Block Products and Nesting Negations in FO^{2}

Lukas Fleischer
Manfred Kufleitner
Alexander Lauser

Universität Stuttgart, Germany

CSR 2014

Moscow, Russia
June 9, 2014

Main result

Theorem: Let $L \subseteq A^{*}$ and $m \geq 1$. The following are equivalent:

1. L is definable in $\sum_{m}^{2}[<]$.
2. The ordered syntactic monoid $\operatorname{Synt}(L)$ of L is in \mathbf{W}_{m}.
3. $\operatorname{Synt}(L)$ is in DA and satisfies $U_{m} \leq V_{m}$.

Logic

- Syntax FO:

$$
\begin{aligned}
\varphi=\exists x(& a(x) \wedge \\
& \forall y(\neg b(y) \vee x<y) \wedge \\
& \exists z(x<z \wedge b(z)))
\end{aligned}
$$

- Syntactic properties / resources:
- 3 variables: FO 3
- quantifier depth 2
- 1 quantifier alternation: Σ_{2}
- Semantics FO:
- $L(\varphi)=\{a, c\}^{*} a\{a, b, c\}^{*} b\{a, b, c\}^{*}$
- Alternative:

$$
\psi=\exists x(b(x)) \wedge \forall x \exists y(b(x) \rightarrow(y<x \wedge a(y)))
$$

Understanding a logic fragment \mathcal{F} :
 (e.g. $\mathcal{F}=\mathrm{FO}$)

- Complexity of computational problems for \mathcal{F} ? (satisfiability for FO is non-elementary)
- Which languages can be defined in \mathcal{F} ?
$(\mathrm{FO}=$ star-free $)$
- How can we decide whether a given regular language L is definable in \mathcal{F} ?
(FO = aperiodic)
- Closure properties of the \mathcal{F}-definable languages?
(FO is closed under inverse homomorphisms)
- Which other fragment also defines the \mathcal{F}-definable languages?

$$
\begin{equation*}
\left(F O=L T L=F O^{3}\right) \tag{yes}
\end{equation*}
$$

- Is separation by \mathcal{F}-definable languages decidable? Computation of Separators?
\Rightarrow descriptive complexity theory within the regular languages

The role of algebra:

- Many effective characterizations of definability in \mathcal{F} rely on algebra.
- Outline: $L \subseteq A^{*}$ is \mathcal{F}-definable $\Leftrightarrow \operatorname{Synt}(L) \in \mathbf{V}$ for some class \mathbf{V} of finite monoids
- membership in V decidable \Rightarrow definability in \mathcal{F} decidable
- Sometimes algebra can only be found below the surface, e.g. FO = counter-free.
- Usually, classes of finite monoids and operations on finite monoids are easier to handle than in the case of automata.
- "Good" algebraic characterizations can often be translated to automata.
- Many closure properties come for free!

ω-terms

- M finite monoid, $u \in M$ is idempotent if $u^{2}=u$
- there exists $\omega(M) \geq 1$ such that $\forall u \in M: u^{\omega(M)}$ is idempotent
- idea behind ω-terms:

Use one formal symbol ω which works for all finite monoids

- ω-terms: $s::=x|s s| s^{\omega} \quad$ for variable $x \in \Omega$
- a mapping $h: \Omega \rightarrow M$ extends to homomorphism $h:\{\omega$-terms over $\Omega\} \rightarrow M$ by setting $h\left(s^{\omega}\right)=h(s)^{\omega(M)}$
- M satisfies an identity $s=t$ if $h(s)=h(t)$ for all $h: \Omega \rightarrow M$
- Example 1: $x y=y x$ defines the finite commutative monoids
- Example 2: $(x y)^{\omega} x(x y)^{\omega}=(x y)^{\omega}$ defines DA
- Example 3: $(x y)^{\omega} x(t s)^{\omega}=(x y)^{\omega} s(t s)^{\omega}$ defines J
- identities $s \leq t$ for ordered monoids
- "distance" from ω-terms to logic is rather large

Block products

- For a homomorphism $h: A^{*} \rightarrow N$ let $A_{N}=N \times A \times N$ and let $\sigma_{h}: A^{*} \rightarrow A_{N}^{*}, a_{1} \cdots a_{n} \mapsto b_{1} \cdots b_{n}$ with $b_{i}=\left(h\left(a_{1} \cdots a_{i-1}\right), a_{i}, h\left(a_{i+1} \cdots a_{n}\right)\right)$.
- $L \subseteq A^{*}$ is recognized by monoid in $\mathbf{V} * * \mathbf{W}$ if there exists a homomorphism $h: A^{*} \rightarrow N \in \mathbf{W}$ such that L is union of languages $\sigma^{-1}(K) \cap L_{h}$ with $K \subseteq A_{N}^{*}$ being recognized by monoid in \mathbf{V} and $L_{h} \subseteq A^{*}$ being recognized by h.
- Equivalent construction using monoids only (no homomorphisms, no recognition) is called the block product.
- Block products do not automatically give decidability.
- "distance" between block products and logic is rather small

Main result

- $\Sigma_{m}^{2}[<]$: two variables, m blocks $=m-1$ nested negations
- Example: $A^{*} a_{1} A^{*} \cdots a_{k} A^{*}$ is definable in $\Sigma_{1}^{2}[<]$.
- $\mathbf{W}_{1}=\llbracket x \leq 1 \rrbracket, \quad \mathbf{W}_{m+1}=\mathbf{W}_{m} * * \mathbf{J}$
- $U_{1}=z, V_{1}=1$,
$U_{m+1}=\left(U_{m} x_{m}\right)^{\omega} U_{m}\left(y_{m} U_{m}\right)^{\omega}$, $V_{m+1}=\left(U_{m} x_{m}\right)^{\omega} V_{m}\left(y_{m} U_{m}\right)^{\omega}$

Theorem: Let $L \subseteq A^{*}$ and $m \geq 1$. The following are equivalent:

1. L is definable in $\sum_{m}^{2}[<]$.
2. The ordered syntactic monoid $\operatorname{Synt}(L)$ of L is in \mathbf{W}_{m}.
3. $\operatorname{Synt}(L)$ is in DA and satisfies $U_{m} \leq V_{m}$.

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$. Proof:

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:
\square

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$. Proof:

- $m=1: L$ satisfies $z \leq 1$:

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$. Proof:

- $m=1: L$ satisfies $z \leq 1$:

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

- $m>1$: innermost block $\psi(x)$ of $\varphi \in \Sigma_{m}^{2}[<]$

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

- $m>1$: innermost block $\psi(x)$ of $\varphi \in \Sigma_{m}^{2}[<]$

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

- $m>1$: innermost block $\psi(x)$ of $\varphi \in \Sigma_{m}^{2}[<]$

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

- $m>1$: innermost block $\psi(x)$ of $\varphi \in \Sigma_{m}^{2}[<]$

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

- $m>1$: innermost block $\psi(x)$ of $\varphi \in \Sigma_{m}^{2}[<]$

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

- $m>1$: innermost block $\psi(x)$ of $\varphi \in \Sigma_{m}^{2}[<]$

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

- $m>1$: innermost block $\psi(x)$ of $\varphi \in \Sigma_{m}^{2}[<]$

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

- $m>1$: innermost block $\psi(x)$ of $\varphi \in \Sigma_{m}^{2}[<]$

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

- $m>1$: innermost block $\psi(x)$ of $\varphi \in \Sigma_{m}^{2}[<]$

$n_{1}, n_{2} \in N$ for $N \in \mathbf{J}$ [Simon's Theorem]

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

- $m>1$: innermost block $\psi(x)$ of $\varphi \in \Sigma_{m}^{2}[<]$

$n_{1}, n_{2} \in N$ for $N \in \mathbf{J}$ [Simon's Theorem]

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

- $m>1$: innermost block $\psi(x)$ of $\varphi \in \sum_{m}^{2}[<]$

$n_{1}, n_{2} \in N$ for $N \in \mathbf{J}$ [Simon's Theorem]
- "equivalent" formula $\varphi^{\prime} \in \Sigma_{m-1}^{2}[<]$ over alphabet $N \times A \times N$

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

- $m>1$: innermost block $\psi(x)$ of $\varphi \in \sum_{m}^{2}[<]$

$n_{1}, n_{2} \in N$ for $N \in \mathbf{J}$ [Simon's Theorem]
- "equivalent" formula $\varphi^{\prime} \in \Sigma_{m-1}^{2}[<]$ over alphabet $N \times A \times N$
- Induction: $\varphi^{\prime} \in \mathbf{W}_{m-1}$

From logic to block products

Lemma: If L is definable in $\Sigma_{m}^{2}[<]$, then $\operatorname{Synt}(L) \in \mathbf{W}_{m}$.
Proof:

- $m=1: L$ satisfies $z \leq 1$:

- $m>1$: innermost block $\psi(x)$ of $\varphi \in \Sigma_{m}^{2}[<]$

$n_{1}, n_{2} \in N$ for $N \in \mathbf{J}$ [Simon's Theorem]
- "equivalent" formula $\varphi^{\prime} \in \Sigma_{m-1}^{2}[<]$ over alphabet $N \times A \times N$
- Induction: $\varphi^{\prime} \in \mathbf{W}_{m-1}$
- Thus $\varphi \in \mathbf{W}_{m}=\mathbf{W}_{m-1} * * \mathbf{J}$.

Remarks

- Step from \mathbf{W}_{m} to $U_{m} \leq V_{m}$ is also easy.
- Difficult part (as usual): from $U_{m} \leq V_{m}$ to $\sum_{m}^{2}[<]$
- Related results: Effective characterizations of $\mathrm{FO}_{m}^{2}[<]$
[K., Weil 2012], [Krebs, Straubing 2012]
- No immediate connection between $\mathrm{FO}_{m}^{2}[<]$ and $\Sigma_{m}^{2}[<]$

Thank you!

