Counting Popular Matchings in House Allocation Problems

Rupam Acharyya, Sourav Chakraborty and Nitesh Jha Chennai Mathematical Institute India

CSR 2014

The Problem

Agents

 $a_1 \bullet$

 $a_2 \bullet$

*a*₃ •

*a*₄ •

*a*₅ •

*a*₆ •

Houses

 \Box h_1

 h_3

 h_4

 h_5

The Problem

The Problem

 $a_1 : h_1 h_2 h_3 h_4$

The Problem Instance

Preferences

a_1	h_1	h_2	h_3	h_4
a_2	h_1	h_3	h_2	
a_3	h_2	h_1	h_3	
a_4	h_2	h_4	h_3	
a_5	h_5	h_1		
a_6	h_5	h_2		

The Problem Instance

Preferences

a_1	h_1	h_2	h_3	h_4
a_2	h_1	h_3	h_2	
a_3	h_2	h_1	h_3	
a_4	h_2	h_4	h_3	
a_5	h_5	h_1		
a_6	h_5	h_2		

h_1	1
h_2	1
h_3	2
h_4	2
h_5	2

A Matching

A Matching

Is it a good matching?

Comparing two matchings

M_1		N_{\perp}	I_2
$\overline{a_1}$	h_1	$\overline{a_1}$	h_4
a_2	h_3	a_2	h_1
a_3	h_2	a_3	h_3
a_4	h_4	a_4	h_4
a_5	h_5	a_5	h_5
a_6	h_5	a_6	h_5

Voting

M_1 M_2		I_2	
$\overline{a_1}$	$\overline{h_1}$	$\overline{a_1}$	h_4
a_2	h_3	a_2	h_1
a_3	h_2	a_3	h_3
a_4	h_4	a_4	h_4
a_5	h_5	a_5	h_5
a_6	h_5	a_6	h_5

 $a_1 \mid h_1 \mid h_2 \mid h_3 \mid h_4$

Voting

$\overline{a_1}$ h_1	$\overline{a_1}$ h_4	a ı \mid	h : h	
	ω_1 / ι_4	1	$u_1 \mid u_2$	h_3
a_2 h_3	a_2 h_1			
a_3 h_2	a_3 h_3			
a_4 h_4	a_4 h_4			
a_5 h_5	a_5 h_5			
a_6 h_5	a_6 h_5			

 a_1 M_1

Voting

N_{-}	I_1	M	I_2
$\overline{a_1}$	$\overline{h_1}$	$\overline{a_1}$	h_4
a_2	h_3	a_2	h_1
a_3	h_2	a_3	h_3
a_4	h_4	a_4	h_4
a_5	h_5	a_5	h_5
a_6	h_5	a_6	h_5

"more popular than"

 M_1 more popular than M_2

Popular Matching - Definition

M is popular if $\not\equiv M'$ more popular than M

Popular Matching - Definition

M is popular if $\not\equiv M'$ more popular than M

Questions

Does there always exist one? No.

Can there exist more than one? Yes.

Instances with Ties

 $a_1 : h_1 (h_2 \ h_3) h_4$

History

[Abraham et al. 2005] gave a poly-time algorithm to output a popular matching

History

[Abraham et al. 2005] gave a poly-time algorithm to output a popular matching

Studied Extensively in Different Settings

- Random Popular Matching [Mahdian 2006]
- Different Optimality Criteria [KNN2010, KMN2011]
- Preferences on both sides [Kavitha 2012]
- Games on Popular Matching [Nasre 2013]

Hardness	Approximation

	Hardness	Approximation
no ties, capacities = 1	poly-time	Exact Count in O(n) [McDermid and Irving 2011]

	Hardness	Approximation
no ties, capacities = 1	poly-time	Exact Count in O(n) [McDermid and Irving 2011]
ties, capacities = 1	#P-hard [Nasre 2013]	FPRAS [Acharyya, Chakraborty, J]

	Hardness	Approximation
no ties, capacities = 1	poly-time	Exact Count in O(n) [McDermid and Irving 2011]
ties, capacities = 1	#P-hard [Nasre 2013]	FPRAS [Acharyya, Chakraborty, J]
no ties, integer capacities	#P-hard [Acharyya, Chakraborty, J]	OPEN

Fully Polynomial Randomised Polynomial Scheme

For problem $f: \Sigma^* \to \mathbb{N}$, input $x \in \Sigma^*$, tolerance $\epsilon > 0$, error probability $\delta > 0$ outputs N such that for all x:

$$P[(1 - \epsilon)f(x) \le N \le (1 + \epsilon)f(x)] \ge \delta$$

in time poly($|x|, 1/\epsilon, \log 1/\delta$).

Our Focus

Strict Ordering, Integer Capacities

$\overline{a_1}$	h_1	h_2	h_3	h_4
a_2	h_1	h_3	h_2	
a_3	h_2	h_1	h_3	
a_4	h_2	h_4	h_3	

$\overline{h_1}$	1
h_2	1
h_3	2
h_4	2

$\overline{a_1}$	h_1	h_2	h_3	h_4
a_2	h_1	h_3	h_2	
a_3	h_2	h_1	h_3	
a_4	h_2	h_4	h_3	

$\overline{h_1}$	1
h_2	1
h_3	2
h_4	2

f-houses =
$$\{h_1, h_2\}$$

$\overline{a_1}$	h_1	h_2'	h_3	h_4
a_2	h_1	h_3	h_2	
a_3	h_2	h_1	h_3	
a_4	h_2	h_4	h_3	

$\text{f-houses} = \{h_1, h_2\}$

h_1	1
h_2	1
h_3	2
h_4	2

$\overline{a_1}$	h_1	h_2'	h_3	h_4
a_2	h_1	h_3	h_2	
a_3	h_2	h_1'	h_3	
a_4	(h_2)	h_4	h_3	

$\overline{h_1}$	1
h_2	1
h_3	2
h_4	2

f-houses
$$=\{h_1,h_2\}$$

$\overline{a_1}$	h_1	h_2'	h_3	h_4
a_2	h_1	h_3	h_2	
a_3	h_2	h_1'	(h_3)	
a_4	h_2	h_4	h_3	

$$f\text{-houses} = \{h_1, h_2\}$$

s-houses
$$= \{h_3, h_4\}$$

h_1	1
h_2	1
h_3	2
h_4	2

Popular Matching Characterisation

In every popular matching:

every agent gets either its f-house or s-house

Popular Matching Characterisation

In every popular matching:

- every agent gets either its f-house or s-house
- every f-house is used to maximum capacity

$\overline{a_1}$	h_1	h_2'	h_3	h_4
a_2	h_1	h_3	h_2	
a_3	h_2	h_1'	(h_3)	
a_4	h_2	(h_4)	h_3	

$\overline{h_1}$	1
h_2	1
h_3	2
h_4	2

Switching Graph Characterisation

Another way to look at popular matchings!

a_1	h_1	k_2'	h_3	h_4
		h_3		
a_3	h_2	\mathcal{H}_1	h_3	
a_4	h_2	h_4	h_3	

a_1	h_1	k_2'	h_3	h_4
	h_1			
a_3	h_2	\mathcal{H}_1	h_3	
a_4	h_2	h_4	h_3	

$$h_1$$

$$h_4$$

$$h_2$$

	h_1			h_4
	h_1			
a_3	h_2	$\not \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	h_3	
a_4	h_2	h_4	h_3	

$$h_4$$

 h_2

$\overline{a_1}$	h_1	k_2	h_3	h_4
	h_1			
	h_2			
a_4	h_2	h_4	h_3	

$$h_4$$

 h_2

a_1	h_1	b_2'	h_3	h_4
	h_1			
a_3	h_2	<i>b</i> ₁	h_3	
a_4	h_2	h_4	h_3	

h_1	1
h_2	1
h_3	2
h_4	2

$\overline{h_1}$	1	$a_1 \bullet \overline{}$	n_1
h_2	1	$a_2 \bullet \bigcirc \bigcirc$	n_2
h_3	2	$a_3 \bullet \bigcirc \bigcirc \bigcirc$	i_3
$ h_4 $	2	$a_4 \bullet - $	n_4

switching graph

Trick: Path Reversal

switching graph

Trick: Path Reversal

switching graph

Trick: Path Reversal

switching graph

Trick: Cycle Reversal

switching graph

Trick: Cycle Reversal

switching graph

Trick: Cycle Reversal

switching graph

edge-disjoint union of switching paths and switching cycles could be reversed

edge-disjoint union of switching paths and switching cycles could be reversed

Careful: number of switching paths ending at a house should be less than its remaining capacity

Theorem If G_M is the switching graph of the CHA instance G with respect to a popular matching M, then

- (i) every switching move on G_M generates another popular matching, and
- (ii) every popular matching of G can be generated by a switching move on M.

matchings in bipartite graph

popular matchings in no-ties, integer capacity instance

s-houses

s-houses

Matching

Switching set

Matching -

Switching set

Matching -

Switching set

Summary

We Give

- A 'Switching Graph' Characterisation for no-ties, capacitated case and prove #P-hardness of counting
- We give an FPRAS for ties case

Summary

We Give

- A 'Switching Graph' Characterisation for no-ties, capacitated case and prove #P-hardness of counting
- We give an FPRAS for ties case

Open

Algorithm for Counting in no-ties, capacitated case