Primal implication as encryption

Vladimir N. Krupski
Lomonosov Moscow State University

2014

Propositional Infon Logic (Y. Gurevich, I. Neeman, 2008) Distributed-Knowledge Authorization Language DKAL

- Infon - a message as a piece of information.
- $\Gamma \vdash \varphi$ - "the principal can get (by herself, without any communication) the information φ provided she already has all infons $\psi \in \Gamma^{\prime \prime}$.

Propositional Infon Logic (Y. Gurevich, I. Neeman, 2008)
 Distributed-Knowledge Authorization Language DKAL

- Infon - a message as a piece of information.
- $\Gamma \vdash \varphi$ - "the principal can get (by herself, without any communication) the information φ provided she already has all infons $\psi \in \Gamma^{\prime \prime}$.

General Infon Logic $=$ intuitionistic propositional logic + quotation modalities A_said(), B_said(), ...
Primal Infon Logic $=$ its efficient fragment.

Primal implication \rightarrow_{p}

Primal implication \rightarrow_{p}

$$
\begin{aligned}
& \Gamma, \varphi \vdash \varphi, \quad\left(\text { but } \nvdash \varphi \rightarrow_{p} \varphi\right) \\
& \quad \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \rightarrow_{p} \psi}\left(\rightarrow_{p} I\right), \quad \frac{\Gamma \vdash \varphi \Gamma \vdash \varphi \rightarrow_{p} \psi}{\Gamma \vdash \psi}\left(\rightarrow_{p} E\right) .
\end{aligned}
$$

Primal implication \rightarrow_{p}

$\Gamma, \varphi \vdash \varphi, \quad\left(\right.$ but $\left.\forall \varphi \rightarrow_{p} \varphi\right)$

$$
\frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \rightarrow_{p} \psi}\left(\rightarrow_{p} I\right) \quad, \quad \frac{\Gamma \vdash \varphi \Gamma \vdash \varphi \rightarrow_{p} \psi}{\Gamma \vdash \psi}\left(\rightarrow_{p} E\right) .
$$

We propose a "cryptographic" interpretation:

- $\varphi \rightarrow_{p} \psi$ - "an infon, containing the information ψ encrypted by a symmetric key (generated from) $\varphi^{\prime \prime}$.

Primal implication \rightarrow_{p}

$\Gamma, \varphi \vdash \varphi,\left(\right.$ but $\left.\forall \varphi \rightarrow_{p} \varphi\right)$

$$
\frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \rightarrow_{p} \psi}\left(\rightarrow_{p} I\right) \quad, \quad \frac{\Gamma \vdash \varphi \Gamma \vdash \varphi \rightarrow_{p} \psi}{\Gamma \vdash \psi}\left(\rightarrow_{p} E\right) .
$$

We propose a "cryptographic" interpretation:

- $\varphi \rightarrow_{p} \psi$ - "an infon, containing the information ψ encrypted by a symmetric key (generated from) $\varphi^{\prime \prime}$.
- $\left(\rightarrow_{p} I\right)$ allows to encrypt any available message by any key.
- $\left(\rightarrow_{p} E\right)$ allows to extract the information from a ciphertext provided the key is also available.

Primal Infon Logic incorporated into communication protocols

It is a natural tool for manipulating with commitment schemes without detailed analysis of the scheme itself.

Primal Infon Logic incorporated into communication protocols

It is a natural tool for manipulating with commitment schemes without detailed analysis of the scheme itself.

Example

Alice and Bob live in different places and communicate via a telephone line or by e-mail. They wish to play the following game distantly. Each of them picks a bit, randomly or somehow else. If the bits coincide then Alice wins; otherwise Bob wins. Both of them decide to play fair but don't believe in the fairness of the opponent. So they use cryptography.

To play fair means that they honestly declare their choice of a bit, independently of what the other player said.

X_said() - corresponds to the modal logic K.
X_IsTrustedOn $\varphi:=\mathrm{X} _$said $\varphi \rightarrow_{p} \varphi$. All messages are signed.

X_said() - corresponds to the modal logic K.
X_IsTrustedOn $\varphi:=\mathrm{X} _$said $\varphi \rightarrow_{p} \varphi$. All messages are signed.
Policy: Alice
「: A_said m_{a}, A_said k_{a},
A_IsTrustedOn m_{a},
A_IsTrustedOn k_{a}.

X_said() - corresponds to the modal logic K.
X_IsTrustedOn $\varphi:=\mathrm{X} _$said $\varphi \rightarrow_{p} \varphi$. All messages are signed.
Policy: Alice
「: A_said m_{a}, A_said k_{a},
A_IsTrustedOn m_{a},
A_IsTrustedOn k_{a}.
$\Gamma \vdash k_{a} \rightarrow_{p} m_{a} ; \operatorname{SEND} k_{a} \rightarrow_{p} m_{a}$.

X_said() - corresponds to the modal logic K.
X_IsTrustedOn $\varphi:=\mathrm{X} _$said $\varphi \rightarrow_{p} \varphi$. All messages are signed.
Policy: Alice
「: A_said m_{a}, A_said k_{a},
A_IsTrustedOn m_{a},
A_IsTrustedOn k_{a}.
$\Gamma \vdash k_{a} \rightarrow_{p} m_{a} ; \operatorname{SEND} k_{a} \rightarrow_{p} m_{a}$.
A_said $m_{a} \quad$ A_IsTrustedOn m_{a}

$$
\frac{m_{a}}{k_{a} \rightarrow_{p} m_{a}}
$$

X_said() - corresponds to the modal logic K.
X_IsTrustedOn $\varphi:=\mathrm{X} _$said $\varphi \rightarrow_{p} \varphi$. All messages are signed.
Policy: Alice
「: A_said m_{a}, A_said k_{a},
A_IsTrustedOn m_{a},
A_IsTrustedOn k_{a}.
$\Gamma \vdash k_{a} \rightarrow_{p} m_{a} ; \operatorname{SEND} k_{a} \rightarrow_{p} m_{a}$.
when gets $k_{b} \rightarrow_{p} m_{b}$:
$\Gamma:=\Gamma, B_{-} \operatorname{said}\left(k_{b} \rightarrow_{p} m_{b}\right)$;
$\Gamma \vdash k_{a}$; SEND k_{a}.

X_said() - corresponds to the modal logic K.
X_IsTrustedOn $\varphi:=\mathrm{X} _$said $\varphi \rightarrow_{p} \varphi$. All messages are signed.
Policy: Alice
Γ : A_said m_{a}, A_said k_{a},
A_IsTrustedOn m_{a},
A_IsTrustedOn k_{a}.
$\Gamma \vdash k_{a} \rightarrow_{p} m_{a} ; \operatorname{SEND} k_{a} \rightarrow_{p} m_{a}$.
when gets $k_{b} \rightarrow_{p} m_{b}$:
$\Gamma:=\Gamma, B_{-} \operatorname{said}\left(k_{b} \rightarrow_{p} m_{b}\right)$;
$\Gamma \vdash k_{a}$; SEND k_{a}.
when gets $k_{b}: \Gamma:=\Gamma, B_{-}$said k_{b}.

X_said() - corresponds to the modal logic K.
X_IsTrustedOn $\varphi:=\mathrm{X} _$said $\varphi \rightarrow_{p} \varphi$. All messages are signed.
Policy: Alice
「: A_said m_{a}, A_said k_{a},
A_IsTrustedOn m_{a},
A_IsTrustedOn k_{a}.
$\Gamma \vdash k_{a} \rightarrow_{p} m_{a} ; \operatorname{SEND} k_{a} \rightarrow_{p} m_{a}$.
when gets $k_{b} \rightarrow_{p} m_{b}$:
$\Gamma:=\Gamma, B_{-} \operatorname{said}\left(k_{b} \rightarrow_{p} m_{b}\right)$;
$\Gamma \vdash k_{a}$; SEND k_{a}.
when gets $k_{b}: \Gamma:=\Gamma$, B_{-}said k_{b}.
$\Gamma \vdash B_{-}$said $m_{b}, \Gamma \vdash A_{\text {_ }}$ said m_{a}.

X_said() - corresponds to the modal logic K.
X_IsTrustedOn $\varphi:=\mathrm{X} _$said $\varphi \rightarrow_{p} \varphi$. All messages are signed.

Policy: Alice

$\Gamma: A _s a i d m_{a}, A_{-} s a i d k_{a}$,
A_IsTrustedOn m_{a},
A_IsTrustedOn k_{a}.
$\Gamma \vdash k_{a} \rightarrow_{p} m_{a} ;$ SEND $k_{a} \rightarrow_{p} m_{a}$.
when gets $k_{b} \rightarrow_{p} m_{b}$:
$\Gamma:=\Gamma, B_{-} \operatorname{said}\left(k_{b} \rightarrow_{p} m_{b}\right)$;
$\Gamma \vdash k_{a}$; SEND k_{a}.
when gets $k_{b}: \Gamma:=\Gamma$, B_{-}said k_{b}.
$\Gamma \vdash B_{-}$said $m_{b}, \Gamma \vdash A_{\text {_ }}$ said m_{a}.

Policy: Bob

「: B_said m_{b}, B_said k_{b},
B_IsTrustedOn m_{b},
B_IsTrustedOn k_{b}.
$\Gamma \vdash k_{b} \rightarrow_{p} m_{b} ; \operatorname{SEND} k_{b} \rightarrow_{p} m_{b}$.
when gets $k_{a} \rightarrow_{p} m_{a}$:
$\Gamma:=\Gamma, A_{-} \operatorname{said}\left(k_{a} \rightarrow_{p} m_{a}\right)$;
$\Gamma \vdash k_{b}$; SEND k_{b}.
when gets $k_{a}: \Gamma:=\Gamma$, A_said k_{a}.
$\Gamma \vdash$ A_said $m_{a}, \Gamma \vdash$ B_said m_{b}.

DKAL: $\quad($ IF p THEN $q):=\{q\}_{\{p\}}:=p \rightarrow_{p} q$

Policy: Alice
IF $\left\{m_{a}\right\}_{\left\{k_{a}\right\}}$ THEN SEND $\left\{m_{a}\right\}_{\left\{k_{a}\right\}}$;
IF $k_{a} \wedge B$ _said $\left\{m_{b}\right\}_{\left\{k_{b}\right\}}$ THEN SEND k_{a};
IF A_said $m_{a} \wedge$ B_said m_{b} THEN STOP.

DKAL: $\quad($ IF p THEN $q):=\{q\}_{\{p\}}:=p \rightarrow p q$

Policy: Alice

IF $\left\{m_{a}\right\}_{\left\{k_{a}\right\}}$ THEN SEND $\left\{m_{a}\right\}_{\left\{k_{a}\right\}}$;
IF $k_{a} \wedge B$ _said $\left\{m_{b}\right\}_{\left\{k_{b}\right\}}$ THEN SEND k_{a};
IF A_said $m_{a} \wedge$ B_said m_{b} THEN STOP.

Translation:
$\left(k_{a} \rightarrow_{p} m_{a}\right) \rightarrow_{p} \operatorname{SEND}\left(k_{a} \rightarrow_{p} m_{a}\right)$
$k_{a} \wedge B^{\prime} \operatorname{said}\left(k_{b} \rightarrow_{p} m_{b}\right) \rightarrow_{p}$ SEND k_{a}
A_said $m_{a} \wedge$ B_said $m_{b} \rightarrow_{p}$ STOP

What are the values of infon formulas?
(What is stored in the memory sells and sent?)
The "cryptographic" semantics gives some answer.

What are the values of infon formulas?
(What is stored in the memory sells and sent?)
The "cryptographic" semantics gives some answer.

- In what follows we do not insist that the encryption is strong in some sense. One may assume that the privacy is protected by the interface: an agent simply has no tools that make the decryption of a ciphertext without key possible.

What are the values of infon formulas?
 (What is stored in the memory sells and sent?)

The "cryptographic" semantics gives some answer.

- In what follows we do not insist that the encryption is strong in some sense. One may assume that the privacy is protected by the interface: an agent simply has no tools that make the decryption of a ciphertext without key possible.

Example

cp := CodePage(hash (φ))
$\varphi \rightarrow_{p} \psi:=$ convert ψ to cp

What are the values of infon formulas?
 (What is stored in the memory sells and sent?)

The "cryptographic" semantics gives some answer.

- In what follows we do not insist that the encryption is strong in some sense. One may assume that the privacy is protected by the interface: an agent simply has no tools that make the decryption of a ciphertext without key possible.
- We consider the purely propositional language and leave the modalities for the future.
\mathbf{P} - the $\left\{\top, \wedge, \rightarrow_{p}\right\}$-fragment.
$\bar{\top} \frac{\varphi_{1} \varphi_{2}}{\varphi_{1} \wedge \varphi_{2}} \quad \frac{\varphi_{1} \wedge \varphi_{2}}{\varphi_{i}} \quad \frac{\varphi_{2}}{\varphi_{1} \rightarrow_{p} \varphi_{2}} \quad \frac{\varphi_{1} \varphi_{1} \rightarrow_{p} \varphi_{2}}{\varphi_{2}}$
\mathbf{P} - the $\left\{\mathrm{T}, \wedge, \rightarrow_{p}\right\}$-fragment.
$\bar{\top} \frac{\varphi_{1} \varphi_{2}}{\varphi_{1} \wedge \varphi_{2}} \quad \frac{\varphi_{1} \wedge \varphi_{2}}{\varphi_{i}} \quad \frac{\varphi_{2}}{\varphi_{1} \rightarrow_{p} \varphi_{2}} \quad \frac{\varphi_{1} \varphi_{1} \rightarrow_{p} \varphi_{2}}{\varphi_{2}}$

Theorem (L. Beklemishev, Y. Gurevich, 2012)
\mathbf{P} is sound and complete w.r.t. quasi-boolean semantics.
\vDash is a quasi-boolean model iff

- $\models \mathrm{T}$,
- $\models \varphi_{1} \wedge \varphi_{2} \Leftrightarrow \models \varphi_{1}$ and $\models \varphi_{2}$,
- $\models \varphi_{2} \Rightarrow \models \varphi_{1} \rightarrow_{p} \varphi_{2}$,
- $\vDash \varphi_{1} \rightarrow_{p} \varphi_{2} \Rightarrow \not \vDash \varphi_{1}$ or $\vDash \varphi_{2}$.
\mathbf{P} - the $\left\{\mathrm{T}, \wedge, \rightarrow_{p}\right\}$-fragment.
$\bar{\top} \frac{\varphi_{1} \varphi_{2}}{\varphi_{1} \wedge \varphi_{2}} \quad \frac{\varphi_{1} \wedge \varphi_{2}}{\varphi_{i}} \quad \frac{\varphi_{2}}{\varphi_{1} \rightarrow_{p} \varphi_{2}} \quad \frac{\varphi_{1} \varphi_{1} \rightarrow_{p} \varphi_{2}}{\varphi_{2}}$

Theorem (L. Beklemishev, Y. Gurevich, 2012)
\mathbf{P} is sound and complete w.r.t. quasi-boolean semantics.
\vDash is a quasi-boolean model iff

- \models T,
- $\models \varphi_{1} \wedge \varphi_{2} \Leftrightarrow \models \varphi_{1}$ and $\models \varphi_{2}$,
- $\models \varphi_{2} \Rightarrow \models \varphi_{1} \rightarrow_{p} \varphi_{2}$,
- $\models \varphi_{1} \rightarrow_{p} \varphi_{2} \Rightarrow \not \vDash \varphi_{1}$ or $\models \varphi_{2}$.

But it is not what we need.

Infon algebra $\mathcal{A}=\left\langle\Sigma^{*}, \pi, I, r\right.$, enc, dec, $\left.E\right\rangle$

Infon algebra $\mathcal{A}=\left\langle\Sigma^{*}, \pi, I, r\right.$, enc, dec,$\left.E\right\rangle$

- Σ is a finite alphabet, say $\Sigma=\{0,1\}$.

Infon algebra $\mathcal{A}=\left\langle\Sigma^{*}, \pi, I, r\right.$, enc, dec,$\left.E\right\rangle$

- Σ is a finite alphabet, say $\Sigma=\{0,1\}$.
- $\pi:\left(\Sigma^{*}\right)^{2} \rightarrow \Sigma^{*}$ is a total pairing function with projections I, r :

$$
I(\pi(x, y))=x, \quad r(\pi(x, y))=y
$$

Infon algebra $\mathcal{A}=\left\langle\Sigma^{*}, \pi, I, r\right.$, enc, dec, $\left.E\right\rangle$

- Σ is a finite alphabet, say $\Sigma=\{0,1\}$.
- $\pi:\left(\Sigma^{*}\right)^{2} \rightarrow \Sigma^{*}$ is a total pairing function with projections I, r :

$$
I(\pi(x, y))=x, \quad r(\pi(x, y))=y
$$

- enc, dec: $\left(\Sigma^{*}\right)^{2} \rightarrow \Sigma^{*}-$ encoding/decoding methods, enc is total,

$$
\operatorname{dec}(x, \operatorname{enc}(x, y))=y
$$

Infon algebra $\mathcal{A}=\left\langle\Sigma^{*}, \pi, I, r\right.$, enc, dec, $\left.E\right\rangle$

- Σ is a finite alphabet, say $\Sigma=\{0,1\}$.
- $\pi:\left(\Sigma^{*}\right)^{2} \rightarrow \Sigma^{*}$ is a total pairing function with projections I, r :

$$
I(\pi(x, y))=x, \quad r(\pi(x, y))=y
$$

- enc, dec: $\left(\Sigma^{*}\right)^{2} \rightarrow \Sigma^{*}-$ encoding/decoding methods, enc is total,

$$
\operatorname{dec}(x, e n c(x, y))=y
$$

- $E \subset \Sigma^{*}, E \neq \emptyset$ - the information known by everyone.

Definition

A set $M \subseteq \Sigma^{*}$ is closed if $E \subseteq M$ and M satisfies the closure conditions:

- $a, b \in M \Leftrightarrow \pi(a, b) \in M$,
- $a \in \Sigma^{*}, b \in M \Rightarrow \operatorname{enc}(a, b) \in M$.
- $a, \operatorname{enc}(a, b) \in M \Rightarrow b \in M$,

Definition

A set $M \subseteq \Sigma^{*}$ is closed if $E \subseteq M$ and M satisfies the closure conditions:

- $a, b \in M \Leftrightarrow \pi(a, b) \in M$,
- $a \in \Sigma^{*}, b \in M \Rightarrow \operatorname{enc}(a, b) \in M$.
- $a, \operatorname{enc}(a, b) \in M \Rightarrow b \in M$,

A closed set M represents the information that is potentially available to an agent in a local state. M contains all public and some private texts.

Definition

A set $M \subseteq \Sigma^{*}$ is closed if $E \subseteq M$ and M satisfies the closure conditions:

- $a, b \in M \Leftrightarrow \pi(a, b) \in M$,
- $a \in \Sigma^{*}, b \in M \Rightarrow \operatorname{enc}(a, b) \in M$.
- $a, \operatorname{enc}(a, b) \in M \Rightarrow b \in M$,

A closed set M represents the information that is potentially available to an agent in a local state. M contains all public and some private texts.
The agent can combine several texts in a single multi-part document using π and extract its parts by means of projections.

Definition

A set $M \subseteq \Sigma^{*}$ is closed if $E \subseteq M$ and M satisfies the closure conditions:

- $a, b \in M \Leftrightarrow \pi(a, b) \in M$,
- $a \in \Sigma^{*}, b \in M \Rightarrow e n c(a, b) \in M$.
- $a, \operatorname{enc}(a, b) \in M \Rightarrow b \in M$,

A closed set M represents the information that is potentially available to an agent in a local state. M contains all public and some private texts.
The agent can combine several texts in a single multi-part document using π and extract its parts by means of projections.

She has access to the encryption tool enc, so she can convert a plaintext into a ciphertext. The backward conversion (by dec) is also available provided she has the encryption key.

Definition

A model is a triple $\langle\mathcal{A}, M, v\rangle$ where \mathcal{A} is an infon algebra, $M \subseteq \Sigma^{*}$ is a closed set and $v: F m \rightarrow \Sigma^{*}$ is an evaluation,

- $v(T) \in E$,
- $v\left(\varphi_{1} \wedge \varphi_{2}\right)=\pi\left(v\left(\varphi_{1}\right), v\left(\varphi_{2}\right)\right)$,
- $v\left(\varphi_{1} \rightarrow_{p} \varphi_{2}\right)=\operatorname{enc}\left(v\left(\varphi_{1}\right), v\left(\varphi_{2}\right)\right)$.

Definition

A model is a triple $\langle\mathcal{A}, M, v\rangle$ where \mathcal{A} is an infon algebra, $M \subseteq \Sigma^{*}$ is a closed set and $v: F m \rightarrow \Sigma^{*}$ is an evaluation,

- $v(T) \in E$,
- $v\left(\varphi_{1} \wedge \varphi_{2}\right)=\pi\left(v\left(\varphi_{1}\right), v\left(\varphi_{2}\right)\right)$,
- $v\left(\varphi_{1} \rightarrow_{p} \varphi_{2}\right)=\operatorname{enc}\left(v\left(\varphi_{1}\right), v\left(\varphi_{2}\right)\right)$.

Theorem (Soundness and Completeness)
$\Gamma \vdash \varphi$ in P iff $v(\varphi) \in M$ for every model $\langle\mathcal{A}, M, v\rangle$ with $v(\Gamma) \subseteq M$.

Definition

A model is a triple $\langle\mathcal{A}, M, v\rangle$ where \mathcal{A} is an infon algebra, $M \subseteq \Sigma^{*}$ is a closed set and $v: F m \rightarrow \Sigma^{*}$ is an evaluation,

- $v(T) \in E$,
- $v\left(\varphi_{1} \wedge \varphi_{2}\right)=\pi\left(v\left(\varphi_{1}\right), v\left(\varphi_{2}\right)\right)$,
- $v\left(\varphi_{1} \rightarrow_{p} \varphi_{2}\right)=\operatorname{enc}\left(v\left(\varphi_{1}\right), v\left(\varphi_{2}\right)\right)$.

Theorem (Soundness and Completeness)
 $\Gamma \vdash \varphi$ in P iff $v(\varphi) \in M$ for every model $\langle\mathcal{A}, M, v\rangle$ with $v(\Gamma) \subseteq M$.

Theorem (Uniform model)

There exists an interpretation $\langle\mathcal{A}, v\rangle$ with the following property: for any context Γ there exists a model $\langle\mathcal{A}, M, v\rangle$ with $v(\Gamma) \subseteq M$, such that $\Gamma \nvdash \varphi$ implies $v(\varphi) \notin M$ for all infons φ.

Constant \perp and backdoors

Constant \perp and backdoors

$\mathrm{P}[\perp]$:
$\frac{\perp}{\varphi}(\perp E)$
\perp as superuser permissions, makes communications and all other tools useless for the owner.
$\mathrm{P}\left[\perp_{w}\right]:$

$$
\frac{\perp \varphi \rightarrow_{p} \psi}{\psi}\left(\perp_{w} E\right)
$$

\perp as a universal key, provides the ability to decrypt any available ciphertext.

Constant \perp and backdoors

$\mathrm{P}[\perp]$:

\perp as superuser permissions, makes communications and all other tools useless for the

$$
\begin{aligned}
& \mathrm{P}\left[\perp_{w}\right]: \\
& \quad \frac{\perp \varphi \rightarrow_{p} \psi}{\psi}\left(\perp_{w} E\right)
\end{aligned}
$$

\perp as a universal key, provides the ability to decrypt any available ciphertext. owner.

$$
\Sigma_{\perp}=\Sigma \cup\{\mathbf{f}\}, \quad v: F m \rightarrow \Sigma_{\perp}^{*}, \quad v(\perp)=\mathbf{f} .
$$

Constant \perp and backdoors
$\mathrm{P}[\perp]$:

\perp as superuser permissions, makes communications and all other tools useless for the

$$
\begin{aligned}
& \mathrm{P}\left[\perp_{w}\right]: \\
& \quad \frac{\perp \varphi \rightarrow_{p} \psi}{\psi}\left(\perp_{w} E\right)
\end{aligned}
$$

\perp as a universal key, provides the ability to decrypt any available ciphertext. owner.

$$
\Sigma_{\perp}=\Sigma \cup\{\mathbf{f}\}, \quad v: F m \rightarrow \Sigma_{\perp}^{*}, \quad v(\perp)=\mathbf{f}
$$

$\mathbf{f} \in M, a \in \Sigma_{\perp}^{*} \Rightarrow a \in M$

$$
\mathbf{f}, e n c(a, b) \in M \Rightarrow b \in M
$$

Constant \perp and backdoors
$\mathrm{P}[\perp]$:

\perp as superuser permissions, makes communications and all other tools useless for the

$$
\begin{aligned}
& \mathrm{P}\left[\perp_{w}\right]: \\
& \quad \frac{\perp \varphi \rightarrow_{p} \psi}{\psi}\left(\perp_{w} E\right)
\end{aligned}
$$

\perp as a universal key, provides the ability to decrypt any available ciphertext. owner.

$$
\Sigma_{\perp}=\Sigma \cup\{\mathbf{f}\}, \quad v: F m \rightarrow \Sigma_{\perp}^{*}, \quad v(\perp)=\mathbf{f}
$$

$\mathbf{f} \in M, a \in \Sigma_{\perp}^{*} \Rightarrow a \in M$

$$
\begin{aligned}
& \mathbf{f}, \operatorname{enc}(a, b) \in M \Rightarrow b \in M \\
& \operatorname{crack}(\mathbf{f}, \operatorname{enc}(a, b))=b
\end{aligned}
$$

Theorem
The completeness results for $\mathbf{P}[\perp]$ and $\mathbf{P}\left[\perp_{w}\right]$ are just the same.

Theorem
The completeness results for $\mathbf{P}[\perp]$ and $\mathbf{P}\left[\perp_{w}\right]$ are just the same.
Complexity: all known primal infon logics have linear time complexity. $\mathrm{P}\left[\perp_{w}\right]$ is a new one.

Theorem

The completeness results for $\mathbf{P}[\perp]$ and $\mathbf{P}\left[\perp_{w}\right]$ are just the same.
Complexity: all known primal infon logics have linear time complexity. $\mathrm{P}\left[\perp_{w}\right]$ is a new one.

Theorem
" $\Gamma \vdash \varphi$ in $\mathbf{P}\left[\perp_{w}\right]$ " is linear time decidable.

Theorem

The completeness results for $\mathbf{P}[\perp]$ and $\mathbf{P}\left[\perp_{w}\right]$ are just the same.
Complexity: all known primal infon logics have linear time complexity. $\mathrm{P}\left[\perp_{w}\right]$ is a new one.

Theorem

" $\Gamma \vdash \varphi$ in $\mathbf{P}\left[\perp_{w}\right]$ " is linear time decidable.

- if $\Gamma \vdash \varphi$ in \mathbf{P}, return '"yes";
- else if 「 $\forall \perp$ in \mathbf{P}, return 'no'’;
- else return $A t^{+}(\varphi) \subseteq A t^{+}(\Gamma)$.
where $A t^{+}(\varphi)$ is the set of all atoms that occur "positive" in φ; $A t^{+}\left(\varphi \rightarrow_{p} \psi\right)=A t^{+}(\psi)$.

Primal disjunction \vee_{p}

Primal disjunction \vee_{p}

$\mathrm{P}\left[\mathrm{V}_{p}\right]$ is the purely propositional part of PPIL (the recent stable formulation of the primal infon logic, C. Cotrini, Y. Gurevish, 2012)

$$
\frac{\varphi}{\varphi \vee_{p} \psi} \quad \frac{\psi}{\varphi \vee_{p} \psi} \quad \text { (no elimination rules for } \vee_{p} \text {) }
$$

Primal disjunction \vee_{p}

$\mathrm{P}\left[\mathrm{V}_{p}\right]$ is the purely propositional part of PPIL (the recent stable formulation of the primal infon logic, C. Cotrini, Y. Gurevish, 2012)

$$
\frac{\varphi}{\varphi \vee_{p} \psi} \quad \frac{\psi}{\varphi \vee_{p} \psi} \quad \text { (no elimination rules for } \vee_{p} \text {) }
$$

"Cryptograpic" interpretation: $\left(\varphi_{1} \vee_{p} \varphi_{2}\right)$ is a group key.

Primal disjunction \vee_{p}

$\mathrm{P}\left[\mathrm{V}_{p}\right]$ is the purely propositional part of PPIL (the recent stable formulation of the primal infon logic, C. Cotrini, Y. Gurevish, 2012)

$$
\frac{\varphi}{\varphi \vee_{p} \psi} \quad \frac{\psi}{\varphi \vee_{p} \psi} \quad \text { (no elimination rules for } \vee_{p} \text {) }
$$

"Cryptograpic" interpretation: $\left(\varphi_{1} \vee_{p} \varphi_{2}\right)$ is a group key. $\left(\varphi_{1} \vee_{p} \varphi_{2}\right) \rightarrow_{p} \psi$ is a ciphertext that can be decrypted by anyone who has at least one of the keys φ_{1} or φ_{2} :

Primal disjunction \vee_{p}

$\mathrm{P}\left[\mathrm{V}_{p}\right]$ is the purely propositional part of PPIL (the recent stable formulation of the primal infon logic, C. Cotrini, Y. Gurevish, 2012)

$$
\frac{\varphi}{\varphi \vee_{p} \psi} \quad \frac{\psi}{\varphi \vee_{p} \psi} \quad \text { (no elimination rules for } \vee_{p} \text {) }
$$

"Cryptograpic" interpretation: $\left(\varphi_{1} \vee_{p} \varphi_{2}\right)$ is a group key.
$\left(\varphi_{1} \vee_{p} \varphi_{2}\right) \rightarrow_{p} \psi$ is a ciphertext that can be decrypted by anyone who has at least one of the keys φ_{1} or φ_{2} :

$$
\frac{\varphi_{1}\left(\varphi_{1} \vee_{p} \varphi_{2}\right) \rightarrow_{p} \psi}{\psi} \quad \frac{\varphi_{2}\left(\varphi_{1} \vee_{p} \varphi_{2}\right) \rightarrow_{p} \psi}{\psi} \quad \text { are admissible }
$$

Primal disjunction \vee_{p}

$\mathrm{P}\left[\mathrm{V}_{p}\right]$ is the purely propositional part of PPIL (the recent stable formulation of the primal infon logic, C. Cotrini, Y. Gurevish, 2012)

$$
\frac{\varphi}{\varphi \vee_{p} \psi} \quad \frac{\psi}{\varphi \vee_{p} \psi} \quad \text { (no elimination rules for } \vee_{p} \text {) }
$$

"Cryptograpic" interpretation: $\left(\varphi_{1} \vee_{p} \varphi_{2}\right)$ is a group key.
$\left(\varphi_{1} \vee_{p} \varphi_{2}\right) \rightarrow_{p} \psi$ is a ciphertext that can be decrypted by anyone who has at least one of the keys φ_{1} or φ_{2} :
$\left(\varphi_{1} \rightarrow_{p} \psi\right) \wedge\left(\varphi_{2} \rightarrow_{p} \psi\right)$ makes the same in \mathbf{P}, but here ψ is repeated twice.

Primal disjunction \vee_{p}

$\mathrm{P}\left[\mathrm{V}_{p}\right]$ is the purely propositional part of PPIL (the recent stable formulation of the primal infon logic, C. Cotrini, Y. Gurevish, 2012)

$$
\frac{\varphi}{\varphi \vee_{p} \psi} \quad \frac{\psi}{\varphi \vee_{p} \psi} \quad \text { (no elimination rules for } \vee_{p} \text {) }
$$

"Cryptograpic" interpretation: $\left(\varphi_{1} \vee_{p} \varphi_{2}\right)$ is a group key.
$\left(\varphi_{1} \vee_{p} \varphi_{2}\right) \rightarrow_{p} \psi$ is a ciphertext that can be decrypted by anyone who has at least one of the keys φ_{1} or φ_{2} :

$$
\frac{\varphi_{1}\left(\varphi_{1} \vee_{p} \varphi_{2}\right) \rightarrow_{p} \psi}{\psi} \quad \frac{\varphi_{2}\left(\varphi_{1} \vee_{p} \varphi_{2}\right) \rightarrow_{p} \psi}{\psi} \quad \text { are admissible }
$$

$\mathbf{P}\left[\vee_{p}\right]$ can emulate \perp_{w}
$\mathbf{P}\left[\vee_{p}\right]$ can emulate \perp_{w}

- $q^{*}=q$ for $q \in A t \cup\{\top, \perp\}$,
- $(\varphi \wedge \psi)^{*}=\varphi^{*} \wedge \psi^{*}$,
- $\left(\varphi \rightarrow_{p} \psi\right)^{*}=\left(\perp \vee_{p} \varphi^{*}\right) \rightarrow_{p} \psi^{*}$.
$\mathbf{P}\left[\vee_{p}\right]$ can emulate \perp_{w}
- $q^{*}=q$ for $q \in A t \cup\{\top, \perp\}$,
- $(\varphi \wedge \psi)^{*}=\varphi^{*} \wedge \psi^{*}$,
- $\left(\varphi \rightarrow_{p} \psi\right)^{*}=\left(\perp \vee_{p} \varphi^{*}\right) \rightarrow_{p} \psi^{*}$.

The translation $\varphi \mapsto \varphi^{*}$ is a linear time reduction.
$\mathbf{P}\left[\vee_{p}\right]$ can emulate \perp_{w}

- $q^{*}=q$ for $q \in A t \cup\{\top, \perp\}$,
- $(\varphi \wedge \psi)^{*}=\varphi^{*} \wedge \psi^{*}$,
- $\left(\varphi \rightarrow_{p} \psi\right)^{*}=\left(\perp \vee_{p} \varphi^{*}\right) \rightarrow_{p} \psi^{*}$.

The translation $\varphi \mapsto \varphi^{*}$ is a linear time reduction.
Theorem
$\Gamma \vdash \varphi$ in $\mathbf{P}\left[\perp_{w}\right] \quad$ iff $\quad \Gamma^{*} \vdash \varphi^{*}$ in $\mathbf{P}\left[\vee_{p}\right]$.
$\mathbf{P}\left[\vee_{p}\right]$ can emulate \perp_{w}

- $q^{*}=q$ for $q \in A t \cup\{\top, \perp\}$,
- $(\varphi \wedge \psi)^{*}=\varphi^{*} \wedge \psi^{*}$,
- $\left(\varphi \rightarrow_{p} \psi\right)^{*}=\left(\perp \vee_{p} \varphi^{*}\right) \rightarrow_{p} \psi^{*}$.

The translation $\varphi \mapsto \varphi^{*}$ is a linear time reduction.

Theorem
 $\Gamma \vdash \varphi$ in $\mathbf{P}\left[\perp_{w}\right] \quad$ iff $\quad \Gamma^{*} \vdash \varphi^{*}$ in $\mathbf{P}\left[\vee_{p}\right]$.

It is also possible to reduce $\mathrm{P}\left[\perp_{w}\right]$ to P , but it requires exponential space and time:
(1) $\varphi \mapsto \varphi^{*}$;
(2) replace $\left(\perp \vee_{p} \psi\right) \rightarrow_{p} \eta$ with $\left(\perp \rightarrow_{p} \eta\right) \wedge\left(\psi \rightarrow_{p} \eta\right)$.

