
Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Primal implication as encryption

Vladimir N. Krupski

Lomonosov Moscow State University

2014



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Propositional Infon Logic (Y. Gurevich, I. Neeman, 2008)
Distributed-Knowledge Authorization Language DKAL

Infon — a message as a piece of information.
Γ ` ϕ — “the principal can get (by herself, without any
communication) the information ϕ provided she already has all
infons ψ ∈ Γ”.

General Infon Logic = intuitionistic propositional logic +
quotation modalities A_said(), B_said(), . . . (PSPACE)

Primal Infon Logic = its efficient fragment. (Linear TIME)



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Propositional Infon Logic (Y. Gurevich, I. Neeman, 2008)
Distributed-Knowledge Authorization Language DKAL

Infon — a message as a piece of information.
Γ ` ϕ — “the principal can get (by herself, without any
communication) the information ϕ provided she already has all
infons ψ ∈ Γ”.

General Infon Logic = intuitionistic propositional logic +
quotation modalities A_said(), B_said(), . . . (PSPACE)

Primal Infon Logic = its efficient fragment. (Linear TIME)



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Primal implication →p

Γ, ϕ ` ϕ, (but 6` ϕ→p ϕ)

Γ ` ψ
(→p I )

Γ ` ϕ→p ψ
,

Γ ` ϕ Γ ` ϕ→p ψ
(→p E )

Γ ` ψ
.

We propose a “cryptographic” interpretation:
ϕ→p ψ — “an infon, containing the information ψ encrypted
by a symmetric key (generated from) ϕ”.
(→p I ) allows to encrypt any available message by any key.
(→p E ) allows to extract the information from a ciphertext
provided the key is also available.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Primal implication →p

Γ, ϕ ` ϕ, (but 6` ϕ→p ϕ)

Γ ` ψ
(→p I )

Γ ` ϕ→p ψ
,

Γ ` ϕ Γ ` ϕ→p ψ
(→p E )

Γ ` ψ
.

We propose a “cryptographic” interpretation:
ϕ→p ψ — “an infon, containing the information ψ encrypted
by a symmetric key (generated from) ϕ”.
(→p I ) allows to encrypt any available message by any key.
(→p E ) allows to extract the information from a ciphertext
provided the key is also available.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Primal implication →p

Γ, ϕ ` ϕ, (but 6` ϕ→p ϕ)

Γ ` ψ
(→p I )

Γ ` ϕ→p ψ
,

Γ ` ϕ Γ ` ϕ→p ψ
(→p E )

Γ ` ψ
.

We propose a “cryptographic” interpretation:
ϕ→p ψ — “an infon, containing the information ψ encrypted
by a symmetric key (generated from) ϕ”.

(→p I ) allows to encrypt any available message by any key.
(→p E ) allows to extract the information from a ciphertext
provided the key is also available.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Primal implication →p

Γ, ϕ ` ϕ, (but 6` ϕ→p ϕ)

Γ ` ψ
(→p I )

Γ ` ϕ→p ψ
,

Γ ` ϕ Γ ` ϕ→p ψ
(→p E )

Γ ` ψ
.

We propose a “cryptographic” interpretation:
ϕ→p ψ — “an infon, containing the information ψ encrypted
by a symmetric key (generated from) ϕ”.
(→p I ) allows to encrypt any available message by any key.
(→p E ) allows to extract the information from a ciphertext
provided the key is also available.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Primal Infon Logic incorporated into communication protocols

It is a natural tool for manipulating with commitment schemes
without detailed analysis of the scheme itself.

Example
Alice and Bob live in different places and communicate via a
telephone line or by e-mail. They wish to play the following game
distantly. Each of them picks a bit, randomly or somehow else. If
the bits coincide then Alice wins; otherwise Bob wins. Both of them
decide to play fair but don’t believe in the fairness of the opponent.
So they use cryptography.

To play fair means that they honestly declare their choice of a bit,
independently of what the other player said.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Primal Infon Logic incorporated into communication protocols

It is a natural tool for manipulating with commitment schemes
without detailed analysis of the scheme itself.

Example
Alice and Bob live in different places and communicate via a
telephone line or by e-mail. They wish to play the following game
distantly. Each of them picks a bit, randomly or somehow else. If
the bits coincide then Alice wins; otherwise Bob wins. Both of them
decide to play fair but don’t believe in the fairness of the opponent.
So they use cryptography.

To play fair means that they honestly declare their choice of a bit,
independently of what the other player said.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

X_said() — corresponds to the modal logic K.
X_IsTrustedOnϕ := X_saidϕ→p ϕ. All messages are signed.

Policy: Alice
Γ : A_said ma, A_said ka,
A_IsTrustedOn ma,
A_IsTrustedOn ka.

Γ ` ka →p ma; SEND ka →p ma.

when gets kb →p mb :
Γ := Γ, B_said (kb →p mb);
Γ ` ka; SEND ka.

when gets kb: Γ := Γ, B_said kb.

Γ ` B_said mb, Γ ` A_said ma.

Policy: Bob
Γ : B_said mb, B_said kb,
B_IsTrustedOn mb,
B_IsTrustedOn kb.

Γ ` kb →p mb; SEND kb →p mb.

when gets ka →p ma :
Γ := Γ, A_said (ka →p ma);
Γ ` kb; SEND kb.

when gets ka: Γ := Γ, A_said ka.

Γ ` A_said ma, Γ ` B_said mb.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

X_said() — corresponds to the modal logic K.
X_IsTrustedOnϕ := X_saidϕ→p ϕ. All messages are signed.

Policy: Alice
Γ : A_said ma, A_said ka,
A_IsTrustedOn ma,
A_IsTrustedOn ka.

Γ ` ka →p ma; SEND ka →p ma.

when gets kb →p mb :
Γ := Γ, B_said (kb →p mb);
Γ ` ka; SEND ka.

when gets kb: Γ := Γ, B_said kb.

Γ ` B_said mb, Γ ` A_said ma.

Policy: Bob
Γ : B_said mb, B_said kb,
B_IsTrustedOn mb,
B_IsTrustedOn kb.

Γ ` kb →p mb; SEND kb →p mb.

when gets ka →p ma :
Γ := Γ, A_said (ka →p ma);
Γ ` kb; SEND kb.

when gets ka: Γ := Γ, A_said ka.

Γ ` A_said ma, Γ ` B_said mb.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

X_said() — corresponds to the modal logic K.
X_IsTrustedOnϕ := X_saidϕ→p ϕ. All messages are signed.

Policy: Alice
Γ : A_said ma, A_said ka,
A_IsTrustedOn ma,
A_IsTrustedOn ka.

Γ ` ka →p ma; SEND ka →p ma.

when gets kb →p mb :
Γ := Γ, B_said (kb →p mb);
Γ ` ka; SEND ka.

when gets kb: Γ := Γ, B_said kb.

Γ ` B_said mb, Γ ` A_said ma.

Policy: Bob
Γ : B_said mb, B_said kb,
B_IsTrustedOn mb,
B_IsTrustedOn kb.

Γ ` kb →p mb; SEND kb →p mb.

when gets ka →p ma :
Γ := Γ, A_said (ka →p ma);
Γ ` kb; SEND kb.

when gets ka: Γ := Γ, A_said ka.

Γ ` A_said ma, Γ ` B_said mb.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

X_said() — corresponds to the modal logic K.
X_IsTrustedOnϕ := X_saidϕ→p ϕ. All messages are signed.

Policy: Alice
Γ : A_said ma, A_said ka,
A_IsTrustedOn ma,
A_IsTrustedOn ka.

Γ ` ka →p ma; SEND ka →p ma.

when gets kb →p mb :
Γ := Γ, B_said (kb →p mb);
Γ ` ka; SEND ka.

when gets kb: Γ := Γ, B_said kb.

Γ ` B_said mb, Γ ` A_said ma.

Policy: Bob
Γ : B_said mb, B_said kb,
B_IsTrustedOn mb,
B_IsTrustedOn kb.

Γ ` kb →p mb; SEND kb →p mb.

when gets ka →p ma :
Γ := Γ, A_said (ka →p ma);
Γ ` kb; SEND kb.

when gets ka: Γ := Γ, A_said ka.

Γ ` A_said ma, Γ ` B_said mb.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

X_said() — corresponds to the modal logic K.
X_IsTrustedOnϕ := X_saidϕ→p ϕ. All messages are signed.

Policy: Alice
Γ : A_said ma, A_said ka,
A_IsTrustedOn ma,
A_IsTrustedOn ka.

Γ ` ka →p ma; SEND ka →p ma.

A_saidma A_IsTrustedOnma

ma

ka →p ma

when gets kb →p mb :
Γ := Γ, B_said (kb →p mb);
Γ ` ka; SEND ka.

when gets kb: Γ := Γ, B_said kb.

Γ ` B_said mb, Γ ` A_said ma.

Policy: Bob
Γ : B_said mb, B_said kb,
B_IsTrustedOn mb,
B_IsTrustedOn kb.

Γ ` kb →p mb; SEND kb →p mb.

when gets ka →p ma :
Γ := Γ, A_said (ka →p ma);
Γ ` kb; SEND kb.

when gets ka: Γ := Γ, A_said ka.

Γ ` A_said ma, Γ ` B_said mb.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

X_said() — corresponds to the modal logic K.
X_IsTrustedOnϕ := X_saidϕ→p ϕ. All messages are signed.

Policy: Alice
Γ : A_said ma, A_said ka,
A_IsTrustedOn ma,
A_IsTrustedOn ka.

Γ ` ka →p ma; SEND ka →p ma.

when gets kb →p mb :
Γ := Γ, B_said (kb →p mb);
Γ ` ka; SEND ka.

when gets kb: Γ := Γ, B_said kb.

Γ ` B_said mb, Γ ` A_said ma.

Policy: Bob
Γ : B_said mb, B_said kb,
B_IsTrustedOn mb,
B_IsTrustedOn kb.

Γ ` kb →p mb; SEND kb →p mb.

when gets ka →p ma :
Γ := Γ, A_said (ka →p ma);
Γ ` kb; SEND kb.

when gets ka: Γ := Γ, A_said ka.

Γ ` A_said ma, Γ ` B_said mb.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

X_said() — corresponds to the modal logic K.
X_IsTrustedOnϕ := X_saidϕ→p ϕ. All messages are signed.

Policy: Alice
Γ : A_said ma, A_said ka,
A_IsTrustedOn ma,
A_IsTrustedOn ka.

Γ ` ka →p ma; SEND ka →p ma.

when gets kb →p mb :
Γ := Γ, B_said (kb →p mb);
Γ ` ka; SEND ka.

when gets kb: Γ := Γ, B_said kb.

Γ ` B_said mb, Γ ` A_said ma.

Policy: Bob
Γ : B_said mb, B_said kb,
B_IsTrustedOn mb,
B_IsTrustedOn kb.

Γ ` kb →p mb; SEND kb →p mb.

when gets ka →p ma :
Γ := Γ, A_said (ka →p ma);
Γ ` kb; SEND kb.

when gets ka: Γ := Γ, A_said ka.

Γ ` A_said ma, Γ ` B_said mb.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

X_said() — corresponds to the modal logic K.
X_IsTrustedOnϕ := X_saidϕ→p ϕ. All messages are signed.

Policy: Alice
Γ : A_said ma, A_said ka,
A_IsTrustedOn ma,
A_IsTrustedOn ka.

Γ ` ka →p ma; SEND ka →p ma.

when gets kb →p mb :
Γ := Γ, B_said (kb →p mb);
Γ ` ka; SEND ka.

when gets kb: Γ := Γ, B_said kb.

Γ ` B_said mb, Γ ` A_said ma.

Policy: Bob
Γ : B_said mb, B_said kb,
B_IsTrustedOn mb,
B_IsTrustedOn kb.

Γ ` kb →p mb; SEND kb →p mb.

when gets ka →p ma :
Γ := Γ, A_said (ka →p ma);
Γ ` kb; SEND kb.

when gets ka: Γ := Γ, A_said ka.

Γ ` A_said ma, Γ ` B_said mb.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

X_said() — corresponds to the modal logic K.
X_IsTrustedOnϕ := X_saidϕ→p ϕ. All messages are signed.

Policy: Alice
Γ : A_said ma, A_said ka,
A_IsTrustedOn ma,
A_IsTrustedOn ka.

Γ ` ka →p ma; SEND ka →p ma.

when gets kb →p mb :
Γ := Γ, B_said (kb →p mb);
Γ ` ka; SEND ka.

when gets kb: Γ := Γ, B_said kb.

Γ ` B_said mb, Γ ` A_said ma.

Policy: Bob
Γ : B_said mb, B_said kb,
B_IsTrustedOn mb,
B_IsTrustedOn kb.

Γ ` kb →p mb; SEND kb →p mb.

when gets ka →p ma :
Γ := Γ, A_said (ka →p ma);
Γ ` kb; SEND kb.

when gets ka: Γ := Γ, A_said ka.

Γ ` A_said ma, Γ ` B_said mb.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

DKAL: (IF p THEN q) := {q}{p} := p →p q

Policy: Alice

IF {ma}{ka} THEN SEND {ma}{ka};
IF ka ∧ B_said {mb}{kb} THEN SEND ka;
IF A_saidma ∧ B_saidmb THEN STOP.

Translation:
(ka →p ma) →p SEND(ka →p ma)
ka ∧ B_said(kb →p mb) →p SEND ka

A_saidma ∧ B_saidmb →p STOP



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

DKAL: (IF p THEN q) := {q}{p} := p →p q

Policy: Alice

IF {ma}{ka} THEN SEND {ma}{ka};
IF ka ∧ B_said {mb}{kb} THEN SEND ka;
IF A_saidma ∧ B_saidmb THEN STOP.

Translation:
(ka →p ma) →p SEND(ka →p ma)
ka ∧ B_said(kb →p mb) →p SEND ka

A_saidma ∧ B_saidmb →p STOP



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

What are the values of infon formulas?
(What is stored in the memory sells and sent?)

The “cryptographic” semantics gives some answer.

In what follows we do not insist that the encryption is strong
in some sense. One may assume that the privacy is protected
by the interface: an agent simply has no tools that make the
decryption of a ciphertext without key possible.
We consider the purely propositional language and leave the
modalities for the future.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

What are the values of infon formulas?
(What is stored in the memory sells and sent?)

The “cryptographic” semantics gives some answer.

In what follows we do not insist that the encryption is strong
in some sense. One may assume that the privacy is protected
by the interface: an agent simply has no tools that make the
decryption of a ciphertext without key possible.

We consider the purely propositional language and leave the
modalities for the future.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

What are the values of infon formulas?
(What is stored in the memory sells and sent?)

The “cryptographic” semantics gives some answer.

In what follows we do not insist that the encryption is strong
in some sense. One may assume that the privacy is protected
by the interface: an agent simply has no tools that make the
decryption of a ciphertext without key possible.

Example
cp := CodePage(hash(ϕ))
ϕ→p ψ := convert ψ to cp

We consider the purely propositional language and leave the
modalities for the future.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

What are the values of infon formulas?
(What is stored in the memory sells and sent?)

The “cryptographic” semantics gives some answer.

In what follows we do not insist that the encryption is strong
in some sense. One may assume that the privacy is protected
by the interface: an agent simply has no tools that make the
decryption of a ciphertext without key possible.
We consider the purely propositional language and leave the
modalities for the future.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

P — the {>,∧,→p}-fragment.

>
ϕ1 ϕ2

ϕ1 ∧ ϕ2

ϕ1 ∧ ϕ2

ϕi

ϕ2

ϕ1 →p ϕ2

ϕ1 ϕ1 →p ϕ2

ϕ2

Theorem (L. Beklemishev, Y. Gurevich, 2012)

P is sound and complete w.r.t. quasi-boolean semantics.

|= is a quasi-boolean model iff
|= >,
|= ϕ1 ∧ ϕ2 ⇔ |= ϕ1 and |= ϕ2,
|= ϕ2 ⇒ |= ϕ1 →p ϕ2,
|= ϕ1 →p ϕ2 ⇒ 6|= ϕ1 or |= ϕ2.

But it is not what we need.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

P — the {>,∧,→p}-fragment.

>
ϕ1 ϕ2

ϕ1 ∧ ϕ2

ϕ1 ∧ ϕ2

ϕi

ϕ2

ϕ1 →p ϕ2

ϕ1 ϕ1 →p ϕ2

ϕ2

Theorem (L. Beklemishev, Y. Gurevich, 2012)

P is sound and complete w.r.t. quasi-boolean semantics.

|= is a quasi-boolean model iff
|= >,
|= ϕ1 ∧ ϕ2 ⇔ |= ϕ1 and |= ϕ2,
|= ϕ2 ⇒ |= ϕ1 →p ϕ2,
|= ϕ1 →p ϕ2 ⇒ 6|= ϕ1 or |= ϕ2.

But it is not what we need.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

P — the {>,∧,→p}-fragment.

>
ϕ1 ϕ2

ϕ1 ∧ ϕ2

ϕ1 ∧ ϕ2

ϕi

ϕ2

ϕ1 →p ϕ2

ϕ1 ϕ1 →p ϕ2

ϕ2

Theorem (L. Beklemishev, Y. Gurevich, 2012)

P is sound and complete w.r.t. quasi-boolean semantics.

|= is a quasi-boolean model iff
|= >,
|= ϕ1 ∧ ϕ2 ⇔ |= ϕ1 and |= ϕ2,
|= ϕ2 ⇒ |= ϕ1 →p ϕ2,
|= ϕ1 →p ϕ2 ⇒ 6|= ϕ1 or |= ϕ2.

But it is not what we need.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Infon algebra A = 〈Σ∗, π, l , r , enc , dec ,E 〉

Σ is a finite alphabet, say Σ = {0, 1}.
π : (Σ∗)2 → Σ∗ is a total pairing function with projections l , r :

l(π(x , y)) = x , r(π(x , y)) = y .

enc , dec : (Σ∗)2 → Σ∗ — encoding/decoding methods, enc is
total,

dec(x , enc(x , y)) = y .

E ⊂ Σ∗, E 6= ∅ – the information known by everyone.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Infon algebra A = 〈Σ∗, π, l , r , enc , dec ,E 〉

Σ is a finite alphabet, say Σ = {0, 1}.

π : (Σ∗)2 → Σ∗ is a total pairing function with projections l , r :

l(π(x , y)) = x , r(π(x , y)) = y .

enc , dec : (Σ∗)2 → Σ∗ — encoding/decoding methods, enc is
total,

dec(x , enc(x , y)) = y .

E ⊂ Σ∗, E 6= ∅ – the information known by everyone.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Infon algebra A = 〈Σ∗, π, l , r , enc , dec ,E 〉

Σ is a finite alphabet, say Σ = {0, 1}.
π : (Σ∗)2 → Σ∗ is a total pairing function with projections l , r :

l(π(x , y)) = x , r(π(x , y)) = y .

enc , dec : (Σ∗)2 → Σ∗ — encoding/decoding methods, enc is
total,

dec(x , enc(x , y)) = y .

E ⊂ Σ∗, E 6= ∅ – the information known by everyone.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Infon algebra A = 〈Σ∗, π, l , r , enc , dec ,E 〉

Σ is a finite alphabet, say Σ = {0, 1}.
π : (Σ∗)2 → Σ∗ is a total pairing function with projections l , r :

l(π(x , y)) = x , r(π(x , y)) = y .

enc , dec : (Σ∗)2 → Σ∗ — encoding/decoding methods, enc is
total,

dec(x , enc(x , y)) = y .

E ⊂ Σ∗, E 6= ∅ – the information known by everyone.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Infon algebra A = 〈Σ∗, π, l , r , enc , dec ,E 〉

Σ is a finite alphabet, say Σ = {0, 1}.
π : (Σ∗)2 → Σ∗ is a total pairing function with projections l , r :

l(π(x , y)) = x , r(π(x , y)) = y .

enc , dec : (Σ∗)2 → Σ∗ — encoding/decoding methods, enc is
total,

dec(x , enc(x , y)) = y .

E ⊂ Σ∗, E 6= ∅ – the information known by everyone.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Definition
A set M ⊆ Σ∗ is closed if E ⊆ M and M satisfies the closure
conditions:

a, b ∈ M ⇔ π(a, b) ∈ M,
a ∈ Σ∗, b ∈ M ⇒ enc(a, b) ∈ M.
a, enc(a, b) ∈ M ⇒ b ∈ M,

A closed set M represents the information that is potentially
available to an agent in a local state. M contains all public and
some private texts.
The agent can combine several texts in a single multi-part
document using π and extract its parts by means of projections.

She has access to the encryption tool enc , so she can convert a
plaintext into a ciphertext. The backward conversion (by dec) is
also available provided she has the encryption key.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Definition
A set M ⊆ Σ∗ is closed if E ⊆ M and M satisfies the closure
conditions:

a, b ∈ M ⇔ π(a, b) ∈ M,
a ∈ Σ∗, b ∈ M ⇒ enc(a, b) ∈ M.
a, enc(a, b) ∈ M ⇒ b ∈ M,

A closed set M represents the information that is potentially
available to an agent in a local state. M contains all public and
some private texts.

The agent can combine several texts in a single multi-part
document using π and extract its parts by means of projections.

She has access to the encryption tool enc , so she can convert a
plaintext into a ciphertext. The backward conversion (by dec) is
also available provided she has the encryption key.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Definition
A set M ⊆ Σ∗ is closed if E ⊆ M and M satisfies the closure
conditions:

a, b ∈ M ⇔ π(a, b) ∈ M,
a ∈ Σ∗, b ∈ M ⇒ enc(a, b) ∈ M.
a, enc(a, b) ∈ M ⇒ b ∈ M,

A closed set M represents the information that is potentially
available to an agent in a local state. M contains all public and
some private texts.
The agent can combine several texts in a single multi-part
document using π and extract its parts by means of projections.

She has access to the encryption tool enc , so she can convert a
plaintext into a ciphertext. The backward conversion (by dec) is
also available provided she has the encryption key.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Definition
A set M ⊆ Σ∗ is closed if E ⊆ M and M satisfies the closure
conditions:

a, b ∈ M ⇔ π(a, b) ∈ M,
a ∈ Σ∗, b ∈ M ⇒ enc(a, b) ∈ M.
a, enc(a, b) ∈ M ⇒ b ∈ M,

A closed set M represents the information that is potentially
available to an agent in a local state. M contains all public and
some private texts.
The agent can combine several texts in a single multi-part
document using π and extract its parts by means of projections.

She has access to the encryption tool enc , so she can convert a
plaintext into a ciphertext. The backward conversion (by dec) is
also available provided she has the encryption key.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Definition
A model is a triple 〈A,M, v〉 where A is an infon algebra, M ⊆ Σ∗

is a closed set and v : Fm → Σ∗ is an evaluation,
v(>) ∈ E ,
v(ϕ1 ∧ ϕ2) = π(v(ϕ1), v(ϕ2)),
v(ϕ1 →p ϕ2) = enc(v(ϕ1), v(ϕ2)).

Theorem (Soundness and Completeness)

Γ ` ϕ in P iff v(ϕ) ∈ M for every model 〈A,M, v〉 with v(Γ) ⊆ M.

Theorem (Uniform model)

There exists an interpretation 〈A, v〉 with the following property:
for any context Γ there exists a model 〈A,M, v〉 with v(Γ) ⊆ M,
such that Γ 6` ϕ implies v(ϕ) 6∈ M for all infons ϕ.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Definition
A model is a triple 〈A,M, v〉 where A is an infon algebra, M ⊆ Σ∗

is a closed set and v : Fm → Σ∗ is an evaluation,
v(>) ∈ E ,
v(ϕ1 ∧ ϕ2) = π(v(ϕ1), v(ϕ2)),
v(ϕ1 →p ϕ2) = enc(v(ϕ1), v(ϕ2)).

Theorem (Soundness and Completeness)

Γ ` ϕ in P iff v(ϕ) ∈ M for every model 〈A,M, v〉 with v(Γ) ⊆ M.

Theorem (Uniform model)

There exists an interpretation 〈A, v〉 with the following property:
for any context Γ there exists a model 〈A,M, v〉 with v(Γ) ⊆ M,
such that Γ 6` ϕ implies v(ϕ) 6∈ M for all infons ϕ.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Definition
A model is a triple 〈A,M, v〉 where A is an infon algebra, M ⊆ Σ∗

is a closed set and v : Fm → Σ∗ is an evaluation,
v(>) ∈ E ,
v(ϕ1 ∧ ϕ2) = π(v(ϕ1), v(ϕ2)),
v(ϕ1 →p ϕ2) = enc(v(ϕ1), v(ϕ2)).

Theorem (Soundness and Completeness)

Γ ` ϕ in P iff v(ϕ) ∈ M for every model 〈A,M, v〉 with v(Γ) ⊆ M.

Theorem (Uniform model)

There exists an interpretation 〈A, v〉 with the following property:
for any context Γ there exists a model 〈A,M, v〉 with v(Γ) ⊆ M,
such that Γ 6` ϕ implies v(ϕ) 6∈ M for all infons ϕ.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Constant ⊥ and backdoors

P[⊥] :
⊥

(⊥E )
ϕ

⊥ as superuser permissions,
makes communications and all
other tools useless for the
owner.

P[⊥w ] :
⊥ ϕ→p ψ

(⊥wE )
ψ

⊥ as a universal key,
provides the ability to decrypt
any available ciphertext.

Σ⊥ = Σ ∪ {f}, v : Fm → Σ∗
⊥, v(⊥) = f.

f ∈ M , a ∈ Σ∗
⊥ ⇒ a ∈ M f, enc(a, b) ∈ M ⇒ b ∈ M

crack(f, enc(a, b)) = b



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Constant ⊥ and backdoors

P[⊥] :
⊥

(⊥E )
ϕ

⊥ as superuser permissions,
makes communications and all
other tools useless for the
owner.

P[⊥w ] :
⊥ ϕ→p ψ

(⊥wE )
ψ

⊥ as a universal key,
provides the ability to decrypt
any available ciphertext.

Σ⊥ = Σ ∪ {f}, v : Fm → Σ∗
⊥, v(⊥) = f.

f ∈ M , a ∈ Σ∗
⊥ ⇒ a ∈ M f, enc(a, b) ∈ M ⇒ b ∈ M

crack(f, enc(a, b)) = b



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Constant ⊥ and backdoors

P[⊥] :
⊥

(⊥E )
ϕ

⊥ as superuser permissions,
makes communications and all
other tools useless for the
owner.

P[⊥w ] :
⊥ ϕ→p ψ

(⊥wE )
ψ

⊥ as a universal key,
provides the ability to decrypt
any available ciphertext.

Σ⊥ = Σ ∪ {f}, v : Fm → Σ∗
⊥, v(⊥) = f.

f ∈ M , a ∈ Σ∗
⊥ ⇒ a ∈ M f, enc(a, b) ∈ M ⇒ b ∈ M

crack(f, enc(a, b)) = b



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Constant ⊥ and backdoors

P[⊥] :
⊥

(⊥E )
ϕ

⊥ as superuser permissions,
makes communications and all
other tools useless for the
owner.

P[⊥w ] :
⊥ ϕ→p ψ

(⊥wE )
ψ

⊥ as a universal key,
provides the ability to decrypt
any available ciphertext.

Σ⊥ = Σ ∪ {f}, v : Fm → Σ∗
⊥, v(⊥) = f.

f ∈ M , a ∈ Σ∗
⊥ ⇒ a ∈ M f, enc(a, b) ∈ M ⇒ b ∈ M

crack(f, enc(a, b)) = b



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Constant ⊥ and backdoors

P[⊥] :
⊥

(⊥E )
ϕ

⊥ as superuser permissions,
makes communications and all
other tools useless for the
owner.

P[⊥w ] :
⊥ ϕ→p ψ

(⊥wE )
ψ

⊥ as a universal key,
provides the ability to decrypt
any available ciphertext.

Σ⊥ = Σ ∪ {f}, v : Fm → Σ∗
⊥, v(⊥) = f.

f ∈ M , a ∈ Σ∗
⊥ ⇒ a ∈ M f, enc(a, b) ∈ M ⇒ b ∈ M

crack(f, enc(a, b)) = b



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Theorem
The completeness results for P[⊥] and P[⊥w ] are just the same.

Complexity: all known primal infon logics have linear time
complexity. P[⊥w ] is a new one.

Theorem
“ Γ ` ϕ in P[⊥w ] ” is linear time decidable.

if Γ ` ϕ in P, return “yes”;

else if Γ 6` ⊥ in P, return “no”;

else return At+(ϕ) ⊆ At+(Γ).

where At+(ϕ) is the set of all atoms that occur “positive” in ϕ;
At+(ϕ→p ψ) = At+(ψ).



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Theorem
The completeness results for P[⊥] and P[⊥w ] are just the same.

Complexity: all known primal infon logics have linear time
complexity. P[⊥w ] is a new one.

Theorem
“ Γ ` ϕ in P[⊥w ] ” is linear time decidable.

if Γ ` ϕ in P, return “yes”;

else if Γ 6` ⊥ in P, return “no”;

else return At+(ϕ) ⊆ At+(Γ).

where At+(ϕ) is the set of all atoms that occur “positive” in ϕ;
At+(ϕ→p ψ) = At+(ψ).



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Theorem
The completeness results for P[⊥] and P[⊥w ] are just the same.

Complexity: all known primal infon logics have linear time
complexity. P[⊥w ] is a new one.

Theorem
“ Γ ` ϕ in P[⊥w ] ” is linear time decidable.

if Γ ` ϕ in P, return “yes”;

else if Γ 6` ⊥ in P, return “no”;

else return At+(ϕ) ⊆ At+(Γ).

where At+(ϕ) is the set of all atoms that occur “positive” in ϕ;
At+(ϕ→p ψ) = At+(ψ).



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Theorem
The completeness results for P[⊥] and P[⊥w ] are just the same.

Complexity: all known primal infon logics have linear time
complexity. P[⊥w ] is a new one.

Theorem
“ Γ ` ϕ in P[⊥w ] ” is linear time decidable.

if Γ ` ϕ in P, return “yes”;

else if Γ 6` ⊥ in P, return “no”;

else return At+(ϕ) ⊆ At+(Γ).

where At+(ϕ) is the set of all atoms that occur “positive” in ϕ;
At+(ϕ→p ψ) = At+(ψ).



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Primal disjunction ∨p

P[∨p] is the purely propositional part of PPIL (the recent stable
formulation of the primal infon logic, C. Cotrini, Y. Gurevish, 2012)

ϕ

ϕ ∨p ψ

ψ

ϕ ∨p ψ
(no elimination rules for ∨p)

“Cryptograpic” interpretation: (ϕ1 ∨p ϕ2) is a group key.

(ϕ1 ∨p ϕ2) →p ψ is a ciphertext that can be decrypted by anyone
who has at least one of the keys ϕ1 or ϕ2:



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Primal disjunction ∨p

P[∨p] is the purely propositional part of PPIL (the recent stable
formulation of the primal infon logic, C. Cotrini, Y. Gurevish, 2012)

ϕ

ϕ ∨p ψ

ψ

ϕ ∨p ψ
(no elimination rules for ∨p)

“Cryptograpic” interpretation: (ϕ1 ∨p ϕ2) is a group key.

(ϕ1 ∨p ϕ2) →p ψ is a ciphertext that can be decrypted by anyone
who has at least one of the keys ϕ1 or ϕ2:



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Primal disjunction ∨p

P[∨p] is the purely propositional part of PPIL (the recent stable
formulation of the primal infon logic, C. Cotrini, Y. Gurevish, 2012)

ϕ

ϕ ∨p ψ

ψ

ϕ ∨p ψ
(no elimination rules for ∨p)

“Cryptograpic” interpretation: (ϕ1 ∨p ϕ2) is a group key.

(ϕ1 ∨p ϕ2) →p ψ is a ciphertext that can be decrypted by anyone
who has at least one of the keys ϕ1 or ϕ2:



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Primal disjunction ∨p

P[∨p] is the purely propositional part of PPIL (the recent stable
formulation of the primal infon logic, C. Cotrini, Y. Gurevish, 2012)

ϕ

ϕ ∨p ψ

ψ

ϕ ∨p ψ
(no elimination rules for ∨p)

“Cryptograpic” interpretation: (ϕ1 ∨p ϕ2) is a group key.

(ϕ1 ∨p ϕ2) →p ψ is a ciphertext that can be decrypted by anyone
who has at least one of the keys ϕ1 or ϕ2:



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Primal disjunction ∨p

P[∨p] is the purely propositional part of PPIL (the recent stable
formulation of the primal infon logic, C. Cotrini, Y. Gurevish, 2012)

ϕ

ϕ ∨p ψ

ψ

ϕ ∨p ψ
(no elimination rules for ∨p)

“Cryptograpic” interpretation: (ϕ1 ∨p ϕ2) is a group key.

(ϕ1 ∨p ϕ2) →p ψ is a ciphertext that can be decrypted by anyone
who has at least one of the keys ϕ1 or ϕ2:

ϕ1 (ϕ1 ∨p ϕ2) →p ψ

ψ

ϕ2 (ϕ1 ∨p ϕ2) →p ψ

ψ
are admissible



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Primal disjunction ∨p

P[∨p] is the purely propositional part of PPIL (the recent stable
formulation of the primal infon logic, C. Cotrini, Y. Gurevish, 2012)

ϕ

ϕ ∨p ψ

ψ

ϕ ∨p ψ
(no elimination rules for ∨p)

“Cryptograpic” interpretation: (ϕ1 ∨p ϕ2) is a group key.

(ϕ1 ∨p ϕ2) →p ψ is a ciphertext that can be decrypted by anyone
who has at least one of the keys ϕ1 or ϕ2:

(ϕ1 →p ψ) ∧ (ϕ2 →p ψ) makes the same in P, but here ψ is
repeated twice.



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

Primal disjunction ∨p

P[∨p] is the purely propositional part of PPIL (the recent stable
formulation of the primal infon logic, C. Cotrini, Y. Gurevish, 2012)

ϕ

ϕ ∨p ψ

ψ

ϕ ∨p ψ
(no elimination rules for ∨p)

“Cryptograpic” interpretation: (ϕ1 ∨p ϕ2) is a group key.

(ϕ1 ∨p ϕ2) →p ψ is a ciphertext that can be decrypted by anyone
who has at least one of the keys ϕ1 or ϕ2:

ϕ1 (ϕ1 ∨p ϕ2) →p ψ

ψ

ϕ2 (ϕ1 ∨p ϕ2) →p ψ

ψ
are admissible



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

P[∨p] can emulate ⊥w

q∗ = q for q ∈ At ∪ {>,⊥},
(ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗,
(ϕ→p ψ)∗ = (⊥ ∨p ϕ

∗) →p ψ∗.

The translation ϕ 7→ ϕ∗ is a linear time reduction.

Theorem
Γ ` ϕ in P[⊥w ] iff Γ∗ ` ϕ∗ in P[∨p].

It is also possible to reduce P[⊥w ] to P, but it requires exponential
space and time:

1 ϕ 7→ ϕ∗;
2 replace (⊥ ∨p ψ) →p η with (⊥ →p η) ∧ (ψ →p η).



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

P[∨p] can emulate ⊥w

q∗ = q for q ∈ At ∪ {>,⊥},
(ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗,
(ϕ→p ψ)∗ = (⊥ ∨p ϕ

∗) →p ψ∗.

The translation ϕ 7→ ϕ∗ is a linear time reduction.

Theorem
Γ ` ϕ in P[⊥w ] iff Γ∗ ` ϕ∗ in P[∨p].

It is also possible to reduce P[⊥w ] to P, but it requires exponential
space and time:

1 ϕ 7→ ϕ∗;
2 replace (⊥ ∨p ψ) →p η with (⊥ →p η) ∧ (ψ →p η).



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

P[∨p] can emulate ⊥w

q∗ = q for q ∈ At ∪ {>,⊥},
(ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗,
(ϕ→p ψ)∗ = (⊥ ∨p ϕ

∗) →p ψ∗.

The translation ϕ 7→ ϕ∗ is a linear time reduction.

Theorem
Γ ` ϕ in P[⊥w ] iff Γ∗ ` ϕ∗ in P[∨p].

It is also possible to reduce P[⊥w ] to P, but it requires exponential
space and time:

1 ϕ 7→ ϕ∗;
2 replace (⊥ ∨p ψ) →p η with (⊥ →p η) ∧ (ψ →p η).



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

P[∨p] can emulate ⊥w

q∗ = q for q ∈ At ∪ {>,⊥},
(ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗,
(ϕ→p ψ)∗ = (⊥ ∨p ϕ

∗) →p ψ∗.

The translation ϕ 7→ ϕ∗ is a linear time reduction.

Theorem
Γ ` ϕ in P[⊥w ] iff Γ∗ ` ϕ∗ in P[∨p].

It is also possible to reduce P[⊥w ] to P, but it requires exponential
space and time:

1 ϕ 7→ ϕ∗;
2 replace (⊥ ∨p ψ) →p η with (⊥ →p η) ∧ (ψ →p η).



Introduction {>,∧,→p} Infon algebra backdoors primal disjunction

P[∨p] can emulate ⊥w

q∗ = q for q ∈ At ∪ {>,⊥},
(ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗,
(ϕ→p ψ)∗ = (⊥ ∨p ϕ

∗) →p ψ∗.

The translation ϕ 7→ ϕ∗ is a linear time reduction.

Theorem
Γ ` ϕ in P[⊥w ] iff Γ∗ ` ϕ∗ in P[∨p].

It is also possible to reduce P[⊥w ] to P, but it requires exponential
space and time:

1 ϕ 7→ ϕ∗;
2 replace (⊥ ∨p ψ) →p η with (⊥ →p η) ∧ (ψ →p η).


	Introduction
	Semantics for {,,p }-fragment
	Infon algebra
	backdoors
	primal disjunction

