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An MTDD is a triple A = (N,P ,S) with N a finite set of variables, which
is partitioned into levels N0,N1, . . . ,Nh = {S} (S = start variable).

P contains for every A ∈ Ni exactly one rule of the following form:

◮ A →

(

B C

D E

)

with B ,C ,D,E ∈ Ni−1 (if 1 ≤ i ≤ h)

◮ A → a with a ∈ S (if i = 0)
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Fix a finitely generated commutative monoid (S ,+) (e.g. S = N).
If necessary, we have a multiplication · so that (S ,+, ·) is a semiring.

Definition MTDD (Fujita, McGeer, Yang 1997)

An MTDD is a triple A = (N,P ,S) with N a finite set of variables, which
is partitioned into levels N0,N1, . . . ,Nh = {S} (S = start variable).

P contains for every A ∈ Ni exactly one rule of the following form:

◮ A →

(

B C

D E

)

with B ,C ,D,E ∈ Ni−1 (if 1 ≤ i ≤ h)

◮ A → a with a ∈ S (if i = 0)

A produces a (2h × 2h)-matrix denoted by val(A).

The height of A is h, and its size if |N|.
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Multi-Terminal Decision Diagrams

Example: Hadamard matrix Hn

H0 → 1 H ′

0 → −1

Hi →

(

Hi−1 Hi−1

Hi−1 H ′

i−1

)

H ′

i →

(

H ′

i−1 H ′

i−1

H ′

i−1 Hi−1

)

(1 ≤ i ≤ n)
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Matrix Multiplication

Observation

For any semiring with at least two elements there exist MTDDs An and Bn

with:

◮ An and Bn have size O(n).

◮ An and Bn have heigth n.

◮ val(An) · val(Bn) cannot be represented by an MTDD of size < 2n.
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Observation

For any semiring with at least two elements there exist MTDDs An and Bn

with:

◮ An and Bn have size O(n).

◮ An and Bn have heigth n.

◮ val(An) · val(Bn) cannot be represented by an MTDD of size < 2n.

Proof: (for the semiring (N,+, ·))









1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1









·









1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1









=









1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
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Multi-Terminal Decision Diagrams with Addition

Definition MTDD+

An MTDD+ is defined as an MTDD but in addition may contain variables,
whose associated rules have the form

A → B + C (matrix addition)

Here A,B ,C belong to the same level (and hence produce matrices of the
same dimension).

The addition rules must be acyclic.
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Multi-Terminal Decision Diagrams with Addition

Example

B0 → 1, Bj →

(

Bj−1 + Bj−1 Bj−1 + Bj−1

Bj−1 + Bj−1 Bj−1 + Bj−1

)

(1 ≤ j ≤ n)

A0 → 1, Aj →

(

Aj−1 Aj−1

Aj−1 + Bj−1 Aj−1 + Bj−1

)

(1 ≤ j ≤ n).
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Multi-Terminal Decision Diagrams with Addition

Example

B0 → 1, Bj →

(

Bj−1 + Bj−1 Bj−1 + Bj−1

Bj−1 + Bj−1 Bj−1 + Bj−1

)

(1 ≤ j ≤ n)

A0 → 1, Aj →

(

Aj−1 Aj−1

Aj−1 + Bj−1 Aj−1 + Bj−1

)

(1 ≤ j ≤ n).

Aj derives to the (2j × 2j)-matrix















1 1 . . . 1 1
2 2 . . . 2 2
3 3 . . . 3 3

...
2j 2j . . . 2j 2j
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Matrix multiplication for MTDD+

Proposition

For given MTDD+ A and B of the same height one can compute in time
O(|A| · |B|) an MTDD+ P of size O(|A| · |B|) with

val(P) = val(A) · val(B).
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O(|A| · |B|) an MTDD+ P of size O(|A| · |B|) with

val(P) = val(A) · val(B).

Proof: Let A and B be variables of A and B, resp., of the same level.

◮ If A → A1 + A2 then A · B → (A1 · B) + (A2 · B)
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Matrix multiplication for MTDD+

Proposition

For given MTDD+ A and B of the same height one can compute in time
O(|A| · |B|) an MTDD+ P of size O(|A| · |B|) with

val(P) = val(A) · val(B).

Proof: Let A and B be variables of A and B, resp., of the same level.

◮ If A → A1 + A2 then A · B → (A1 · B) + (A2 · B)

◮ If B → B1 + B2 then A · B → (A · B1) + (A · B2)

◮ If A →

(

A1,1 A1,2

A2,1 A2,2

)

and B →

(

B1,1 B1,2

B2,1 B2,2

)

then
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Matrix multiplication for MTDD+

Proposition

For given MTDD+ A and B of the same height one can compute in time
O(|A| · |B|) an MTDD+ P of size O(|A| · |B|) with

val(P) = val(A) · val(B).

Proof: Let A and B be variables of A and B, resp., of the same level.

◮ If A → A1 + A2 then A · B → (A1 · B) + (A2 · B)

◮ If B → B1 + B2 then A · B → (A · B1) + (A · B2)

◮ If A →

(

A1,1 A1,2

A2,1 A2,2

)

and B →

(

B1,1 B1,2

B2,1 B2,2

)

then

A · B →

(

A1,1B1,1 + A1,2B2,1 A1,1B1,2 + A1,2B2,2

A2,1B1,1 + A2,2B2,1 A2,1B1,2 + A2,2B2,2

)

.
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Equality checking for MTDD+

Let S = (S ,+) be a commutative monoid finitely generated by Γ.
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INPUT: MTDD+ A1, A2 where only generators from Γ appear in rules.

QUESTION: Does val(A1) = val(A2) hold?
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Theorem

If S is cancellative, then EQ(S) ∈ P, otherwise it is coNP-complete.
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QUESTION: Does val(A1) = val(A2) hold?

Theorem
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Proof sketch:

Non-cancellative case: Prove coNP-hardness using a reduction from the
complement of SUBSETSUM.
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Equality checking for MTDD+

Let S = (S ,+) be a commutative monoid finitely generated by Γ.

Let EQ(S) be the following problem:

INPUT: MTDD+ A1, A2 where only generators from Γ appear in rules.

QUESTION: Does val(A1) = val(A2) hold?

Theorem

If S is cancellative, then EQ(S) ∈ P, otherwise it is coNP-complete.

Proof sketch:

Non-cancellative case: Prove coNP-hardness using a reduction from the
complement of SUBSETSUM.

Cancellative case: A finitely generated commutative cancellative monoid
can be embedded into a finitely generated abelian group.

It suffices to consider the cases S = Z and S = Zn for n ≥ 2.
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Equality checking for MTDD+

Let Ai = (Ni ,Pi ,Si ).
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Equality checking for MTDD+

Let Ai = (Ni ,Pi ,Si ).

Start with the equation S1 − S2 = 0.

At each step, we store finitely linear equation system

λi ,1Ai ,1 + λi ,2Ai ,2 + · · · + λi ,ni
Ai ,ni

= 0 (1 ≤ i ≤ n)

where the Ai ,j ∈ N1 ∪ N2 produce matrices of the same dimension.
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Start with the equation S1 − S2 = 0.

At each step, we store finitely linear equation system

λi ,1Ai ,1 + λi ,2Ai ,2 + · · · + λi ,ni
Ai ,ni

= 0 (1 ≤ i ≤ n)

where the Ai ,j ∈ N1 ∪ N2 produce matrices of the same dimension.

Reduction:

◮ If there is a rule Ai ,j → Bi ,j + Ci ,j : Replace Ai ,j by Bi ,j + Ci ,j .
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Equality checking for MTDD+

Let Ai = (Ni ,Pi ,Si ).

Start with the equation S1 − S2 = 0.

At each step, we store finitely linear equation system

λi ,1Ai ,1 + λi ,2Ai ,2 + · · · + λi ,ni
Ai ,ni

= 0 (1 ≤ i ≤ n)

where the Ai ,j ∈ N1 ∪ N2 produce matrices of the same dimension.

Reduction:

◮ If there is a rule Ai ,j → Bi ,j + Ci ,j : Replace Ai ,j by Bi ,j + Ci ,j .

◮ If for all Ai ,j the rule has the form Ai ,j →

(

Bi ,j Ci ,j

Di ,j Ei ,j

)

:

Split every equation into four equations.
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Equality checking for MTDD+

Let Ai = (Ni ,Pi ,Si ).

Start with the equation S1 − S2 = 0.

At each step, we store finitely linear equation system

λi ,1Ai ,1 + λi ,2Ai ,2 + · · · + λi ,ni
Ai ,ni

= 0 (1 ≤ i ≤ n)

where the Ai ,j ∈ N1 ∪ N2 produce matrices of the same dimension.

Reduction:

◮ If there is a rule Ai ,j → Bi ,j + Ci ,j : Replace Ai ,j by Bi ,j + Ci ,j .

◮ If for all Ai ,j the rule has the form Ai ,j →

(

Bi ,j Ci ,j

Di ,j Ei ,j

)

:

Split every equation into four equations.

By eliminating linearly dependent equations we can bound the number of
equations.
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Hard problems for MTDD
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Hard problems for MTDD

Theorem (hardness of determinant)

It is PSPACE-complete to check whether det(val(A)) = 0 for a given
MTDD A over Z.
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Hard problems for MTDD

Theorem (hardness of determinant)

It is PSPACE-complete to check whether det(val(A)) = 0 for a given
MTDD A over Z.

Theorem (hardness of powering)

It is PSPACE-complete (coNP-complete) to check whether val(A)m = 0
for a given MTDD A over Z and a binary (unary) encoded number m.
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◮ All proofs use the fact that the adjacency matrix of the configuration
graph of a PSPACE-machine can be represented by a small MTDD.
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Hard problems for MTDD

Theorem (hardness of determinant)

It is PSPACE-complete to check whether det(val(A)) = 0 for a given
MTDD A over Z.

Theorem (hardness of powering)

It is PSPACE-complete (coNP-complete) to check whether val(A)m = 0
for a given MTDD A over Z and a binary (unary) encoded number m.

Remarks:

◮ Counting versions are complete for #PSPACE (resp., #P).

◮ All proofs use the fact that the adjacency matrix of the configuration
graph of a PSPACE-machine can be represented by a small MTDD.

This allows to mimic Toda’s proof for the fact that computing the
determinant and matrix powering for explicit matrices is #L-complete.
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Future work

◮ Compression of explicitly given matrices
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Future work

◮ Compression of explicitly given matrices

◮ Parallel algorithms
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