4 | h_3 | | | a_5 | h_5 | h_1 | | | | a_6 | h_5 | h_2 | | | | h_1 | 1 | |-------|---| | h_2 | 1 | | h_3 | 2 | | h_4 | 2 | | h_5 | 2 | ## A Matching ## A Matching Is it a good matching? ## Comparing two matchings | M_1 | | N_{\perp} | I_2 | |------------------|-------|------------------|-------| | $\overline{a_1}$ | h_1 | $\overline{a_1}$ | h_4 | | a_2 | h_3 | a_2 | h_1 | | a_3 | h_2 | a_3 | h_3 | | a_4 | h_4 | a_4 | h_4 | | a_5 | h_5 | a_5 | h_5 | | a_6 | h_5 | a_6 | h_5 | ## Voting | M_1 M_2 | | I_2 | | |------------------|------------------|------------------|-------| | $\overline{a_1}$ | $\overline{h_1}$ | $\overline{a_1}$ | h_4 | | a_2 | h_3 | a_2 | h_1 | | a_3 | h_2 | a_3 | h_3 | | a_4 | h_4 | a_4 | h_4 | | a_5 | h_5 | a_5 | h_5 | | a_6 | h_5 | a_6 | h_5 | $a_1 \mid h_1 \mid h_2 \mid h_3 \mid h_4$ ## Voting | $\overline{a_1}$ h_1 | $\overline{a_1}$ h_4 | a ı \mid | h : h | | |------------------------|------------------------|--------------|----------------|-------| | | ω_1 / ι_4 | 1 | $u_1 \mid u_2$ | h_3 | | a_2 h_3 | a_2 h_1 | | | | | a_3 h_2 | a_3 h_3 | | | | | a_4 h_4 | a_4 h_4 | | | | | a_5 h_5 | a_5 h_5 | | | | | a_6 h_5 | a_6 h_5 | | | | a_1 M_1 ## Voting | N_{-} | I_1 | M | I_2 | |------------------|------------------|------------------|-------| | $\overline{a_1}$ | $\overline{h_1}$ | $\overline{a_1}$ | h_4 | | a_2 | h_3 | a_2 | h_1 | | a_3 | h_2 | a_3 | h_3 | | a_4 | h_4 | a_4 | h_4 | | a_5 | h_5 | a_5 | h_5 | | a_6 | h_5 | a_6 | h_5 | ## "more popular than" M_1 more popular than M_2 ## Popular Matching - Definition M is popular if $\not\equiv M'$ more popular than M ## Popular Matching - Definition M is popular if $\not\equiv M'$ more popular than M Questions Does there always exist one? No. Can there exist more than one? Yes. #### Instances with Ties $a_1 : h_1 (h_2 \ h_3) h_4$ ## History [Abraham et al. 2005] gave a poly-time algorithm to output a popular matching ## History [Abraham et al. 2005] gave a poly-time algorithm to output a popular matching #### Studied Extensively in Different Settings - Random Popular Matching [Mahdian 2006] - Different Optimality Criteria [KNN2010, KMN2011] - Preferences on both sides [Kavitha 2012] - Games on Popular Matching [Nasre 2013] | Hardness | Approximation | |----------|---------------| | | | | | | | | | | | Hardness | Approximation | |----------------------------|-----------|--| | no ties,
capacities = 1 | poly-time | Exact Count in O(n)
[McDermid and Irving
2011] | | | | | | | | | | | Hardness | Approximation | |----------------------------|-------------------------|--| | no ties,
capacities = 1 | poly-time | Exact Count in O(n)
[McDermid and Irving
2011] | | ties,
capacities = 1 | #P-hard
[Nasre 2013] | FPRAS
[Acharyya,
Chakraborty, J] | | | | | | | Hardness | Approximation | |--------------------------------|--|--| | no ties,
capacities = 1 | poly-time | Exact Count in O(n)
[McDermid and Irving
2011] | | ties,
capacities = 1 | #P-hard
[Nasre 2013] | FPRAS
[Acharyya,
Chakraborty, J] | | no ties,
integer capacities | #P-hard
[Acharyya,
Chakraborty, J] | OPEN | ## Fully Polynomial Randomised Polynomial Scheme For problem $f: \Sigma^* \to \mathbb{N}$, input $x \in \Sigma^*$, tolerance $\epsilon > 0$, error probability $\delta > 0$ outputs N such that for all x: $$P[(1 - \epsilon)f(x) \le N \le (1 + \epsilon)f(x)] \ge \delta$$ in time poly($|x|, 1/\epsilon, \log 1/\delta$). #### Our Focus Strict Ordering, Integer Capacities | $\overline{a_1}$ | h_1 | h_2 | h_3 | h_4 | |------------------|-------|-------|-------|-------| | a_2 | h_1 | h_3 | h_2 | | | a_3 | h_2 | h_1 | h_3 | | | a_4 | h_2 | h_4 | h_3 | | | $\overline{h_1}$ | 1 | |------------------|---| | h_2 | 1 | | h_3 | 2 | | h_4 | 2 | | $\overline{a_1}$ | h_1 | h_2 | h_3 | h_4 | |------------------|-------|-------|-------|-------| | a_2 | h_1 | h_3 | h_2 | | | a_3 | h_2 | h_1 | h_3 | | | a_4 | h_2 | h_4 | h_3 | | | $\overline{h_1}$ | 1 | |------------------|---| | h_2 | 1 | | h_3 | 2 | | h_4 | 2 | f-houses = $$\{h_1, h_2\}$$ | $\overline{a_1}$ | h_1 | h_2' | h_3 | h_4 | |------------------|-------|--------|-------|-------| | a_2 | h_1 | h_3 | h_2 | | | a_3 | h_2 | h_1 | h_3 | | | a_4 | h_2 | h_4 | h_3 | | ## $\text{f-houses} = \{h_1, h_2\}$ | h_1 | 1 | |-------|---| | h_2 | 1 | | h_3 | 2 | | h_4 | 2 | | $\overline{a_1}$ | h_1 | h_2' | h_3 | h_4 | |------------------|---------|--------|-------|-------| | a_2 | h_1 | h_3 | h_2 | | | a_3 | h_2 | h_1' | h_3 | | | a_4 | (h_2) | h_4 | h_3 | | | $\overline{h_1}$ | 1 | |------------------|---| | h_2 | 1 | | h_3 | 2 | | h_4 | 2 | f-houses $$=\{h_1,h_2\}$$ | $\overline{a_1}$ | h_1 | h_2' | h_3 | h_4 | |------------------|-------|--------|---------|-------| | a_2 | h_1 | h_3 | h_2 | | | a_3 | h_2 | h_1' | (h_3) | | | a_4 | h_2 | h_4 | h_3 | | $$f\text{-houses} = \{h_1, h_2\}$$ s-houses $$= \{h_3, h_4\}$$ | h_1 | 1 | |-------|---| | h_2 | 1 | | h_3 | 2 | | h_4 | 2 | #### Popular Matching Characterisation In every popular matching: every agent gets either its f-house or s-house #### Popular Matching Characterisation ## In every popular matching: - every agent gets either its f-house or s-house - every f-house is used to maximum capacity | $\overline{a_1}$ | h_1 | h_2' | h_3 | h_4 | |------------------|-------|---------|---------|-------| | a_2 | h_1 | h_3 | h_2 | | | a_3 | h_2 | h_1' | (h_3) | | | a_4 | h_2 | (h_4) | h_3 | | | $\overline{h_1}$ | 1 | |------------------|---| | h_2 | 1 | | h_3 | 2 | | h_4 | 2 | ## Switching Graph Characterisation Another way to look at popular matchings! | a_1 | h_1 | k_2' | h_3 | h_4 | |-------|-------|-----------------|-------|-------| | | | h_3 | | | | a_3 | h_2 | \mathcal{H}_1 | h_3 | | | a_4 | h_2 | h_4 | h_3 | | | a_1 | h_1 | k_2' | h_3 | h_4 | |-------|-------|-----------------|-------|-------| | | h_1 | | | | | a_3 | h_2 | \mathcal{H}_1 | h_3 | | | a_4 | h_2 | h_4 | h_3 | | $$h_1$$ $$h_4$$ $$h_2$$ | | h_1 | | | h_4 | |-------|-------|---|-------|-------| | | h_1 | | | | | a_3 | h_2 | $\not \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$ | h_3 | | | a_4 | h_2 | h_4 | h_3 | | $$h_4$$ h_2 | $\overline{a_1}$ | h_1 | k_2 | h_3 | h_4 | |------------------|-------|-------|-------|-------| | | h_1 | | | | | | h_2 | | | | | a_4 | h_2 | h_4 | h_3 | | $$h_4$$ h_2 | a_1 | h_1 | b_2' | h_3 | h_4 | |-------|-------|-----------------------|-------|-------| | | h_1 | | | | | a_3 | h_2 | <i>b</i> ₁ | h_3 | | | a_4 | h_2 | h_4 | h_3 | | | h_1 | 1 | |-------|---| | h_2 | 1 | | h_3 | 2 | | h_4 | 2 | | $\overline{h_1}$ | 1 | $a_1 \bullet \overline{}$ | n_1 | |------------------|---|---|-------| | h_2 | 1 | $a_2 \bullet \bigcirc \bigcirc$ | n_2 | | h_3 | 2 | $a_3 \bullet \bigcirc \bigcirc \bigcirc$ | i_3 | | $ h_4 $ | 2 | $a_4 \bullet - $ | n_4 | switching graph #### Trick: Path Reversal switching graph #### Trick: Path Reversal switching graph #### Trick: Path Reversal switching graph ## Trick: Cycle Reversal switching graph ## Trick: Cycle Reversal switching graph ## Trick: Cycle Reversal switching graph edge-disjoint union of switching paths and switching cycles could be reversed edge-disjoint union of switching paths and switching cycles could be reversed Careful: number of switching paths ending at a house should be less than its remaining capacity **Theorem** If G_M is the switching graph of the CHA instance G with respect to a popular matching M, then - (i) every switching move on G_M generates another popular matching, and - (ii) every popular matching of G can be generated by a switching move on M. # matchings in bipartite graph # popular matchings in no-ties, integer capacity instance s-houses s-houses Matching ____ Switching set Matching - Switching set Matching - Switching set ### Summary #### We Give - A 'Switching Graph' Characterisation for no-ties, capacitated case and prove #P-hardness of counting - We give an FPRAS for ties case ### Summary #### We Give - A 'Switching Graph' Characterisation for no-ties, capacitated case and prove #P-hardness of counting - We give an FPRAS for ties case ### Open Algorithm for Counting in no-ties, capacitated case