Separation Logic with
One Quantified Variable

D. Larchey-Wendling?

Joint work with S. Demri', D. Galmiche? and D. Méry?

TNYU-CNRS and 2LORIA-CNRS-UL

CSR, June 2014

Overview

@ Separation Logic in a Nutshell

@ Separation Logic 1SL1

@ Expressive Completeness

@ Some remarks on MC and SAT

Separation logic

Introduced by Ishtiag, Reynolds, O’Hearn, Pym.

Extension of Hoare Logic by J.C. Reynolds with separating
connectives.

Reasoning about the heap with a strong form of locality
built-in.

¢ = 1 is true whenever the heap can be divided into two
disjoint parts, one satisfies ¢, the other one .

e ¢ 1) is true whenever ¢ is true for a (fresh) disjoint heap,
1 is true for the combined heap.

Separation Logic in a Nutshell

Hoare triples

e Hoare triple: {¢} PROG {¢} (total correctness).

e Rule of constancy:

{¢} PROG {¢}
{¢ A ¢} PROG {¢ A '}

where no variable free in)’ is modified by PROG.

e Unsoundness of the rule of constancy with pointers:

{(Fz. x— z)} [x] :=4 {x— 4}

{Fz.x—>z)Ay—3}[x] =4{x—>4Any— 3}

(when x = y)
x — z: “memory has a unique memory cell x — z”

Separation Logic in a Nutshell

When separation logic enters into the play

¢ Reparation with frame rule:

{¢} PROG {¢}
{¢ = ¢} PROG {¢p * ¢’}

where no variable free in 1)’ is modified by PROG.

e Strengthening precedent (SP)

¢ =" {¢'} PROG {¢}
{¢} PROG {9}

e Checking entailment/validity/satisfiability in separation logic
is a building block of the verification process.

Separation Logic in a Nutshell

Memory states for nSL
(n record fields)

e Program variables PVAR = {x1, x2, x3, ...}

¢ Memory state:
e Store s : PVAR — Val.

e Heap b : Loc — val” with finite domain.
(Loc ={LTl,...},Vval = Nw Loc w {nil})

e Simplification: Loc = val = N (like low level memory).
e Disjoint heaps: dom(h1) n dom(h2) = & (noted h1 L by).

o When by L by, by wha = by w bo.

Separation Logic in a Nutshell

Syntax and semantics for nSL

Quantified variables FVAR = {uq,up, us,...}.

Expressions: e ::= x; | u;

Atomic formulae: # :=e=¢€ | e— ey,...,€y | emp
Formulae in nSL
pr=L|m|ong| == |dxy|Tuj¢

e (s,b) =jemp & dom(h) = .

e=¢ &£ [e] = [¢], with [x;] € s(x;) and

Separation Logic in a Nutshell

Semantics for nSL

o (5,h) b1 % dp S b =bywhy, (5,b1) =5 é1, (5,h2) Ff b2

for some b1, bo.

o (s,) Fj 1+ £ forall iy, ifh Ly and (s, b') = oy
then (s,b w b') =5 d2.

* (s,h) FjIuj ¢ £ there is [€ N such that (s,h) =5 ¢
where ' = f[u; — [] is the assignment equal to § except
that u; takes the value .

o Satisfiability problem:

input: formula ¢ in nSL
question: are there (s,h) and f such that (s,) =; ¢?

Separation Logic in a Nutshell

Satisfiability in fragments of nSL

nSL: n record fields, unrestricted quantification
nSLi: n record fields, at most i quantified variables
nSLO decidable and PSPACE-complete [Calcagno et al., 01]

nSL undecidable for n > 2, by encoding finitary SAT of
classical logic with a single binary relation [Calcagno et al., 01]

1SL and 1SL(-) undecidable [Brochenin, Demri & Lozes 08] by
reduction to WSOL

1SL2 undecidable [Demri & Deters, submitted] by reduction to
Minsky machines

Our focus is on 1SL1: decidabilty and complexity

Separation Logic in a Nutshell

Summary of our contributions on 1SL1

1SL1 = one record, one quantified var., q program vars.
decomposition of heaps: core, loops, predecessors...

given a bound «, a finite set of test formulae Test,,

o test the structure of the core + cardinality constraints
e SAT of Boolean comb. of Test,, is NP-complete

if two heaps cannot be distinguished by Test,, they
cannot be distinguished by any ¢ s.t. th(qg,¢) < «

¢ (with th(q, ¢) < «) equiv. to Bool. comb. of Test,
model check w.r.t. equiv. classes of heaps (w.r.t. Test,)
give an abstract representation for these classes
PSPACE algorithm for abstract MC and SAT

Separation Logic in a Nutshell 10

Separation Logic 1SL1

Separation Logic 1SL1

11

Memory states (one field)

e Memory state (s, b):
e Store s : PVAR — N.

e Heap b : N — N with finite domain.
Graph of a unary function with finite domain.

e

- OF 0O

& & bs o
3

Separation Logic 1SL1 12

Specialization for 1SL1
(one field, one quantified variable)

e Expressions: e ::= x; |

e Atomic formulae: 7 ::= e =€’ | | emp

e Formulae in 1SLA1

pru=Llm|orv|—¢losv|dp=+v|[Fug]

e (s,h) = emp £ dom(h) = &.

o (s,h) = e=¢€ & [e] = [¢], with [x;] £ s(x;) and [u] € L.

o (s.h) Fre— € £ [e] e dom(h) and h([e]) = [¢/].

Separation Logic 1SL1

13

Semantics for 1SL1

o (5,h) it xda S h=hywhy, (5,01) b1, (5,h2) = do

for some b1, ho.

) = b1+ o = forall b/, ifh LB and (s,) = ¢1 then
w b') = ¢2.

° (s,h
(s,
e (s,h)=Judd £ thereis I € N such that (s,b) Er .

o Satisfiability problem:

input: formula ¢ in 1SL1
question: are there (s,h) and [such that (s, h) = ¢?

e Between 1SLO (PSPACE) and 1SL2 (undecidable)

Separation Logic 1SL1

14

Simple properties stated in 1SL1

The domain of the heap has at least k elements:
—emp * - - - * —emp (K times).

The variable x; is allocated in the heap:
alloc(xy) = (x3 <> x3) = L.

The variable x; points to a location that is a loop:

toloop(x:) EJu (xj—>uAu=—u).

Xj

O—0O

The variable x; points to a location that is allocated:

toalloc(x:) T3 u (x; —u A alloc(u)).

Xj

O—0O—0

Separation Logic 1SL1

15

More properties

» Variables x; and x; point to a shared location:

conv(x;, ;) LIy (xs>un X4 <>).

X,O

%

» there is a location between x; and x;:

inbetween(x;, x;) 3y (2j = uAu—xj).

Xj X]
O—0O—0O
What Else?

Separation Logic 1SL1

16

Partition one: loops, predecessors, etc.

e pred(s,b) o \J; pred(s

b, i) with
pred(s, b, 1) € {V - p(V) =5

(xj)} forevery ie[1,q].
e loop(s, h) £ {I e dom(p) : h(1) = [}.

e rem(s, bh) & dom(h)\(pred(s, h) U loop(s, h)).

dom(h) = rem(s, h) w (pred(s, h) v loop(s, h))‘

Separation Logic 1SL1

17

Partition two: introducing the core
e ref(s,b) £ dom(h) n 5(V); ace(s, h) = dom(b) A h(s(V)).

o O(s,h) Eref(s, h) U ace(s,h); Vs, h) Z dom(h)\V(s, h).
X4
8 ﬁ

<© @ O

Separation Logic 1SL1

18

Locations outside of the core

Locations in the core are easy to identify thanks to
program variables.

predg(s, b, I) = pred(57 b, I)\@(57 b)
100p®(57 h) = IOOp(S, h)\@(ﬁ, h)

remg (s, b) £ rem(s, h)\Q(s, h).

dom(h) = O(s, h) w preds(s, h) w loops(s, h) w remg(s, b).

Separation Logic 1SL1

19

Test formulae

Equality = {x; = x| i,je[1,q]}.

Pattern &f
ql}

{xj— xj, conv(xi, x5), inbetween(x;,x;) | I,j € [1,
u{toalloc(xj),toloop(xj),alloc(xi) | i€ [1,q]}.

Extra® =
{u—>u,alloc(u)} u{xi=u,x;—>u,u—x;|ie[1,q]}.

def
Size, =

{#predl k|ie[1,q],ke[1,a]}
U{# loopg = k,# remg = k | ke [1,a]}.

Test! £ Equality uPatternu Size, UExtra®u {L}.

Separation Logic 1SL1

20

Counting loops outside of the core
e Needed for expressing test formulae in 1SL1 !

o T {alloc(xy),...,alloc(xg)} U
{toalloc(x1),...,toalloc(xq)}.

e f:T—{0,1}.
o= A\{v [veTandfw) =1}a/\{~¢| ¢ e Tand f(v) = 0}

* # loopgy >k & Vi 65 A <¢>$OS % (# Loop > k)) with
* ¢}” =the positive part of ¢;.

e #loop=kE (Fuu—u) - (Juu— u) (k times).

Separation Logic 1SL1

21

Deciding satisfiability for test formulae
 Satisfiability of conjunctions of Test},/—Test}, can be
checked in polynomial time (with bounds in binary).

¢ Polynomial-time decision based on a saturation algorithm
(see rules)

PEXj—x XDy obx=y
¢+ toloop(x;)

¢ = conv(x;,%j) ¢ toloop(x;)
¢ toloop(xy)
¢ = —alloc(x))
¢+ —toloop(x;)

o Satisfiability problem for Boolean combinations of test
formulae in the set | - Testy, is NP-complete.

Separation Logic 1SL1

22

Expressive Completeness

Expressive Completeness

23

Memory threshold

for any formula of 1SL1 with at most g program variables

th(q, ¢) £ 1 for every atomic formula ¢.

th(q, ¢1 A ¢2) = max(th(q, ¢1), th(q, ¢2)).
th(q7 _'¢1) d:ﬁ th(qv ¢1) and th(q7 Ju ¢1) d:ef th(q7 ¢1)
th(q, ¢1 * ¢2) £ th(q, ¢1) + th(q, ¢2).

th(q, ¢1 =+ ¢2) = g + max(th(q, ¢1),th(q, ¢2)).

For all ¢ built over {x1,...,xq}, 1 < th(q,¢) < g x |¢].

Expressive Completeness

24

a-equivalence, correctness of abstraction

e o-equivalence: ’ indistinguishability \ with respect to test
formula ¢ € Test}:

(57 ha [) e (51’ hla [/) whenever (57 h) Fr @ZJ iff (5/7 h,) Fr QJZ)

¢ Cardinality constraints are precise up to a.

it |(s,0,0) ~a (5,1, 1)
then

[(s,b) ot (5',1) o 0

forany ¢ s.t. th(q,¢) < «

e Hence formulae of threshold below « do not distinguish
more memory states than those formulae in Testy,

Expressive Completeness

25

Quantifier elimination

e Any ¢ in 1SL1 (with g program variables) is equivalent to a
Boolean combination ¢’ of test formulae in Testgh(q o)

e o =th(q,¢).

e S(s,b,1) & def {t [¥ € Testy and (s, h) = ¢}
u {—vY |y e Test? and (s,b) H ¥}

e Finiteness of Test}, entails S(s, b, [) is finite and
/\S(s, b, 1) is a well-defined atom.

b (':[’ /\S [] [Iff(7[]7[) o (5/1 blv[/)'
(5 b 9) characterlzes (s,h,0) up to a.

e AS(s,b,1) spans a|finite domain |.
o ' £ \/{AS(s.5.0) | (s.b) = 6} equivalent to 6.

non-constructive proof !

Expressive Completeness

26

Corollaries

Any satisfiable ¢ in 1SL1 has a polynomial-size model.
1SL2 is strictly more expressive than 1SL1.

Testg formulae cannot distinguish the two models below
X1 —> 0 —> 0 —> Xy ’ X1 —> 00— 0 o — X2

hence neither can 1SL1.

but 1SL2 can: Judv (x1 > u AUV AV x2)

Expressive Completeness

27

'Some remarks on MC and SAT|

Some remarks on MC and SAT

28

MC and SAT in 1SL1

e to check (s, h) [@1 = 2 we need to verify:

(5,0") 11 or (s,h b)) =g f)'if)

o (5,) =1 —(T = —¢) iff there exists h s.t. (s,) = ¢.

(3b,(s,b) =(T = (emp A ¢)) iff (s,) =1 ¢
hence (MC) «~~ (SAT) in SL.

for MC: transform the into finite quantification

indeed, given «, the test formula Test},

o are finitely many, as well as their Boolean combinations

e hence only finitely many classes for (s, b,) ~, (s',b',1)
e any formula s.t. th(q, ¢) < «, the value of (s, h) = ¢ only
depends of the class of (s, b, [)

e transform (infinite) "for any” into (finite) “for any class”

Some remarks on MC and SAT

20

Abstract memory states ~ atoms of Test}

6 {xa}
Céj) g/}g C {xs} {x2}
“® g) /

{x1}

<@ @ O <of‘o

[=2,v=2,p1=1,po=p3 =p4 =0.

Abstract memory state: a = ((V,E), L, t,p1,...,pq).
Voar € V partition of {x1,...,xq}.

Some remarks on MC and SAT

20

Abstract Model Checking in 1SL1

we then prove that abstraction "commutes” with MC
we describe abstract composition/decomposition of heaps

we present a MC algorithm on abstract memory states

this | MC algorithm runs in PSPACE

PSPACE-hardness already holds for 1SLO
hence MC in 1SL1 is PSPACE-complete

the same complexity holds for SAT

Some remarks on MC and SAT

31

Concluding remarks

Quantifier elimination property for 1SL1 formulae.
Conjunction of test formulae decidable in polynomial time.

Satisfiability and model-checking problems for 1SL1 are
PSPACE-complete.

Also, restriction to g program variables in polynomial time.

Possible extension with k > 1 record fields.

Some remarks on MC and SAT

129

	Separation Logic in a Nutshell
	Separation Logic 1SL1
	Expressive Completeness
	Some remarks on MC and SAT

