
A Fast Branching Algorithm
for Cluster Vertex Deletion

Anudhyan Boral1 Marek Cygan2

Tomasz Kociumaka2 Marcin Pilipczuk3

1Harvard University, USA

2University of Warsaw, Poland

3University of Bergen, Norway

CSR 2014
Moscow, Russia
June 10, 2014

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 1/20



Parameterized complexity and kernelization

ninstance size

parameter

k

f(k)poly(n) time YES
NO

poly(n) time

g(k)

kernel size

Definition
An FPT-algorithm for a parameterized problem runs in
O(f(k)nc)-time, where c is a constant (independent of k).

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 2/20



Parameterized complexity and kernelization

ninstance size

parameter

k

f(k)poly(n) time YES
NO

poly(n) time

g(k)

kernel size

Definition
A kernel of size g(k) is a polynomial-time algorithm, which
reduces an instance of a parameterized problem to an
equivalent instance of size at most g(k).

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 2/20



Cluster Vertex Deletion

k = 4

Problem (Cluster Vertex Deletion, CVD)

Input: an undirected graph G = (V,E), a positive integer k.
Output: a set S ⊆ V such that |S| ≤ k and G \ S is a
cluster graph (disjoint union of cliques).

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 3/20



Cluster Vertex Deletion

k = 4

Problem (Cluster Vertex Deletion, CVD)

Input: an undirected graph G = (V,E), a positive integer k.
Output: a set S ⊆ V such that |S| ≤ k and G \ S is a
cluster graph (disjoint union of cliques).

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 3/20



Cluster Editing

k = 8

Problem (Cluster Editing, CVD)

Input: an undirected graph G = (V,E), a positive integer k.
Output: a set S ⊆

(
V
2

)
such that |S| ≤ k and (V,E4S) is a

cluster graph (here 4 is a symmetric difference).

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 4/20



Cluster Editing

k = 8

Problem (Cluster Editing, CVD)

Input: an undirected graph G = (V,E), a positive integer k.
Output: a set S ⊆

(
V
2

)
such that |S| ≤ k and (V,E4S) is a

cluster graph (here 4 is a symmetric difference).

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 4/20



Motivation

Clustering objects based on pairwise similarities:

computational biology,

machine learning.

Cluster Vertex Deletion vs Cluster Editing:

more instances are tractable for CVD (more powerful
operation),

errors in the similarity relation are likely to affect few
vertices (contaminated samples etc.).

Theoretical motivation:

deletion problem for a natural graph class.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 5/20



Motivation

Clustering objects based on pairwise similarities:

computational biology,

machine learning.

Cluster Vertex Deletion vs Cluster Editing:

more instances are tractable for CVD (more powerful
operation),

errors in the similarity relation are likely to affect few
vertices (contaminated samples etc.).

Theoretical motivation:

deletion problem for a natural graph class.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 5/20



Motivation

Clustering objects based on pairwise similarities:

computational biology,

machine learning.

Cluster Vertex Deletion vs Cluster Editing:

more instances are tractable for CVD (more powerful
operation),

errors in the similarity relation are likely to affect few
vertices (contaminated samples etc.).

Theoretical motivation:

deletion problem for a natural graph class.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 5/20



Results

Previous results: (here n = |V |, m = |E|)
simple O(3k(n + m))-time branching algorithm,

an O(2kk9 + nm)-time algorithm
iterative compression (Hüffner et al., 2008)

Results for a more general 3-Hitting Set problem:

O(2.18k + n3) algorithm (Fernau, 2010)

O(k4)-size kernel (Abu-Khzam, 2010; preserves CVD)

Our results:

an O(1.9102k(n + m))-time branching algorithm,

O(1.9102kk4 + nm) time if combined with the kernel.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 6/20



Results

Previous results: (here n = |V |, m = |E|)
simple O(3k(n + m))-time branching algorithm,

an O(2kk9 + nm)-time algorithm
iterative compression (Hüffner et al., 2008)

Results for a more general 3-Hitting Set problem:

O(2.18k + n3) algorithm (Fernau, 2010)

O(k4)-size kernel (Abu-Khzam, 2010; preserves CVD)

Our results:

an O(1.9102k(n + m))-time branching algorithm,

O(1.9102kk4 + nm) time if combined with the kernel.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 6/20



Results

Previous results: (here n = |V |, m = |E|)
simple O(3k(n + m))-time branching algorithm,

an O(2kk9 + nm)-time algorithm
iterative compression (Hüffner et al., 2008)

Results for a more general 3-Hitting Set problem:

O(2.18k + n3) algorithm (Fernau, 2010)

O(k4)-size kernel (Abu-Khzam, 2010; preserves CVD)

Our results:

an O(1.9102k(n + m))-time branching algorithm,

O(1.9102kk4 + nm) time if combined with the kernel.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 6/20



Cluster Vertex Deletion as hitting P3’s

Observation
A graph is a cluster graph if and only if it does not have P3,
the 3-vertex path, as an induced subgraph.

P3

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 7/20



Cluster Vertex Deletion as hitting P3’s

Observation
A graph is a cluster graph if and only if it does not have P3,
the 3-vertex path, as an induced subgraph.

P3

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 7/20



Cluster Vertex Deletion as hitting P3’s

Observation
A graph is a cluster graph if and only if it does not have P3,
the 3-vertex path, as an induced subgraph.

P3

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 7/20



Cluster Vertex Deletion as hitting P3’s

Observation
A graph is a cluster graph if and only if it does not have P3,
the 3-vertex path, as an induced subgraph.

P3

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 7/20



Cluster Vertex Deletion as hitting P3’s

Observation
A graph is a cluster graph if and only if it does not have P3,
the 3-vertex path, as an induced subgraph.

P3

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 7/20



Simple O(3k(n +m))-time branching algorithm

Corollary

X is a solution iff X ∩ P 6= ∅ for any P such that G[P ] is
isomorphic to P3. (X must hit all P3’s).

Algorithm:
1 if G is a cluster graph, return X = ∅.
2 if k = 0, return NO.
3 find (v1, v2, v3) inducing P3.
4 for i = 1, 2, 3 recurse on (G− vi, k− 1) (adding vi to X).

O(3k) calls in total, a single call can be implemented in
O(n + m) time.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 8/20



Simple O(3k(n +m))-time branching algorithm

Corollary

X is a solution iff X ∩ P 6= ∅ for any P such that G[P ] is
isomorphic to P3. (X must hit all P3’s).

Algorithm:
1 if G is a cluster graph, return X = ∅.
2 if k = 0, return NO.
3 find (v1, v2, v3) inducing P3.
4 for i = 1, 2, 3 recurse on (G− vi, k− 1) (adding vi to X).

O(3k) calls in total, a single call can be implemented in
O(n + m) time.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 8/20



Branching algorithms

General framework for deletion problems:

in each step find a constant number of sets (A1, . . . , A`)
such that there is a solution containing Ai for some i,

recurse on (G \ Ai, k − |Ai|) for each i.

G, k

G \A1, k − |A1|

NO

A1

G \A2, k − |A2|

NO

NO

YES NO

A2

G \A3, k − |A3|

NO

A3

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 9/20



Branching algorithms

General framework for deletion problems:

in each step find a constant number of sets (A1, . . . , A`)
such that there is a solution containing Ai for some i,

recurse on (G \ Ai, k − |Ai|) for each i.

G, k

G \A1, k − |A1|

NO

A1

G \A2, k − |A2|

NO

NO

YES NO

A2

G \A3, k − |A3|

NO

A3

greedy step

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 9/20



Branching algorithms

General framework for deletion problems:

in each step find a constant number of sets (A1, . . . , A`)
such that there is a solution containing Ai for some i,

recurse on (G \ Ai, k − |Ai|) for each i.

Complexity analysis:

any possible (|A1|, . . . , |A`|) is called a branching vector,

number of recursive calls: O(ck) for c such that
ck ≥

∑
i c

k−ai for any branching vector,

the optimal choice of c: the largest positive root of
1 =

∑
i x
−ai equations over all branching vectors,

total time: O(ckT (n)), where T (n) is the time needed
for a single recursive call.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 9/20



Improving the simple algorithm

Simple branching algorithm for (v, u, w) inducing P3:

remove one of the three vertices and recurse,
possibly more than one of these vertices is ultimately
deleted

single solution might be explored multiple times.

Different approach:

choose a vertex v lying on some P3

consider two branches:
remove v (and recurse),
decide to leave v, and while v lies on P3, branch on
removing one of the other two vertices of the P3.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 10/20



Conflict graph Hv

If we decide to leave v, we still need to hit P3’s containing v.

Definition
Conflict graph Hv: uw ∈ E(Hv) iff u, v and w induce P3.

v

N1 N2

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 11/20



Conflict graph Hv

If we decide to leave v, we still need to hit P3’s containing v.

Definition
Conflict graph Hv: uw ∈ E(Hv) iff u, v and w induce P3.

v

N1 N2

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 11/20



Conflict graph Hv

If we decide to leave v, we still need to hit P3’s containing v.

Definition
Conflict graph Hv: uw ∈ E(Hv) iff u, v and w induce P3.

v

N1 N2

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 11/20



Conflict graph Hv

If we decide to leave v, we still need to hit P3’s containing v.

Definition
Conflict graph Hv: uw ∈ E(Hv) iff u, v and w induce P3.

v N1 N2

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 11/20



Conflict graph Hv

If we decide to leave v, we still need to hit P3’s containing v.

Definition
Conflict graph Hv: uw ∈ E(Hv) iff u, v and w induce P3.

v N1 N2

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 11/20



Vertex covers in Hv

A vertex cover of a graph G is a set X ⊆ V (G) such that
G \X has no edges.

any solution leaving v contains a vertex cover of Hv,

after removing a vertex cover of Hv, the component of
Hv is a clique.

v Hv

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 12/20



Vertex covers in Hv

A vertex cover of a graph G is a set X ⊆ V (G) such that
G \X has no edges.

any solution leaving v contains a vertex cover of Hv,

after removing a vertex cover of Hv, the component of
Hv is a clique.

v Hv

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 12/20



Vertex covers in Hv

A vertex cover of a graph G is a set X ⊆ V (G) such that
G \X has no edges.

any solution leaving v contains a vertex cover of Hv,

after removing a vertex cover of Hv, the component of
Hv is a clique.

v

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 12/20



Greedy choices

Let X,X ′ be vertex covers of Hv. We say that X
dominates X ′ if |X| ≤ |X ′| and X ∩N2 ⊇ X ′ ∩N2.

If X dominates X ′, then we can replace X ′ with X in
any solution containing X but not v.

v

G \ (X ∪N1 ∪ {v})

G \ (X ∪N1 ∪ {v})G \ (X ∪N1 ∪ {v})

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 13/20



Greedy choices

Let X,X ′ be vertex covers of Hv. We say that X
dominates X ′ if |X| ≤ |X ′| and X ∩N2 ⊇ X ′ ∩N2.

If X dominates X ′, then we can replace X ′ with X in
any solution containing X but not v.

v

G \ (X ∪N1 ∪ {v})

G \ (X ∪N1 ∪ {v})

G \ (X ∪N1 ∪ {v})

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 13/20



Greedy choices

Let X,X ′ be vertex covers of Hv. We say that X
dominates X ′ if |X| ≤ |X ′| and X ∩N2 ⊇ X ′ ∩N2.

If X dominates X ′, then we can replace X ′ with X in
any solution containing X but not v.

v

G \ (X ∪N1 ∪ {v})G \ (X ∪N1 ∪ {v})

G \ (X ∪N1 ∪ {v})

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 13/20



Greedy choices

Let X,X ′ be vertex covers of Hv. We say that X
dominates X ′ if |X| ≤ |X ′| and X ∩N2 ⊇ X ′ ∩N2.

If X dominates X ′, then we can replace X ′ with X in
any solution containing X but not v.

v

G \ (X ∪N1 ∪ {v})G \ (X ∪N1 ∪ {v})G \ (X ∪N1 ∪ {v})

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 13/20



Greedy choices

Let X,X ′ be vertex covers of Hv. We say that X
dominates X ′ if |X| ≤ |X ′| and X ∩N2 ⊇ X ′ ∩N2.

If X dominates X ′, then we can replace X ′ with X in
any solution containing X but not v.

v

G \ (X ∪N1 ∪ {v})G \ (X ∪N1 ∪ {v})G \ (X ∪N1 ∪ {v})

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 13/20



Branching on Hv

Summary of the “leave v” branch.

Compute Hv.

Generate several vertex covers of Hv, which in total
dominate all vertex covers.

Interpret steps of the (branching) algorithm generating
covers as recursive calls for CVD.

Branching vectors (1, 2) (c < 1.62) and better.

Issue:
With the “remove v” branch, the initial step may have
branching vector (1, 1, 2) (with c = 1 +

√
2).

Intuitive solution:
If Hv has small vertex cover, there is structure to exploit.
Otherwise the subsequent steps “pay off” the poor initial one,

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 14/20



Branching on Hv

Summary of the “leave v” branch.

Compute Hv.

Generate several vertex covers of Hv, which in total
dominate all vertex covers.

Interpret steps of the (branching) algorithm generating
covers as recursive calls for CVD.

Branching vectors (1, 2) (c < 1.62) and better.

Issue:
With the “remove v” branch, the initial step may have
branching vector (1, 1, 2) (with c = 1 +

√
2).

Intuitive solution:
If Hv has small vertex cover, there is structure to exploit.
Otherwise the subsequent steps “pay off” the poor initial one,

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 14/20



Branching on Hv

Summary of the “leave v” branch.

Compute Hv.

Generate several vertex covers of Hv, which in total
dominate all vertex covers.

Interpret steps of the (branching) algorithm generating
covers as recursive calls for CVD.

Branching vectors (1, 2) (c < 1.62) and better.

Issue:
With the “remove v” branch, the initial step may have
branching vector (1, 1, 2) (with c = 1 +

√
2).

Intuitive solution:
If Hv has small vertex cover, there is structure to exploit.
Otherwise the subsequent steps “pay off” the poor initial one,

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 14/20



Formalizing the idea

2 2

1

1

2 3 1

1
2

2

3
3

4
4 2

Try to avoid the worst (1, 2) branching and describe the
structure of the Hv when it cannot be avoided.
Treat several initial recursive steps as a single ‘virtual’ one

removing ai nodes can decrease vertex cover only by ai.

Many possible combinations of branching rules
automated case-analysis to check all possibilities.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 15/20



Formalizing the idea

2 2

1

1

2 3 1

1
2

2

3
3

4
4 2

Try to avoid the worst (1, 2) branching and describe the
structure of the Hv when it cannot be avoided.
Treat several initial recursive steps as a single ‘virtual’ one

removing ai nodes can decrease vertex cover only by ai.

Many possible combinations of branching rules
automated case-analysis to check all possibilities.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 15/20



Formalizing the idea

2 2

1

1

2 3 1

1
2

2

3
3

4
4 2

Try to avoid the worst (1, 2) branching and describe the
structure of the Hv when it cannot be avoided.
Treat several initial recursive steps as a single ‘virtual’ one

removing ai nodes can decrease vertex cover only by ai.

Many possible combinations of branching rules
automated case-analysis to check all possibilities.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 15/20



More greedy choices

Are “leave v” and “remove v” branches always necessary?

Observation
Let C be a connected component of v. If C − v is a cluster
graph, one can greedily remove v.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 16/20



More greedy choices

Are “leave v” and “remove v” branches always necessary?

Observation
Let C be a connected component of v. If C − v is a cluster
graph, one can greedily remove v.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 16/20



More greedy choices

Are “leave v” and “remove v” branches always necessary?

Observation
Let C be a connected component of v. If C − v is a cluster
graph, one can greedily remove v.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 16/20



More greedy choices

Are “leave v” and “remove v” branches always necessary?

Observation
Let C be a connected component of v. If C − v is a cluster
graph, one can greedily remove v.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 16/20



More greedy choices

Are “leave v” and “remove v” branches always necessary?

Observation
Let C be a connected component of v. If C − v is a cluster
graph, one can greedily remove v.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 16/20



More greedy choices

Are “leave v” and “remove v” branches always necessary?

Observation
Let C be a connected component of v. If C − v is a cluster
graph, one can greedily remove v.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 16/20



More greedy choices

Lemma
Suppose X is a vertex cover of Hv. Then there is a minimum
solution S such that v /∈ S or |X \ S| ≥ 2.

If |X| = 1, greedily leave v and proceed to Hv.
If |X| = 2 in the “remove v” branch proceed to Hx for
some x ∈ X

if C − v is not a cluster graph, then X intersect a P3

disjoint with v,
the first branching after removing v is no worse than
(1, 2).

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 17/20



Algorithm summary

If V C(Hv) = 1, we greedily leave v proceed immediately
to branching Hv (branching vectors (1, 2) and better)

If V C(Hv) = 2, the “remove v” branch starts with a
(1, 2) or better branching, i.e. contributes to (2, 3) in the
branching vector of the ‘virtual’ initial step. Analysis of
branching on Hv gives vectors, combined with (2, 3),
values c < 1.9448.

If V C(Hv) ≥ 3, analysis of branching in Hv, combined
with (1) corresponding to removing v, gives vectors of
values c < 1.9338.

In the worst cases (if initally only (1, 2) branching can be
applied in Hv), v we can also greedily leave v.

‘virtual’ inital steps have vectors of value c < 1.9102.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 18/20



Algorithm summary

If V C(Hv) = 1, we greedily leave v proceed immediately
to branching Hv (branching vectors (1, 2) and better)

If V C(Hv) = 2, the “remove v” branch starts with a
(1, 2) or better branching, i.e. contributes to (2, 3) in the
branching vector of the ‘virtual’ initial step. Analysis of
branching on Hv gives vectors, combined with (2, 3),
values c < 1.9448.

If V C(Hv) ≥ 3, analysis of branching in Hv, combined
with (1) corresponding to removing v, gives vectors of
values c < 1.9338.

In the worst cases (if initally only (1, 2) branching can be
applied in Hv), v we can also greedily leave v.

‘virtual’ inital steps have vectors of value c < 1.9102.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 18/20



Conclusions & open problems

Our results:

O∗(1.9102k)-time branching algorithm.
Single step implemented in linear time given G or Ḡ:

O(1.9102k(n+m)) time for Cluster vertex
deletion and Co-cluster vertex deletion.

Open problems:
Does Cluster vertex deletion admit a small kernel
(for example with O(k) vertices)?
Cluster editing has 2k-vertex kernel.

Can the O∗(1.9102k) time be improved?
more detailed analysis of the worst case could probably
improve 1.9102 by a tiny amount.

Weighted case (different prices for removing vertices).

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 19/20



Conclusions & open problems

Our results:

O∗(1.9102k)-time branching algorithm.
Single step implemented in linear time given G or Ḡ:

O(1.9102k(n+m)) time for Cluster vertex
deletion and Co-cluster vertex deletion.

Open problems:
Does Cluster vertex deletion admit a small kernel
(for example with O(k) vertices)?
Cluster editing has 2k-vertex kernel.

Can the O∗(1.9102k) time be improved?
more detailed analysis of the worst case could probably
improve 1.9102 by a tiny amount.

Weighted case (different prices for removing vertices).

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 19/20



Thank you

Thank you for your attention!

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 20/20


