A Fast Branching Algorithm

for Cluster Vertex Deletion

Anudhyan Boral® Marek Cygan?
Tomasz Kociumaka®? Marcin Pilipczuk?®

THarvard University, USA
2University of Warsaw, Poland

3University of Bergen, Norway

CSR 2014
Moscow, Russia
June 10, 2014

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 1/20

Parameterized complexity and kernelization

[N

f(k)poly(n) time YES
" NO

parameter

instance size—"n

S %

Definition

An FPT-algorithm for a parameterized problem runs in
O(f(k)n)-time, where c is a constant (independent of k).

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 2/20

Parameterized complexity and kernelization

(N

parameter

instance sizean/

poly(n) time

g(k)

kernel size

Definition
A kernel of size g(k) is a polynomial-time algorithm, which
reduces an instance of a parameterized problem to an
equivalent instance of size at most g(k).

A Fast Branching Algorithm for Cluster Vertex Deletion 2/20

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk

CLUSTER VERTEX DELETION

.qf
.

Problem (CLUSTER VERTEX DELETION, CVD)

Input: an undirected graph G = (V. E), a positive integer k.
Output: a set S CV such that |S| <k and G\ S is a
cluster graph (disjoint union of cliques).

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 3/20

CLUSTER VERTEX DELETION

‘<I,.

S

Problem (CLUSTER VERTEX DELETION, CVD)

Input: an undirected graph G = (V. E), a positive integer k.
Output: a set S CV such that |S| <k and G\ S is a
cluster graph (disjoint union of cliques).

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 3/20

CLUSTER EDITING

.qf
&

Problem (CLUSTER EDITING, CVD)

Input: an undirected graph G = (V. E), a positive integer k.
Output: a set S C () such that |S| < k and (V,EAS) is a

2
cluster graph (here A\ is a symmetric difference).

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 4/20

CLUSTER EDITING

Problem (CLUSTER EDITING, CVD)

Input: an undirected graph G = (V. E), a positive integer k.
Output: a set S C () such that |S| < k and (V,EAS) is a

2
cluster graph (here A\ is a symmetric difference).

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 4/20

Clustering objects based on pairwise similarities:
@ computational biology,

@ machine learning.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 5/20

Clustering objects based on pairwise similarities:
@ computational biology,
@ machine learning.
CLUSTER VERTEX DELETION vs CLUSTER EDITING:
@ more instances are tractable for CVD (more powerful
operation),
@ errors in the similarity relation are likely to affect few
vertices (contaminated samples etc.).

. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 5/20

Clustering objects based on pairwise similarities:
@ computational biology,
@ machine learning.
CLUSTER VERTEX DELETION vs CLUSTER EDITING:
@ more instances are tractable for CVD (more powerful
operation),
@ errors in the similarity relation are likely to affect few
vertices (contaminated samples etc.).

Theoretical motivation:
@ deletion problem for a natural graph class.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 5/20

Previous results: (here n = |V|, m = |E|)
e simple O(3%(n + m))-time branching algorithm,
o an O(28k 4+ nm)-time algorithm
iterative compression (Hiiffner et al., 2008)

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 6/20

Previous results: (here n = |V|, m = |E|)
e simple O(3%(n + m))-time branching algorithm,
o an O(28k 4+ nm)-time algorithm
iterative compression (Hiiffner et al., 2008)
Results for a more general 3-HITTING SET problem:
o O(2.18% + n?) algorithm (Fernau, 2010)
o O(k*)-size kernel (Abu-Khzam, 2010; preserves CVD)

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 6/20

Previous results: (here n = |V|, m = |E|)

e simple O(3%(n + m))-time branching algorithm,

o an O(28k 4+ nm)-time algorithm

iterative compression (Hiiffner et al., 2008)

Results for a more general 3-HITTING SET problem:

o O(2.18% + n?) algorithm (Fernau, 2010)

o O(k*)-size kernel (Abu-Khzam, 2010; preserves CVD)
Our results:

e an O(1.9102%(n + m))-time branching algorithm,

e O(1.9102%k* + nm) time if combined with the kernel.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 6/20

CLUSTER VERTEX DELETION as hitting P;'s

Observation

A graph is a cluster graph if and only if it does not have P;,
the 3-vertex path, as an induced subgraph.

P; @ ® L

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 7/20

CLUSTER VERTEX DELETION as hitting P;'s

Observation

A graph is a cluster graph if and only if it does not have P;,
the 3-vertex path, as an induced subgraph.

P; @ ® L

B

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 7/20

CLUSTER VERTEX DELETION as hitting P;'s

Observation

A graph is a cluster graph if and only if it does not have P;,
the 3-vertex path, as an induced subgraph.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 7/20

CLUSTER VERTEX DELETION as hitting P;'s

Observation

A graph is a cluster graph if and only if it does not have P;,
the 3-vertex path, as an induced subgraph.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 7/20

CLUSTER VERTEX DELETION as hitting P;'s

Observation

A graph is a cluster graph if and only if it does not have P;,
the 3-vertex path, as an induced subgraph.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 7/20

Simple O(3"(n + m))-time branching algorithm

X s a solution iff X N P # () for any P such that G[P] is
isomorphic to Ps. (X must hit all Py’s).

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 8/20

Simple O(3"(n + m))-time branching algorithm

X s a solution iff X N P # () for any P such that G[P] is
isomorphic to Ps. (X must hit all Py’s).

Algorithm:
Q if G is a cluster graph, return X = ().
Q if k=0, return NO.
@ find (v, v2,v3) inducing Ps.
Q fori=1,2,3 recurse on (G — v;, k — 1) (adding v; to X).

e O(3%) calls in total, a single call can be implemented in
O(n + m) time.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 8/20

Branching algorithms

General framework for deletion problems:

@ in each step find a constant number of sets (A1,..., A4y)
such that there is a solution containing A; for some %,

@ recurse on (G \ A;, k — |A;]) for each i.

G.K
A1 AS
Ao
(G\ALE—|A]] [G\Ask—[49]) G\ A5k — |43
(YES](nO SR

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 9/20

Branching algorithms

General framework for deletion problems:

@ in each step find a constant number of sets (A1,..., A4y)
such that there is a solution containing A; for some %,

@ recurse on (G \ A;, k — |A;]) for each i.

G.k
A1 AS
Ao
(G\ALE—|A]] [G\Ask—[49]) G\ A5k — |43
Y greedy step /,/ E \\\
(YES](nO

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 9/20

Branching algorithms

General framework for deletion problems:

@ in each step find a constant number of sets (A1,..., A4y)
such that there is a solution containing A; for some %,

@ recurse on (G \ A;, k — |A;]) for each i.
Complexity analysis:
@ any possible (|Ay],...,|As|) is called a branching vector,
@ number of recursive calls: O(c*) for ¢ such that
& > 3. cF7% for any branching vector,
@ the optimal choice of ¢: the largest positive root of
1= Zl x~% equations over all branching vectors,

e total time: O(c*T'(n)), where T'(n) is the time needed
for a single recursive call.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 9/20

Improving the simple algorithm

Simple branching algorithm for (v, u,w) inducing Ps:
@ remove one of the three vertices and recurse,

@ possibly more than one of these vertices is ultimately
deleted

e single solution might be explored multiple times.
Different approach:
@ choose a vertex v lying on some P;
@ consider two branches:

e remove v (and recurse),
o decide to leave v, and while v lies on P5, branch on
removing one of the other two vertices of the Ps.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion

Conflict graph H,

If we decide to leave v, we still need to hit P3's containing v.

Definition

Conflict graph H,: uw € E(H,) iff u,v and w induce Ps.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 11/20

Conflict graph H,

If we decide to leave v, we still need to hit P3's containing v.

Definition
Conflict graph H,: uw € E(H,) iff u,v and w induce Ps.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 11/20

Conflict graph H,

If we decide to leave v, we still need to hit P3's containing v.

Definition
Conflict graph H,: uw € E(H,) iff u,v and w induce Ps.

L
o
y—

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 11/20

Conflict graph H,

If we decide to leave v, we still need to hit P3's containing v.

Definition
Conflict graph H,: uw € E(H,) iff u,v and w induce Ps.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 11/20

Conflict graph H,

If we decide to leave v, we still need to hit P3's containing v.

Definition
Conflict graph H,: uw € E(H,) iff u,v and w induce Ps.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 11/20

Vertex covers in H,

A vertex cover of a graph G is a set X C V(G) such that
G\ X has no edges.

@ any solution leaving v contains a vertex cover of H,,

@ after removing a vertex cover of H,, the component of
H, is a clique.

X

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 12/20

Vertex covers in H,

A vertex cover of a graph G is a set X C V(G) such that
G\ X has no edges.

@ any solution leaving v contains a vertex cover of H,,

@ after removing a vertex cover of H,, the component of
H, is a clique.

X

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 12/20

Vertex covers in H,

A vertex cover of a graph G is a set X C V(G) such that
G\ X has no edges.

@ any solution leaving v contains a vertex cover of H,,

@ after removing a vertex cover of H,, the component of
H, is a clique.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 12/20

Greedy choices

e Let X, X’ be vertex covers of H,. We say that X
dominates X' if | X| < |X'| and X N Ny D X' N No.

@ If X dominates X', then we can replace X’ with X in
any solution containing X but not v.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion

Greedy choices

e Let X, X’ be vertex covers of H,. We say that X
dominates X' if | X| < |X'| and X N Ny D X' N No.

@ If X dominates X', then we can replace X’ with X in
any solution containing X but not v.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 13/20

Greedy choices

e Let X, X’ be vertex covers of H,. We say that X
dominates X' if | X| < |X'| and X N Ny D X' N No.

@ If X dominates X', then we can replace X’ with X in
any solution containing X but not v.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 13/20

Greedy choices

e Let X, X’ be vertex covers of H,. We say that X
dominates X' if | X| < |X'| and X N Ny D X' N No.

@ If X dominates X', then we can replace X’ with X in
any solution containing X but not v.

"\\:
~— k ° °

V@

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 13/20

Greedy choices

e Let X, X’ be vertex covers of H,. We say that X
dominates X' if | X| < |X'| and X N Ny D X' N No.

@ If X dominates X', then we can replace X’ with X in
any solution containing X but not v.

'\\:
~— k ° °

V@

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 13/20

Branching on H,

Summary of the “leave v" branch.
e Compute H,,.

@ Generate several vertex covers of H,, which in total
dominate all vertex covers.

@ Interpret steps of the (branching) algorithm generating
covers as recursive calls for CVD.

@ Branching vectors (1,2) (¢ < 1.62) and better.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 14/20

Branching on H,

Summary of the “leave v" branch.
e Compute H,,.

@ Generate several vertex covers of H,, which in total
dominate all vertex covers.

@ Interpret steps of the (branching) algorithm generating
covers as recursive calls for CVD.
@ Branching vectors (1,2) (¢ < 1.62) and better.

Issue:
With the “remove v" branch, the initial step may have
branching vector (1,1,2) (with ¢ = 1 + v/2).

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 14/20

Branching on H,

Summary of the “leave v" branch.
e Compute H,,.

@ Generate several vertex covers of H,, which in total
dominate all vertex covers.

@ Interpret steps of the (branching) algorithm generating
covers as recursive calls for CVD.

@ Branching vectors (1,2) (¢ < 1.62) and better.

Issue:
With the “remove v" branch, the initial step may have
branching vector (1,1,2) (with ¢ = 1 + v/2).

Intuitive solution:
If H, has small vertex cover, there is structure to exploit.
Otherwise the subsequent steps “pay off" the poor initial one,

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 14/20

Formalizing the idea

@ Try to avoid the worst (1,2) branching and describe the
structure of the H, when it cannot be avoided.
@ Treat several initial recursive steps as a single ‘virtual’ one
e removing a; nodes can decrease vertex cover only by a;.
@ Many possible combinations of branching rules
e automated case-analysis to check all possibilities.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 15/20

Formalizing the idea

@ Try to avoid the worst (1,2) branching and describe the
structure of the H, when it cannot be avoided.
@ Treat several initial recursive steps as a single ‘virtual’ one
e removing a; nodes can decrease vertex cover only by a;.
@ Many possible combinations of branching rules
e automated case-analysis to check all possibilities.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion

Formalizing the idea

@ Try to avoid the worst (1,2) branching and describe the
structure of the H, when it cannot be avoided.
@ Treat several initial recursive steps as a single ‘virtual’ one
e removing a; nodes can decrease vertex cover only by a;.
@ Many possible combinations of branching rules
e automated case-analysis to check all possibilities.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion

More greedy choices

Are “leave v" and “remove v" branches always necessary?

Observation

Let C be a connected component of v. If C' — v is a cluster
graph, one can greedily remove v.

< <

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 16/20

More greedy choices

Are “leave v" and “remove v" branches always necessary?

Observation

Let C be a connected component of v. If C' — v is a cluster
graph, one can greedily remove v.

o—O o o—©O

. > \/

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 16/20

More greedy choices

Are “leave v" and “remove v" branches always necessary?

Observation

Let C be a connected component of v. If C' — v is a cluster
graph, one can greedily remove v.

o—O o o—©O

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 16/20

More greedy choices

Are “leave v" and “remove v" branches always necessary?

Observation

Let C be a connected component of v. If C' — v is a cluster
graph, one can greedily remove v.

o—O o o—©O

. > \/

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 16/20

More greedy choices

Are “leave v" and “remove v" branches always necessary?

Observation

Let C be a connected component of v. If C' — v is a cluster
graph, one can greedily remove v.

o—O o o—©O

< > <>

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 16/20

More greedy choices

Are “leave v" and “remove v" branches always necessary?

Observation

Let C be a connected component of v. If C' — v is a cluster
graph, one can greedily remove v.

o—O o o—©O

. > \/

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 16/20

More greedy choices

Suppose X is a vertex cover of H,. Then there is a minimum
solution S such that v ¢ S or | X \ S| > 2.

o If | X| =1, greedily leave v and proceed to H,.
e If | X| =2 in the “remove v" branch proceed to H, for

somez € X
e if C' — v is not a cluster graph, then X intersect a Ps
disjoint with v,
e the first branching after removing v is no worse than
(1,2).

A Fast Branching Algorithm for Cluster Vertex Deletion 17/20

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk

Algorithm summary

o If VC(H,) =1, we greedily leave v proceed immediately
to branching H, (branching vectors (1,2) and better)

o If VC(H,) = 2, the “remove v" branch starts with a
(1,2) or better branching, i.e. contributes to (2,3) in the
branching vector of the ‘virtual initial step. Analysis of
branching on H, gives vectors, combined with (2, 3),
values ¢ < 1.9448.

e If VC(H,) > 3, analysis of branching in H,, combined
with (1) corresponding to removing v, gives vectors of
values ¢ < 1.9338.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 18/20

Algorithm summary

o If VC(H,) =1, we greedily leave v proceed immediately
to branching H, (branching vectors (1,2) and better)

o If VC(H,) = 2, the “remove v" branch starts with a
(1,2) or better branching, i.e. contributes to (2,3) in the
branching vector of the ‘virtual initial step. Analysis of
branching on H, gives vectors, combined with (2, 3),
values ¢ < 1.9448.

e If VC(H,) > 3, analysis of branching in H,, combined
with (1) corresponding to removing v, gives vectors of
values ¢ < 1.9338.

In the worst cases (if initally only (1,2) branching can be
applied in H,), v we can also greedily leave v.

@ ‘virtual’ inital steps have vectors of value ¢ < 1.9102.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 18/20

Conclusions & open problems

Our results:
e 0*(1.9102%)-time branching algorithm.
@ Single step implemented in linear time given G or G:

o O(1.9102%(n +m)) time for CLUSTER VERTEX
DELETION and CO-CLUSTER VERTEX DELETION.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 19/20

Conclusions & open problems

Our results:

e 0*(1.9102%)-time branching algorithm.
@ Single step implemented in linear time given G or G:

o O(1.9102%(n +m)) time for CLUSTER VERTEX
DELETION and CO-CLUSTER VERTEX DELETION.
Open problems:

@ Does CLUSTER VERTEX DELETION admit a small kernel
(for example with O(k) vertices)?

o CLUSTER EDITING has 2k-vertex kernel.
e Can the O*(1.9102%) time be improved?

e more detailed analysis of the worst case could probably
improve 1.9102 by a tiny amount.

@ Weighted case (different prices for removing vertices).

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk

A Fast Branching Algorithm for Cluster Vertex Deletion

19/20

Thank you for your attention!

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk A Fast Branching Algorithm for Cluster Vertex Deletion 20/20

