Separation Logic with One Quantified Variable

D. Larchey-Wendling²

Joint work with S. Demri¹, D. Galmiche² and D. Méry²

¹ NYU - CNRS and ² LORIA - CNRS - UL

CSR, June 2014

Overview

- 1 Separation Logic in a Nutshell
- 2 Separation Logic 1SL1
- **3** Expressive Completeness
- 4 Some remarks on MC and SAT

Separation logic

- Introduced by Ishtiaq, Reynolds, O'Hearn, Pym.
- Extension of Hoare Logic by J.C. Reynolds with separating connectives.
- Reasoning about the heap with a strong form of locality built-in.
- φ * ψ is true whenever the heap can be divided into two disjoint parts, one satisfies φ, the other one ψ.
- φ → ψ is true whenever φ is true for a (fresh) disjoint heap,
 ψ is true for the combined heap.

Hoare triples

- Hoare triple: $\{\phi\}$ PROG $\{\psi\}$ (total correctness).
- Rule of constancy:

$$\frac{\{\phi\}\;\mathrm{PROG}\;\{\psi\}}{\{\phi \wedge \psi'\}\;\mathrm{PROG}\;\{\psi \wedge \psi'\}}$$

where no variable free in ψ' is modified by PROG.

Unsoundness of the rule of constancy with pointers:

$$\frac{\{(\exists z. \ x \mapsto z)\} \ [x] := 4 \ \{x \mapsto 4\}}{\{(\exists z. \ x \mapsto z) \land y \mapsto 3\} \ [x] := 4 \ \{x \mapsto 4 \land y \mapsto 3\}}$$

(when
$$x = y$$
) $x \mapsto z$: "memory has a unique memory cell $x \mapsto z$ "

When separation logic enters into the play

Reparation with frame rule:

$$\frac{\{\phi\}\;\mathsf{PROG}\;\{\psi\}}{\{\phi*\psi'\}\;\mathsf{PROG}\;\{\psi*\psi'\}}$$

where no variable free in ψ' is modified by PROG.

Strengthening precedent (SP)

$$\frac{\phi \Rightarrow \psi' \ \{\psi'\} \ \text{PROG} \ \{\psi\}}{\{\phi\} \ \text{PROG} \ \{\psi\}}$$

 Checking entailment/validity/satisfiability in separation logic is a building block of the verification process.

Memory states for *n*SL (*n* record fields)

- Program variables $PVAR = \{x_1, x_2, x_3, \ldots\}.$
- Memory state:
 - Store s: PVAR → Val.
 - Heap $\mathfrak{h} : Loc \rightarrow Val^n$ with finite domain.

$$(Loc = \{l, l', \ldots\}, Val = \mathbb{N} \uplus Loc \uplus \{nil\})$$

- Simplification: Loc = $Val = \mathbb{N}$ (like low level memory).
- Disjoint heaps: $dom(\mathfrak{h}_1) \cap dom(\mathfrak{h}_2) = \emptyset$ (noted $\mathfrak{h}_1 \perp \mathfrak{h}_2$).
- When $\mathfrak{h}_1 \perp \mathfrak{h}_2$, $\mathfrak{h}_1 \perp \mathfrak{h}_2 \stackrel{\text{def}}{=} \mathfrak{h}_1 \perp \mathfrak{h}_2$.

Syntax and semantics for *n*SL

- Quantified variables $FVAR = \{u_1, u_2, u_3, \ldots\}.$
- Expressions: $e := x_i \mid u_i$
- Atomic formulae: $\pi ::= e = e' \mid e \hookrightarrow e_1, \dots, e_n \mid emp$
- Formulae in nSL

$$\phi ::= \bot \mid \pi \mid \phi \land \psi \mid \neg \phi \mid \phi * \psi \mid \phi \twoheadrightarrow \psi \mid \exists \ \mathsf{u}_i \ \phi$$

- $(\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{f}} \mathtt{emp} \stackrel{\mathsf{def}}{\Leftrightarrow} \mathtt{dom}(\mathfrak{h}) = \varnothing.$
- $(\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{f}} e = e' \stackrel{\text{def}}{\Leftrightarrow} [e] = [e'], \text{ with } [\mathfrak{x}_i] \stackrel{\text{def}}{=} \mathfrak{s}(\mathfrak{x}_i) \text{ and } [\mathfrak{u}_j] \stackrel{\text{def}}{=} \mathfrak{f}(\mathfrak{u}_j).$
- $(\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{f}} e \hookrightarrow e_1,\ldots,e_n \stackrel{\mathsf{def}}{\Leftrightarrow} \mathfrak{h}([e]) = ([e_1],\ldots,[e_n]).$

Semantics for nSL

- $(\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{f}} \phi_1 * \phi_2 \stackrel{\text{def}}{\Leftrightarrow} \mathfrak{h} = \mathfrak{h}_1 \boxplus \mathfrak{h}_2, (\mathfrak{s},\mathfrak{h}_1) \models_{\mathfrak{f}} \phi_1, (\mathfrak{s},\mathfrak{h}_2) \models_{\mathfrak{f}} \phi_2$ for some $\mathfrak{h}_1,\mathfrak{h}_2$.
- $(\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{f}} \phi_1 \phi_2 \stackrel{\text{def}}{\Leftrightarrow} \text{ for all } \mathfrak{h}', \text{ if } \mathfrak{h} \perp \mathfrak{h}' \text{ and } (\mathfrak{s},\mathfrak{h}') \models_{\mathfrak{f}} \phi_1 \text{ then } (\mathfrak{s},\mathfrak{h} \sqcup \mathfrak{h}') \models_{\mathfrak{f}} \phi_2.$
- $(\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{f}} \exists \ u_j \ \phi \stackrel{\text{def}}{\Leftrightarrow} \ \text{there is } \mathfrak{l} \in \mathbb{N} \ \text{such that} \ (\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{f}'} \phi \ \text{where} \ \mathfrak{f}' = \mathfrak{f}[u_j \mapsto \mathfrak{l}] \ \text{is the assignment equal to} \ \mathfrak{f} \ \text{except} \ \text{that} \ u_i \ \text{takes the value} \ \mathfrak{l}.$
- Satisfiability problem:

input: formula ϕ in nSL

question: are there $(\mathfrak{s},\mathfrak{h})$ and \mathfrak{f} such that $(\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{f}} \phi$?

Satisfiability in fragments of *n*SL

- nSL: n record fields, unrestricted quantification
- nSLi: n record fields, at most i quantified variables
- nSL0 decidable and PSPACE-complete [Calcagno et al., 01]
- nSL undecidable for n ≥ 2, by encoding finitary SAT of classical logic with a single binary relation [Calcagno et al., 01]
- 1SL and 1SL(-*) undecidable [Brochenin, Demri & Lozes 08] by reduction to WSOL
- 1SL2 undecidable [Demri & Deters, submitted] by reduction to Minsky machines
- Our focus is on 1SL1: decidability and complexity

Summary of our contributions on 1SL1

- 1SL1 = one record, one quantified var., q program vars.
- decomposition of heaps: core, loops, predecessors...
- given a bound α , a finite set of test formulae Test α
 - test the structure of the core + cardinality constraints
 - SAT of Boolean comb. of $Test_{\alpha}$ is NP-complete
- if two heaps cannot be distinguished by $Test_{\alpha}$, they cannot be distinguished by any ϕ s.t. $th(q, \phi) \leq \alpha$
- ϕ (with $th(q,\phi) \leq \alpha$) equiv. to Bool. comb. of $Test_{\alpha}$
- model check w.r.t. equiv. classes of heaps (w.r.t. $Test_{\alpha}$)
- give an abstract representation for these classes
- PSPACE algorithm for abstract MC and SAT

Separation Logic 1SL1

Memory states (one field)

- Memory state (\$\sigma\$, \$\theta\$):
 - Store $\mathfrak{s}: PVAR \to \mathbb{N}$.

Specialization for 1SL1 (one field, one quantified variable)

- Expressions: $e := x_i \mid u$
- Atomic formulae: $\pi ::= e = e' \mid e \hookrightarrow e' \mid emp$
- Formulae in 1SL1

- $(\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{l}} emp \stackrel{\mathsf{def}}{\Leftrightarrow} dom(\mathfrak{h}) = \emptyset.$
- $(\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{l}} e = e' \stackrel{\text{def}}{\Leftrightarrow} [e] = [e'], \text{ with } [x_i] \stackrel{\text{def}}{=} \mathfrak{s}(x_i) \text{ and } [u] \stackrel{\text{def}}{=} \mathfrak{l}.$
- $\bullet \ (\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{l}} \textbf{\textit{e}} \hookrightarrow \textbf{\textit{e}}' \ \stackrel{\mathsf{def}}{\Leftrightarrow} \ [\textbf{\textit{e}}] \in \mathrm{dom}(\mathfrak{h}) \ \mathrm{and} \ \mathfrak{h}([\textbf{\textit{e}}]) = [\textbf{\textit{e}}'].$

13

Semantics for 1SL1

- $(\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{l}} \phi_1 * \phi_2 \stackrel{\text{def}}{\Leftrightarrow} \mathfrak{h} = \mathfrak{h}_1 \boxplus \mathfrak{h}_2, (\mathfrak{s},\mathfrak{h}_1) \models_{\mathfrak{l}} \phi_1, (\mathfrak{s},\mathfrak{h}_2) \models_{\mathfrak{l}} \phi_2$ for some $\mathfrak{h}_1,\mathfrak{h}_2$.
- $(\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{l}} \phi_1 \twoheadrightarrow \phi_2 \stackrel{\text{def}}{\Leftrightarrow} \text{ for all } \mathfrak{h}', \text{ if } \mathfrak{h} \perp \mathfrak{h}' \text{ and } (\mathfrak{s},\mathfrak{h}') \models_{\mathfrak{l}} \phi_1 \text{ then } (\mathfrak{s},\mathfrak{h} \boxplus \mathfrak{h}') \models_{\mathfrak{l}} \phi_2.$
- $(\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{l}} \exists u \phi \stackrel{\text{def}}{\Leftrightarrow} \text{there is } \mathfrak{l}' \in \mathbb{N} \text{ such that } (\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{l}'} \phi.$
- Satisfiability problem:

input: formula ϕ in 1SL1 question: are there $(\mathfrak{s},\mathfrak{h})$ and \mathfrak{l} such that $(\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{l}} \phi$?

• Between 1SL0 (PSPACE) and 1SL2 (undecidable)

Simple properties stated in 1SL1

• The domain of the heap has at least k elements: $\neg emp * \cdots * \neg emp (k \text{ times}).$

• The variable x_i is allocated in the heap: $alloc(x_i) \stackrel{\text{def}}{=} (x_i \hookrightarrow x_i) - \bot$.

• The variable x_i points to a location that is a loop: toloop(x_i) $\stackrel{\text{def}}{=} \exists u (x_i \hookrightarrow u \land u \hookrightarrow u)$.

• The variable x_i points to a location that is allocated: $toalloc(x_i) \stackrel{\text{def}}{=} \exists u (x_i \hookrightarrow u \land alloc(u)).$

Separation Logic 1SL1

More properties

• Variables x_i and x_j point to a shared location:

$$conv(x_i, x_i) \stackrel{\text{def}}{=} \exists u (x_i \hookrightarrow u \land x_j \hookrightarrow u).$$

• there is a location between x_i and x_j : inbetween $(x_i, x_j) \stackrel{\text{def}}{=} \exists u \ (x_i \hookrightarrow u \land u \hookrightarrow x_i).$

What Else?

Partition one: loops, predecessors, etc.

- $\operatorname{pred}(\mathfrak{s}, \mathfrak{h}) \stackrel{\text{def}}{=} \bigcup_{i} \operatorname{pred}(\mathfrak{s}, \mathfrak{h}, i)$ with $\operatorname{pred}(\mathfrak{s}, \mathfrak{h}, i) \stackrel{\text{def}}{=} \{ \mathfrak{l}' : \mathfrak{h}(\mathfrak{l}') = \mathfrak{s}(\mathbf{x}_i) \}$ for every $i \in [1, q]$.
- $loop(\mathfrak{s},\mathfrak{h}) \stackrel{\text{def}}{=} \{ \mathfrak{l} \in dom(\mathfrak{h}) : \mathfrak{h}(\mathfrak{l}) = \mathfrak{l} \}.$
- $\operatorname{rem}(\mathfrak{s},\mathfrak{h}) \stackrel{\text{def}}{=} \operatorname{dom}(\mathfrak{h}) \setminus (\operatorname{pred}(\mathfrak{s},\mathfrak{h}) \cup \operatorname{loop}(\mathfrak{s},\mathfrak{h})).$
- $dom(\mathfrak{h}) = rem(\mathfrak{s}, \mathfrak{h}) \oplus (pred(\mathfrak{s}, \mathfrak{h}) \cup loop(\mathfrak{s}, \mathfrak{h})).$

Partition two: introducing the core

- $\operatorname{ref}(\mathfrak{s},\mathfrak{h})\stackrel{\text{def}}{=}\operatorname{dom}(\mathfrak{h}) \cap \mathfrak{s}(\mathcal{V}); \operatorname{acc}(\mathfrak{s},\mathfrak{h})\stackrel{\text{def}}{=}\operatorname{dom}(\mathfrak{h}) \cap \mathfrak{h}(\mathfrak{s}(\mathcal{V})).$
- $\heartsuit(\mathfrak{s},\mathfrak{h}) \stackrel{\mathsf{def}}{=} \operatorname{ref}(\mathfrak{s},\mathfrak{h}) \cup \operatorname{acc}(\mathfrak{s},\mathfrak{h}); \overline{\heartsuit}(\mathfrak{s},\mathfrak{h}) \stackrel{\mathsf{def}}{=} \operatorname{dom}(\mathfrak{h}) \backslash \heartsuit(\mathfrak{s},\mathfrak{h}).$

Locations outside of the core

- Locations in the core are easy to identify thanks to program variables.
- $\operatorname{pred}_{\overline{\bigcirc}}(\mathfrak{s},\mathfrak{h},i) \stackrel{\mathsf{def}}{=} \operatorname{pred}(\mathfrak{s},\mathfrak{h},i) \backslash \bigcirc (\mathfrak{s},\mathfrak{h}).$
- $loop_{\overline{\bigcirc}}(\mathfrak{s},\mathfrak{h}) \stackrel{\text{def}}{=} loop(\mathfrak{s},\mathfrak{h}) \backslash \bigcirc (\mathfrak{s},\mathfrak{h}).$
- $\operatorname{rem}_{\overline{\mathbb{O}}}(\mathfrak{s},\mathfrak{h}) \stackrel{\text{def}}{=} \operatorname{rem}(\mathfrak{s},\mathfrak{h}) \backslash \mathbb{O}(\mathfrak{s},\mathfrak{h}).$
- $\bullet \ \ \, \boxed{ dom(\mathfrak{h}) = \heartsuit(\mathfrak{s},\mathfrak{h}) \uplus pred_{\overline{\heartsuit}}(\mathfrak{s},\mathfrak{h}) \uplus loop_{\overline{\heartsuit}}(\mathfrak{s},\mathfrak{h}) \uplus rem_{\overline{\heartsuit}}(\mathfrak{s},\mathfrak{h}). }$

Test formulae

- Equality $\stackrel{\text{def}}{=} \{ \mathbf{x}_i = \mathbf{x}_j \mid i, j \in [1, q] \}.$
- Pattern $\stackrel{\text{def}}{=}$ $\{x_i \hookrightarrow x_j, \operatorname{conv}(x_i, x_j), \operatorname{inbetween}(x_i, x_j) \mid i, j \in [1, q]\}$ $\cup \{\operatorname{toalloc}(x_i), \operatorname{toloop}(x_i), \operatorname{alloc}(x_i) \mid i \in [1, q]\}.$
- Extra^u $\stackrel{\text{def}}{=}$ {u \hookrightarrow u, alloc(u)} \cup {x_i = u, x_i \hookrightarrow u, u \hookrightarrow x_i | $i \in [1, q]$ }.
- Size $_{\alpha} \stackrel{\text{def}}{=} \{ \# \operatorname{pred}_{\overline{\heartsuit}}^{\underline{i}} \ge k \mid i \in [1, q], k \in [1, \alpha] \}$ $\cup \{ \# \operatorname{loop}_{\overline{\heartsuit}} \ge k, \# \operatorname{rem}_{\overline{\heartsuit}} \ge k \mid k \in [1, \alpha] \}.$
- Test_{α} $\stackrel{\text{def}}{=}$ Equality \cup Pattern \cup Size_{α} \cup Extra^u \cup { \bot }.

Counting loops outside of the core

- Needed for expressing test formulae in 1SL1!
- $T \stackrel{\text{def}}{=} \{ \text{alloc}(x_1), \dots, \text{alloc}(x_q) \} \cup \{ \text{toalloc}(x_1), \dots, \text{toalloc}(x_q) \}.$
- $f: T \to \{0, 1\}.$

$$\phi_{\mathfrak{f}}\stackrel{\mathsf{def}}{=}\bigwedge\{\psi\mid\psi\in\mathtt{T}\;\mathsf{and}\;\mathfrak{f}(\psi)=1\}\wedge\bigwedge\{\neg\psi\mid\psi\in\mathtt{T}\;\mathsf{and}\;\mathfrak{f}(\psi)=0\}$$

- $\bullet \ \ \# \, \mathsf{loop}_{\overline{\bigtriangledown}} \geqslant \mathsf{k} \stackrel{\mathsf{def}}{=} \bigvee_{\mathfrak{f}} \phi_{\mathfrak{f}} \wedge \left(\phi_{\mathfrak{f}}^{\mathsf{pos}} * \left(\# \, \mathsf{loop} \geqslant \mathsf{k} \right) \right) \, \mathsf{with}$
 - ϕ_f^{pos} = the positive part of ϕ_f .
 - $\# \text{loop} \ge k \stackrel{\text{def}}{=} (\exists u \ u \hookrightarrow u) * \cdots * (\exists u \ u \hookrightarrow u) (k \text{ times}).$

Deciding satisfiability for test formulae

- Satisfiability of conjunctions of $Test^u_\alpha/\neg Test^u_\alpha$ can be checked in polynomial time (with bounds in binary).
- Polynomial-time decision based on a saturation algorithm (see rules)

$$\frac{\phi \vdash x_i \hookrightarrow x \quad \phi \vdash x \hookrightarrow y \quad \phi \vdash x = y}{\phi \vdash \text{toloop}(x_i)}$$

$$\frac{\phi \vdash \text{conv}(x_i, x_j) \quad \phi \vdash \text{toloop}(x_i)}{\phi \vdash \text{toloop}(x_j)}$$

$$\frac{\phi \vdash \neg \text{alloc}(x_i)}{\phi \vdash \neg \text{toloop}(x_i)}$$

• Satisfiability problem for Boolean combinations of test formulae in the set $\bigcup_{\alpha>1} \operatorname{Test}_{\alpha}^{\mathrm{u}}$ is NP-complete.

Expressive Completeness

Memory threshold

- for any formula of 1SL1 with at most q program variables
- $th(q, \phi) \stackrel{\text{def}}{=} 1$ for every atomic formula ϕ .
- $\operatorname{th}(q, \phi_1 \wedge \phi_2) \stackrel{\text{def}}{=} \max(\operatorname{th}(q, \phi_1), \operatorname{th}(q, \phi_2)).$
- $\operatorname{th}(q, \neg \phi_1) \stackrel{\text{def}}{=} \operatorname{th}(q, \phi_1)$ and $\operatorname{th}(q, \exists \ \mathsf{u} \ \phi_1) \stackrel{\text{def}}{=} \operatorname{th}(q, \phi_1)$.
- $\operatorname{th}(q, \phi_1 * \phi_2) \stackrel{\text{def}}{=} \operatorname{th}(q, \phi_1) + \operatorname{th}(q, \phi_2).$
- $\operatorname{th}(q, \phi_1 * \phi_2) \stackrel{\text{def}}{=} q + \max(\operatorname{th}(q, \phi_1), \operatorname{th}(q, \phi_2)).$
- For all ϕ built over $\{x_1, \ldots, x_q\}$, $1 \leq \text{th}(q, \phi) \leq q \times |\phi|$.

α -equivalence, correctness of abstraction

• α -equivalence: indistinguishability with respect to test formula $\psi \in \text{Test}^{\text{u}}_{\alpha}$:

$$(\mathfrak{s},\mathfrak{h},\mathfrak{l}) \simeq_{\alpha} (\mathfrak{s}',\mathfrak{h}',\mathfrak{l}')$$
 whenever $(\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{l}} \psi$ iff $(\mathfrak{s}',\mathfrak{h}') \models_{\mathfrak{l}'} \psi$

• Cardinality constraints are precise up to α .

If
$$[(\mathfrak{s},\mathfrak{h},\mathfrak{l})\simeq_{\alpha}(\mathfrak{s}',\mathfrak{h}',\mathfrak{l}')]$$

then $[(\mathfrak{s},\mathfrak{h})\vDash_{\mathfrak{l}}\phi \text{ iff } (\mathfrak{s}',\mathfrak{h}')\vDash_{\mathfrak{l}'}\phi]$
for any ϕ s.t. $\operatorname{th}(q,\phi)\leqslant \alpha$

• Hence formulae of threshold below α do not distinguish more memory states than those formulae in Test^u_{α}

Quantifier elimination

- Any ϕ in 1SL1 (with q program variables) is equivalent to a Boolean combination ϕ' of test formulae in $Test_{th(q,\phi)}^{u}$.
- $\alpha = \operatorname{th}(\boldsymbol{q}, \phi)$.

•
$$\mathcal{S}(\mathfrak{s},\mathfrak{h},\mathfrak{l}) \stackrel{\mathsf{def}}{=} \left[\begin{array}{cc} \{\psi \mid \psi \in \mathtt{Test}^\mathtt{u}_\alpha \ \mathsf{and} \ (\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{l}} \psi \} \\ \cup \ \{\neg\psi \mid \psi \in \mathtt{Test}^\mathtt{u}_\alpha \ \mathsf{and} \ (\mathfrak{s},\mathfrak{h}) \not\models_{\mathfrak{l}} \psi \} \end{array} \right]$$

- Finiteness of $Test^u_\alpha$ entails $\mathcal{S}(\mathfrak{s},\mathfrak{h},\mathfrak{l})$ is finite and $\bigwedge \mathcal{S}(\mathfrak{s},\mathfrak{h},\mathfrak{l})$ is a well-defined atom.
- $(\mathfrak{s}',\mathfrak{h}') \models_{\mathfrak{l}'} \bigwedge \mathcal{S}(\mathfrak{s},\mathfrak{h},\mathfrak{l}) \text{ iff } (\mathfrak{s},\mathfrak{h},\mathfrak{l}) \simeq_{\alpha} (\mathfrak{s}',\mathfrak{h}',\mathfrak{l}').$ $\mathcal{S}(\mathfrak{s},\mathfrak{h},\mathfrak{l}) \text{ characterizes } (\mathfrak{s},\mathfrak{h},\mathfrak{l}) \text{ up to } \alpha.$
- $\bigwedge S(\mathfrak{s}, \mathfrak{h}, \mathfrak{l})$ spans a finite domain.
- $\phi' \stackrel{\text{def}}{=} \bigvee \{ \bigwedge \mathcal{S}(\mathfrak{s}, \mathfrak{h}, \mathfrak{l}) \mid (\mathfrak{s}, \mathfrak{h}) \models_{\mathfrak{l}} \phi \}$ equivalent to ϕ .

non-constructive proof!

Corollaries

- Any satisfiable ϕ in 1SL1 has a polynomial-size model.
- 1SL2 is strictly more expressive than 1SL1.
- ullet Test $^{\mathrm{u}}_{lpha}$ formulae cannot distinguish the two models below

$$x_1 \to \bullet \to \bullet \to x_2$$
 $x_1 \to \bullet \to \bullet$ $x_2 \to x_2$

- hence neither can 1SL1.
- but 1SL2 can: $\exists u \exists v \ (x_1 \hookrightarrow u \land u \hookrightarrow v \land v \hookrightarrow x_2)$

Some remarks on MC and SAT

MC and SAT in 1SL1

• to check $(\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{l}} \phi_1 - \phi_2$ we need to verify:

$$(\mathfrak{s},\mathfrak{h}')\not\models_{\mathfrak{l}}\phi_{1}\ \ \text{or}\ \ (\mathfrak{s},\mathfrak{h}\uplus\mathfrak{h}')\models_{\mathfrak{l}}\phi_{2}\quad \boxed{\text{for any}}\ \mathfrak{h}'\perp\mathfrak{h}$$

- $(\mathfrak{s},\varnothing) \models_{\mathfrak{l}} \neg(\top * \neg \phi)$ iff there exists \mathfrak{h} s.t. $(\mathfrak{s},\mathfrak{h}) \models_{\mathfrak{l}} \phi$.
- $(\exists \mathfrak{h}, (\mathfrak{s}, \mathfrak{h}) \models_{\mathfrak{l}} \top * (\text{emp} \land \phi)) \text{ iff } (\mathfrak{s}, \emptyset) \models_{\mathfrak{l}} \phi$
- hence (MC) ← (SAT) in SL.
- for MC: transform the for any into finite quantification
- indeed, given α , the test formula Test^u α
 - are finitely many, as well as their Boolean combinations
 - hence only finitely many classes for $(\mathfrak{s},\mathfrak{h},\mathfrak{l})\simeq_{\alpha} (\mathfrak{s}',\mathfrak{h}',\mathfrak{l}')$
- any formula s.t. th(q, φ) ≤ α, the value of (s, h) ⊨_t φ only depends of the class of (s, h, t)
- transform (infinite) "for any" into (finite) "for any class"

Abstract memory states pprox atoms of Test $^{\mathrm{u}}_{lpha}$

$$l = 2, r = 2, p_1 = 1, p_2 = p_3 = p_4 = 0.$$

Abstract memory state: $\mathfrak{a} = ((V, E), \mathfrak{l}, \mathfrak{r}, \mathfrak{p}_1, \dots, \mathfrak{p}_q)$. $V_{\text{par}} \subseteq V$ partition of $\{x_1, \dots, x_q\}$.

Abstract Model Checking in 1SL1

- we then prove that abstraction "commutes" with MC
- we describe abstract composition/decomposition of heaps
- we present a MC algorithm on abstract memory states
- this MC algorithm runs in PSPACE
- PSPACE-hardness already holds for 1SL0
- hence MC in 1SL1 is PSPACE-complete
- the same complexity holds for SAT

Concluding remarks

- Quantifier elimination property for 1SL1 formulae.
- Conjunction of test formulae decidable in polynomial time.
- Satisfiability and model-checking problems for 1SL1 are PSPACE-complete.
- Also, restriction to q program variables in polynomial time.
- Possible extension with k > 1 record fields.

