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Separation logic

Introduced by Ishtiag, Reynolds, O’Hearn, Pym.

Extension of Hoare Logic by J.C. Reynolds with separating
connectives.

Reasoning about the heap with a strong form of locality
built-in.

¢ = 1 is true whenever the heap can be divided into two
disjoint parts, one satisfies ¢, the other one .

e ¢ 1) is true whenever ¢ is true for a (fresh) disjoint heap,
1 is true for the combined heap.
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Hoare triples

e Hoare triple: {¢} PROG {¢} (total correctness).

e Rule of constancy:

{¢} PROG {¢}
{¢ A ¢} PROG {¢ A '}

where no variable free in )’ is modified by PROG.

e Unsoundness of the rule of constancy with pointers:

{(Fz. x— z)} [x] :=4 {x— 4}

{Fz.x—>z)Ay—3}[x] =4{x—>4Any— 3}

(when x = y)
x — z: “memory has a unique memory cell x — z”
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When separation logic enters into the play

¢ Reparation with frame rule:

{¢} PROG {¢}
{¢ = ¢} PROG {¢p * ¢’}

where no variable free in 1)’ is modified by PROG.

e Strengthening precedent (SP)

¢ =" {¢'} PROG {¢}
{¢} PROG {9}

e Checking entailment/validity/satisfiability in separation logic
is a building block of the verification process.
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Memory states for nSL
(n record fields)

e Program variables PVAR = {x1, x2, x3, ...}

¢ Memory state:
e Store s : PVAR — Val.

e Heap b : Loc — val” with finite domain.
(Loc ={LTl,...},Vval = Nw Loc w {nil})

e Simplification: Loc = val = N (like low level memory).
e Disjoint heaps: dom(h1) n dom(h2) = & (noted h1 L by).

o When by L by, by wha = by w bo.
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Syntax and semantics for nSL

Quantified variables FVAR = {uq,up, us,...}.

Expressions: e ::= x; | u;

Atomic formulae: # :=e=¢€ | e— ey,...,€y | emp
Formulae in nSL
pr=L|m|ong| == |dxy|Tuj¢

e (s,b) =jemp & dom(h) = .

e=¢ &£ [e] = [¢], with [x;] € s(x;) and
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Semantics for nSL

o (5,h) b1 % dp S b =bywhy, (5,b1) =5 é1, (5,h2) Ff b2

for some b1, bo.

o (s,) Fj 1+ £ forall iy, ifh Ly and (s, b') = oy
then (s,b w b') =5 d2.

* (s,h) FjIuj ¢ £ there is [ € N such that (s,h) =5 ¢
where ' = f[u; — [] is the assignment equal to § except
that u; takes the value .

o Satisfiability problem:

input: formula ¢ in nSL
question: are there (s,h) and f such that (s, ) =; ¢?
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Satisfiability in fragments of nSL

nSL: n record fields, unrestricted quantification
nSLi: n record fields, at most i quantified variables
nSLO decidable and PSPACE-complete [Calcagno et al., 01]

nSL undecidable for n > 2, by encoding finitary SAT of
classical logic with a single binary relation [Calcagno et al., 01]

1SL and 1SL(-) undecidable [Brochenin, Demri & Lozes 08] by
reduction to WSOL

1SL2 undecidable [Demri & Deters, submitted] by reduction to
Minsky machines

Our focus is on 1SL1: decidabilty and complexity

Separation Logic in a Nutshell



Summary of our contributions on 1SL1

1SL1 = one record, one quantified var., q program vars.
decomposition of heaps: core, loops, predecessors...

given a bound «, a finite set of test formulae Test,,

o test the structure of the core + cardinality constraints
e SAT of Boolean comb. of Test,, is NP-complete

if two heaps cannot be distinguished by Test,, they
cannot be distinguished by any ¢ s.t. th(qg,¢) < «

¢ (with th(q, ¢) < «) equiv. to Bool. comb. of Test,
model check w.r.t. equiv. classes of heaps (w.r.t. Test,)
give an abstract representation for these classes
PSPACE algorithm for abstract MC and SAT
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Memory states (one field)

e Memory state (s, b):
e Store s : PVAR — N.

e Heap b : N — N with finite domain.
Graph of a unary function with finite domain.

e

- OF 0O

& & bs o
3
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Specialization for 1SL1
(one field, one quantified variable)

e Expressions: e ::= x; |

e Atomic formulae: 7 ::= e =€’ | | emp

e Formulae in 1SLA1

pru=Llm|orv|—¢losv|dp=+v|[Fug]

e (s,h) = emp £ dom(h) = &.

o (s,h) = e=¢€ & [e] = [¢], with [x;] £ s(x;) and [u] € L.

o (s.h) Fre— € £ [e] e dom(h) and h([e]) = [¢/].
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Semantics for 1SL1

o (5,h) it xda S h=hywhy, (5,01) b1, (5,h2) = do

for some b1, ho.

) = b1+ o = forall b/, ifh LB and (s, ) = ¢1 then
w b') = ¢2.

° (s,h
(s,
e (s,h)=Judd £ thereis I € N such that (s,b) Er .

o Satisfiability problem:

input: formula ¢ in 1SL1
question: are there (s,h) and [ such that (s, h) = ¢?

e Between 1SLO (PSPACE) and 1SL2 (undecidable)
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Simple properties stated in 1SL1

The domain of the heap has at least k elements:
—emp * - - - * —emp (K times).

The variable x; is allocated in the heap:
alloc(xy) = (x3 <> x3) = L.

The variable x; points to a location that is a loop:

toloop(x:) EJu (xj—>uAu=—u).

Xj

O—0O

The variable x; points to a location that is allocated:

toalloc(x:) T3 u (x; —u A alloc(u)).

Xj

O—0O—0
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More properties

» Variables x; and x; point to a shared location:

conv(x;, ;) LIy (xs>un X4 <> ).

X,O

%

» there is a location between x; and x;:

inbetween(x;, x;) 3y (2j = uAu—xj).

Xj X]
O—0O—0O
What Else?

Separation Logic 1SL1
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Partition one: loops, predecessors, etc.

e pred(s,b) o \J; pred(s

b, i) with
pred(s, b, 1) € {V - p(V) =5

(xj)} forevery ie[1,q].
e loop(s, h) £ {I e dom(p) : h(1) = [}.

e rem(s, bh) & dom(h)\(pred(s, h) U loop(s, h)).

dom(h) = rem(s, h) w (pred(s, h) v loop(s, h))‘
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Partition two: introducing the core
e ref(s,b) £ dom(h) n 5(V); ace(s, h) = dom(b) A h(s(V)).

o O(s,h) Eref(s, h) U ace(s,h); Vs, h) Z dom(h)\V(s, h).
X4
8 ﬁ

<© @ O
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Locations outside of the core

Locations in the core are easy to identify thanks to
program variables.

predg(s, b, I) = pred(57 b, I)\@(57 b)
100p®(57 h) = IOOp(S, h)\@(ﬁ, h)

remg (s, b) £ rem(s, h)\Q(s, h).

dom(h) = O(s, h) w preds(s, h) w loops(s, h) w remg(s, b).
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Test formulae

Equality = {x; = x| i,je[1,q]}.

Pattern &f
ql}

{xj— xj, conv(xi, x5), inbetween(x;,x;) | I,j € [1,
u{toalloc(xj),toloop(xj),alloc(xi) | i€ [1,q]}.

Extra® =
{u—>u,alloc(u)} u{xi=u,x;—>u,u—x;|ie[1,q]}.

def
Size, =

{#predl k|ie[1,q],ke[1,a]}
U{# loopg = k,# remg = k | ke [1,a]}.

Test! £ Equality uPatternu Size, UExtra®u {L}.
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Counting loops outside of the core
e Needed for expressing test formulae in 1SL1 !

o T {alloc(xy),...,alloc(xg)} U
{toalloc(x1),...,toalloc(xq)}.

e f:T—{0,1}.
o= A\{v [veTandfw) =1}a/\{~¢| ¢ e Tand f(v) = 0}

* # loopgy >k & Vi 65 A <¢>$OS % (# Loop > k)) with
* ¢}” =the positive part of ¢;.

e #loop=kE (Fuu—u) - (Juu— u) (k times).

Separation Logic 1SL1
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Deciding satisfiability for test formulae
 Satisfiability of conjunctions of Test},/—Test}, can be
checked in polynomial time (with bounds in binary).

¢ Polynomial-time decision based on a saturation algorithm
(see rules)

PEXj—x XDy obx=y
¢+ toloop(x;)

¢ = conv(x;,%j) ¢ toloop(x;)
¢ toloop(xy)
¢ = —alloc(x))
¢+ —toloop(x;)

o Satisfiability problem for Boolean combinations of test
formulae in the set | - Testy, is NP-complete.

Separation Logic 1SL1
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Expressive Completeness

Expressive Completeness
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Memory threshold

for any formula of 1SL1 with at most g program variables

th(q, ¢) £ 1 for every atomic formula ¢.

th(q, ¢1 A ¢2) = max(th(q, ¢1), th(q, ¢2)).
th(q7 _'¢1) d:ﬁ th(qv ¢1) and th(q7 Ju ¢1) d:ef th(q7 ¢1)
th(q, ¢1 * ¢2) £ th(q, ¢1) + th(q, ¢2).

th(q, ¢1 =+ ¢2) = g + max(th(q, ¢1),th(q, ¢2)).

For all ¢ built over {x1,...,xq}, 1 < th(q,¢) < g x |¢].

Expressive Completeness
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a-equivalence, correctness of abstraction

e o-equivalence: ’ indistinguishability \ with respect to test
formula ¢ € Test}:

(57 ha [) e (51’ hla [/) whenever (57 h) Fr @ZJ iff (5/7 h,) Fr QJZ)

¢ Cardinality constraints are precise up to a.

it |(s,0,0) ~a (5,1, 1)
then

[(s,b) ot (5',1) o 0

forany ¢ s.t. th(q,¢) < «

e Hence formulae of threshold below « do not distinguish
more memory states than those formulae in Testy,

Expressive Completeness
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Quantifier elimination

e Any ¢ in 1SL1 (with g program variables) is equivalent to a
Boolean combination ¢’ of test formulae in Testgh(q o)

e o =th(q,¢).

e S(s,b,1) & def {t [ ¥ € Testy and (s, h) = ¢}
u {—vY |y e Test? and (s,b) H ¥}

e Finiteness of Test}, entails S(s, b, [) is finite and
/\S(s, b, 1) is a well-defined atom.

b ( ':[’ /\S [] [ Iff( 7[]7[) o (5/1 blv[/)'
(5 b 9) characterlzes (s,h,0) up to a.

e AS(s,b,1) spans a|finite domain |.
o ' £ \/{AS(s.5.0) | (s.b) = 6} equivalent to 6.

non-constructive proof !
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Corollaries

Any satisfiable ¢ in 1SL1 has a polynomial-size model.
1SL2 is strictly more expressive than 1SL1.

Testg formulae cannot distinguish the two models below
X1 —> 0 —> 0 —> Xy ’ X1 —> 00— 0 o — X2

hence neither can 1SL1.

but 1SL2 can: Judv (x1 > u AUV AV x2)
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'Some remarks on MC and SAT|

Some remarks on MC and SAT
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MC and SAT in 1SL1

e to check (s, h) [ @1 = 2 we need to verify:

(5,0") 11 or (s,h b)) =g f)'if)

o (5,) =1 —(T = —¢) iff there exists h s.t. (s, ) = ¢.

(3b,(s,b) =( T = (emp A ¢)) iff (s, ) =1 ¢
hence (MC) «~~ (SAT) in SL.

for MC: transform the into finite quantification

indeed, given «, the test formula Test},

o are finitely many, as well as their Boolean combinations

e hence only finitely many classes for (s, b, ) ~, (s',b',1)
e any formula s.t. th(q, ¢) < «, the value of (s, h) = ¢ only
depends of the class of (s, b, [)

e transform (infinite) "for any” into (finite) “for any class”
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Abstract memory states ~ atoms of Test}

6 {xa}
Céj) g/}g C {xs} {x2}
“® g) /

{x1}

<@ @ O <of‘o

[=2,v=2,p1=1,po=p3 =p4 =0.

Abstract memory state: a = ((V,E), L, t,p1,...,pq).
Voar € V partition of {x1,...,xq}.

Some remarks on MC and SAT

20



Abstract Model Checking in 1SL1

we then prove that abstraction "commutes” with MC
we describe abstract composition/decomposition of heaps

we present a MC algorithm on abstract memory states

this | MC algorithm runs in PSPACE

PSPACE-hardness already holds for 1SLO
hence MC in 1SL1 is PSPACE-complete

the same complexity holds for SAT
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Concluding remarks

Quantifier elimination property for 1SL1 formulae.
Conjunction of test formulae decidable in polynomial time.

Satisfiability and model-checking problems for 1SL1 are
PSPACE-complete.

Also, restriction to g program variables in polynomial time.

Possible extension with k > 1 record fields.
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