Counting Popular Matchings in House Allocation Problems

Rupam Acharyya, Sourav Chakraborty and Nitesh Jha Chennai Mathematical Institute India

CSR 2014

The Problem

Agents

$a_{6} \bullet$

Houses

The Problem

The Problem

$$
a_{1}: h_{1} \quad h_{2} \quad h_{3} \quad h_{4}
$$

The Problem Instance

Preferences

a_{1}	h_{1}	h_{2}	h_{3}	h_{4}
a_{2}	h_{1}	h_{3}	h_{2}	
a_{3}	h_{2}	h_{1}	h_{3}	
a_{4}	h_{2}	h_{4}	h_{3}	
a_{5}	h_{5}	h_{1}		
a_{6}	h_{5}	h_{2}		

The Problem Instance

Preferences

a_{1}	h_{1}	h_{2}	h_{3}	h_{4}
a_{2}	h_{1}	h_{3}	h_{2}	
a_{3}	h_{2}	h_{1}	h_{3}	
a_{4}	h_{2}	h_{4}	h_{3}	
a_{5}	h_{5}	h_{1}		
a_{6}	h_{5}	h_{2}		

Capacities

h_{1}	1
h_{2}	1
h_{3}	2
h_{4}	2
h_{5}	2

A Matching

A Matching

Is it a good matching?

Comparing two matchings

Voting

Voting

a_{1}
M_{1}

Voting

$$
\begin{aligned}
& \begin{array}{ccc:c:cc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
M_{1} & M_{2} & M_{1} & * & * & *
\end{array}
\end{aligned}
$$

"more popular than"

$$
\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
M_{1} & M_{2} & M_{1} & * & * & *
\end{array}
$$

M_{1} more popular than M_{2}

Popular Matching - Definition

M is popular if $\nexists M^{\prime}$ more popular than M

Popular Matching - Definition

M is popular if $\nexists M^{\prime}$ more popular than M

Questions

Does there always exist one? No.
Can there exist more than one? Yes.

Instances with Ties

$$
a_{1}: h_{1}\left(h_{2} h_{3}\right) h_{4}
$$

History

[Abraham et al. 2005] gave a poly-time algorithm to output a popular matching

History

[Abraham et al. 2005] gave a poly-time algorithm to output a popular matching

Studied Extensively in Different Settings

- Random Popular Matching [Mahdian 2006]
- Different Optimality Criteria [KNN20I0, KMN20II]
- Preferences on both sides [Kavitha 2012]
- Games on Popular Matching [Nasre 2013]

Counting Popular Matchings

Hardness
Approximation

Counting Popular Matchings

Counting Popular Matchings

Hardness	Approximation		
no ties,			
capacities $=1$		$:$	Exact Count in O(n)
:---:			
[McDermid and Irving			
2011]			

Counting Popular Matchings

	Hardness	Approximation		
no ties,				
capacities $=1$			$:$	Exact Count in O(n)
:---:				
[McDermid and Irving				
2011]				

Fully Polynomial Randomised Polynomial Scheme

For problem $f: \Sigma^{*} \rightarrow \mathrm{~N}$, input $x \in \Sigma^{*}$, tolerance $\epsilon>0$, error probability $\delta>0$ outputs N such that for all x :

$$
P[(1-\epsilon) f(x) \leq N \leq(1+\epsilon) f(x)] \geq \delta
$$

in time $\operatorname{poly}(|x|, 1 / \epsilon, \log 1 / \delta)$.

Our Focus

Strict Ordering, Integer Capacities

Preferences

a_{1}	h_{1}	h_{2}	h_{3}	h_{4}
a_{2}	h_{1}	h_{3}	h_{2}	
a_{3}	h_{2}	h_{1}	h_{3}	
a_{4}	h_{2}	h_{4}	h_{3}	

Capacities

h_{1}	1
h_{2}	1
h_{3}	2
h_{4}	2

Preferences

a_{1}	h_{1}	h_{2}	h_{3}	h_{4}
a_{2}	h_{1}	h_{3}	h_{2}	
a_{3}	h_{2}	h_{1}	h_{3}	
a_{4}	h_{2}	h_{4}	h_{3}	

Capacities

h_{1}	1
h_{2}	1
h_{3}	2
h_{4}	2

f-houses $=\left\{h_{1}, h_{2}\right\}$

Preferences

a_{1}	h_{1}	h_{2}	h_{3}	h_{4}
a_{2}	h_{1}	h_{3}	h_{2}	
a_{3}	h_{2}	h_{1}	h_{3}	
a_{4}	h_{2}	h_{4}	h_{3}	

Capacities

h_{1}	1
h_{2}	1
h_{3}	2
h_{4}	2

f-houses $=\left\{h_{1}, h_{2}\right\}$

Preferences

a_{1}	h_{1}	h_{2}	h_{3}	h_{4}
a_{2}	$\left(h_{1}\right.$	h_{3}	h_{2}	
a_{3}	h_{2}	h_{1}	h_{3}	
a_{4}	h_{2}	h_{4}	h_{3}	

Capacities

h_{1}	1
h_{2}	1
h_{3}	2
h_{4}	2

f-houses $=\left\{h_{1}, h_{2}\right\}$

Preferences

a_{1}	$\left(h_{1}\right.$	h_{2}	h_{3}	h_{4}
a_{2}	$\left(h_{1}\right.$	h_{3}	h_{2}	
a_{3}	$\left(h_{2}\right.$	h_{1}	h_{3}	
a_{4}	$\left(h_{2}\right.$	h_{4}	h_{3}	

$$
\begin{aligned}
\mathrm{f} \text {-houses } & =\left\{h_{1}, h_{2}\right\} \\
\mathrm{s} \text {-houses } & =\left\{h_{3}, h_{4}\right\}
\end{aligned}
$$

Capacities

h_{1}	1
h_{2}	1
h_{3}	2
h_{4}	2

Popular Matching Characterisation

In every popular matching:

- every agent gets either its f-house or s-house

Popular Matching Characterisation

In every popular matching:

- every agent gets either its f-house or s-house
- every f-house is used to maximum capacity

a_{1}	$\left(h_{1}\right.$	h_{2}	h_{3}	h_{4}
a_{2}	$\left(h_{1}\right.$	h_{3}	h_{2}	
a_{3}	h_{2}	h_{1}	h_{3}	
a_{4}	$\left(h_{2}\right.$	h_{4}	h_{3}	

h_{1}	1
h_{2}	1
h_{3}	2
h_{4}	2

Switching Graph Characterisation

Another way to look at popular matchings!

a_{1}	$\left(h_{1}\right)$	h_{2}	h_{3}	h_{4}
a_{2}	$\left(h_{1}\right)$	h_{3}	h_{2}	
a_{3}	$\left(h_{2}\right)$	h_{1}	h_{3}	
a_{4}	$\left(h_{2}\right.$	h_{4}	h_{3}	

a_{1}	$\left(h_{1}\right.$	b_{2}	$\left(h_{3}\right)$	h_{4}
a_{2}	$\left(h_{1}\right.$	h_{3}	h_{2}	
a_{3}	h_{2}	h_{1}	h_{3}	
a_{4}	$\left(h_{2}\right.$	h_{4}	h_{3}	

(h3)
h_{1}
(h4)
h_{2}

a_{1}	$\left(h_{1}\right)$	b_{2}	$\left(h_{3}\right)$	h_{4}
a_{2}	$\left(h_{1}\right)$	h_{3}	h_{2}	
a_{3}	$\left(h_{2}\right)$	b_{1}	h_{3}	
a_{4}	$\left(h_{2}\right)$	h_{4}	h_{3}	

$h_{3} \longleftarrow a_{1}$
(h4)
h_{2}

a_{1}	$\left(h_{1}\right.$	b_{2}	h_{3}	h_{4}
a_{2}	h_{1}	h_{3}	h_{2}	
a_{3}	h_{2}	h_{1}	h_{3}	
a_{4}	h_{2}	h_{4}	h_{3}	

$h_{3} \underset{a_{2}}{\underset{a_{1}}{\leftrightarrows}} h_{1}$
(h4)
h_{2}

a_{1}	$\left(h_{1}\right.$	h_{2}	h_{3}	h_{4}
a_{2}	h_{1}	h_{3}	h_{2}	
a_{3}	h_{2}	h_{1}	h_{3}	
a_{4}	$\left(h_{2}\right)$	h_{4}	h_{3}	

h_{1}	1
h_{2}	1
h_{3}	2
h_{4}	2

h_{1}	1
h_{2}	1
h_{3}	2
h_{4}	2

Moving from one Popular Matching to Another

switching graph
popular matching

Moving from one Popular Matching to Another

Trick : Path Reversal

switching graph
popular matching

Moving from one Popular Matching to Another

Trick : Path Reversal

switching graph
popular matching

Moving from one Popular Matching to Another

Trick : Path Reversal

switching graph
popular matching

Moving from one Popular Matching to Another

Trick : Cycle Reversal

switching graph
popular matching

Moving from one Popular Matching to Another

Trick : Cycle Reversal

switching graph
popular matching

Moving from one Popular Matching to Another

Trick : Cycle Reversal

switching graph
popular matching

Moving from one Popular Matching to Another

edge-disjoint union of switching paths and switching cycles could be reversed

Moving from one Popular Matching to Another

edge-disjoint union of switching paths and switching cycles could be reversed

Careful: number of switching paths ending at a house should be less than its remaining capacity

Theorem If G_{M} is the switching graph of the CHA instance G with respect to a popular matching M, then
(i) every switching move on G_{M} generates another popular matching, and
(ii) every popular matching of G can be generated by a switching move on M.

\#P-Hardness of Counting Popular Matchings

\# matchings in bipartite graph
\# popular matchings in no-ties, integer capacity instance
\#P-Hardness of Counting Popular Matchings

- s-houses

\#P-Hardness of Counting Popular Matchings

- s-houses

\#P-Hardness of Counting Popular Matchings

- s-houses
- f-houses

\#P-Hardness of Counting Popular Matchings

Matching

Switching set

\#P-Hardness of Counting Popular Matchings

Matching

Switching set

\#P-Hardness of Counting Popular Matchings

Matching

Switching set

Summary

We Give

- A 'Switching Graph’ Characterisation for no-ties, capacitated case and prove \#P-hardness of counting
- We give an FPRAS for ties case

Summary

We Give

- A 'Switching Graph’ Characterisation for no-ties, capacitated case and prove \#P-hardness of counting
- We give an FPRAS for ties case

Open
Algorithm for Counting in no-ties, capacitated case

