Processing Succinct Matrices and Vectors

Markus Lohrey and Manfred Schmidt-Schauß

Universität Siegen
June 10, 2014

Multi-Terminal Decision Diagrams (MTDD): A succinct description of a matrices

Multi-Terminal Decision Diagrams (MTDD): A succinct description of a matrices

Fix a finitely generated commutative monoid $(S,+)($ e.g. $S=\mathbb{N})$.

Multi-Terminal Decision Diagrams (MTDD): A succinct description of a matrices

Fix a finitely generated commutative monoid $(S,+)$ (e.g. $S=\mathbb{N}$). If necessary, we have a multiplication \cdot so that $(S,+, \cdot)$ is a semiring.

Multi-Terminal Decision Diagrams (MTDD): A succinct description of a matrices

Fix a finitely generated commutative monoid $(S,+)$ (e.g. $S=\mathbb{N}$). If necessary, we have a multiplication \cdot so that $(S,+, \cdot)$ is a semiring.

Definition MTDD (Fujita, McGeer, Yang 1997)

An MTDD is a triple $\mathbb{A}=(N, P, S)$ with N a finite set of variables, which is partitioned into levels $N_{0}, N_{1}, \ldots, N_{h}=\{S\}(S=$ start variable $)$.

Multi-Terminal Decision Diagrams (MTDD): A succinct description of a matrices

Fix a finitely generated commutative monoid $(S,+)$ (e.g. $S=\mathbb{N}$). If necessary, we have a multiplication \cdot so that $(S,+, \cdot)$ is a semiring.

Definition MTDD (Fujita, McGeer, Yang 1997)

An MTDD is a triple $\mathbb{A}=(N, P, S)$ with N a finite set of variables, which is partitioned into levels $N_{0}, N_{1}, \ldots, N_{h}=\{S\}(S=$ start variable $)$.
P contains for every $A \in N_{i}$ exactly one rule of the following form:

- $A \rightarrow\left(\begin{array}{cc}B & C \\ D & E\end{array}\right)$ with $B, C, D, E \in N_{i-1}($ if $1 \leq i \leq h)$
- $A \rightarrow a$ with $a \in S$ (if $i=0$)

Multi-Terminal Decision Diagrams (MTDD): A succinct description of a matrices

Fix a finitely generated commutative monoid $(S,+)$ (e.g. $S=\mathbb{N}$). If necessary, we have a multiplication \cdot so that $(S,+, \cdot)$ is a semiring.

Definition MTDD (Fujita, McGeer, Yang 1997)

An MTDD is a triple $\mathbb{A}=(N, P, S)$ with N a finite set of variables, which is partitioned into levels $N_{0}, N_{1}, \ldots, N_{h}=\{S\}(S=$ start variable $)$.
P contains for every $A \in N_{i}$ exactly one rule of the following form:

- $A \rightarrow\left(\begin{array}{cc}B & C \\ D & E\end{array}\right)$ with $B, C, D, E \in N_{i-1}$ (if $\left.1 \leq i \leq h\right)$
- $A \rightarrow a$ with $a \in S$ (if $i=0$)
\mathbb{A} produces a $\left(2^{h} \times 2^{h}\right)$-matrix denoted by $\operatorname{val}(\mathbb{A})$.

Multi-Terminal Decision Diagrams (MTDD): A succinct description of a matrices

Fix a finitely generated commutative monoid $(S,+)$ (e.g. $S=\mathbb{N}$). If necessary, we have a multiplication \cdot so that $(S,+, \cdot)$ is a semiring.

Definition MTDD (Fujita, McGeer, Yang 1997)

An MTDD is a triple $\mathbb{A}=(N, P, S)$ with N a finite set of variables, which is partitioned into levels $N_{0}, N_{1}, \ldots, N_{h}=\{S\}(S=$ start variable $)$.
P contains for every $A \in N_{i}$ exactly one rule of the following form:

- $A \rightarrow\left(\begin{array}{cc}B & C \\ D & E\end{array}\right)$ with $B, C, D, E \in N_{i-1}$ (if $1 \leq i \leq h$)
- $A \rightarrow a$ with $a \in S$ (if $i=0$)
\mathbb{A} produces a $\left(2^{h} \times 2^{h}\right)$-matrix denoted by $\operatorname{val}(\mathbb{A})$.
The height of \mathbb{A} is h, and its size if $|N|$.

Multi-Terminal Decision Diagrams

Example: Hadamard matrix H_{n}

$$
H_{0} \rightarrow 1
$$

$$
H_{0}^{\prime} \rightarrow-1
$$

$$
H_{i} \rightarrow\left(\begin{array}{cc}
H_{i-1} & H_{i-1} \\
H_{i-1} & H_{i-1}^{\prime}
\end{array}\right) \quad H_{i}^{\prime} \rightarrow\left(\begin{array}{cc}
H_{i-1}^{\prime} & H_{i-1}^{\prime} \\
H_{i-1}^{\prime} & H_{i-1}
\end{array}\right) \quad(1 \leq i \leq n)
$$

Multi-Terminal Decision Diagrams

Example: Hadamard matrix H_{n}

$$
\begin{aligned}
H_{0} \rightarrow 1 & H_{0}^{\prime} \rightarrow-1 \\
H_{i} \rightarrow\left(\begin{array}{ll}
H_{i-1} & H_{i-1} \\
H_{i-1} & H_{i-1}^{\prime}
\end{array}\right) & H_{i}^{\prime} \rightarrow\left(\begin{array}{cc}
H_{i-1}^{\prime} & H_{i-1}^{\prime} \\
H_{i-1}^{\prime} & H_{i-1}
\end{array}\right) \quad(1 \leq i \leq n)
\end{aligned}
$$

Multi-Terminal Decision Diagrams

Example: Hadamard matrix H_{n}

$$
\begin{aligned}
H_{0} \rightarrow 1 & H_{0}^{\prime} \rightarrow-1 \\
H_{i} \rightarrow\left(\begin{array}{ll}
H_{i-1} & H_{i-1} \\
H_{i-1} & H_{i-1}^{\prime}
\end{array}\right) & H_{i}^{\prime} \rightarrow\left(\begin{array}{ll}
H_{i-1}^{\prime} & H_{i-1}^{\prime} \\
H_{i-1}^{\prime} & H_{i-1}
\end{array}\right) \quad(1 \leq i \leq n)
\end{aligned}
$$

Multi-Terminal Decision Diagrams

Example: Hadamard matrix H_{n}

$$
\begin{array}{ll}
H_{0} \rightarrow 1 & H_{0}^{\prime} \rightarrow-1 \\
H_{i} \rightarrow\left(\begin{array}{ll}
H_{i-1} & H_{i-1} \\
H_{i-1} & H_{i-1}^{\prime}
\end{array}\right) & H_{i}^{\prime} \rightarrow\left(\begin{array}{cc}
H_{i-1}^{\prime} & H_{i-1}^{\prime} \\
H_{i-1}^{\prime} & H_{i-1}
\end{array}\right) \quad(1 \leq i \leq n)
\end{array}
$$

H_{1}	H_{1}	H_{1}	H_{1}
H_{1}	H_{1}^{\prime}	H_{1}	H_{1}^{\prime}
H_{1}	H_{1}	H_{1}^{\prime}	H_{1}^{\prime}
H_{1}	H_{1}^{\prime}	H_{1}^{\prime}	H_{1}

Multi-Terminal Decision Diagrams

Example: Hadamard matrix H_{n}

$$
\begin{array}{rlr}
H_{0} & \rightarrow 1 & H_{0}^{\prime} \\
H_{i} \rightarrow\left(\begin{array}{ll}
H_{i-1} & H_{i-1} \\
H_{i-1} & H_{i-1}^{\prime}
\end{array}\right) & H_{i}^{\prime} \rightarrow\left(\begin{array}{ll}
H_{i-1}^{\prime} & H_{i-1}^{\prime} \\
H_{i-1}^{\prime} & H_{i-1}
\end{array}\right) \quad(1 \leq i \leq n)
\end{array}
$$

| H_{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| H_{0} | H_{0}^{\prime} | H_{0} | H_{0}^{\prime} | H_{0} | H_{0}^{\prime} | H_{0} | H_{0}^{\prime} |
| H_{0} | H_{0} | H_{0}^{\prime} | H_{0}^{\prime} | H_{0} | H_{0} | H_{0}^{\prime} | H_{0}^{\prime} |
| H_{0} | H_{0}^{\prime} | H_{0}^{\prime} | H_{0} | H_{0} | H_{0}^{\prime} | H_{0}^{\prime} | H_{0} |
| H_{0} | H_{0} | H_{0} | H_{0} | H_{0}^{\prime} | H_{0}^{\prime} | H_{0}^{\prime} | H_{0}^{\prime} |
| H_{0} | H_{0}^{\prime} | H_{0} | H_{0}^{\prime} | H_{0}^{\prime} | H_{0} | H_{0}^{\prime} | H_{0} |
| H_{0} | H_{0} | H_{0}^{\prime} | H_{0}^{\prime} | H_{0}^{\prime} | H_{0}^{\prime} | H_{0} | H_{0} |
| H_{0} | H_{0}^{\prime} | H_{0}^{\prime} | H_{0} | H_{0}^{\prime} | H_{0} | H_{0} | H_{0}^{\prime} |

Multi-Terminal Decision Diagrams

Example: Hadamard matrix H_{n}

$$
\begin{array}{ll}
H_{0} \rightarrow 1 & H_{0}^{\prime} \rightarrow-1 \\
H_{i} \rightarrow\left(\begin{array}{ll}
H_{i-1} & H_{i-1} \\
H_{i-1} & H_{i-1}^{\prime}
\end{array}\right) & H_{i}^{\prime} \rightarrow\left(\begin{array}{cc}
H_{i-1}^{\prime} & H_{i-1}^{\prime} \\
H_{i-1}^{\prime} & H_{i-1}
\end{array}\right) \quad(1 \leq i \leq n)
\end{array}
$$

1	1	1	1	1	1	1	1
1	-1	1	-1	1	-1	1	-1
1	1	-1	-1	1	1	-1	-1
1	-1	-1	1	1	-1	-1	1
1	1	1	1	-1	-1	-1	-1
1	-1	1	-1	-1	1	-1	1
1	1	-1	-1	-1	-1	1	1
1	-1	-1	1	-1	1	1	-1

Matrix Multiplication

Observation

For any semiring with at least two elements there exist $M T D D s \mathbb{A}_{n}$ and \mathbb{B}_{n} with:

- \mathbb{A}_{n} and \mathbb{B}_{n} have size $O(n)$.
- \mathbb{A}_{n} and \mathbb{B}_{n} have heigth n.
- $\operatorname{val}\left(\mathbb{A}_{n}\right) \cdot \operatorname{val}\left(\mathbb{B}_{n}\right)$ cannot be represented by an MTDD of size $<2^{n}$.

Matrix Multiplication

Observation

For any semiring with at least two elements there exist $M T D D s \mathbb{A}_{n}$ and \mathbb{B}_{n} with:

- \mathbb{A}_{n} and \mathbb{B}_{n} have size $O(n)$.
- \mathbb{A}_{n} and \mathbb{B}_{n} have heigth n.
- $\operatorname{val}\left(\mathbb{A}_{n}\right) \cdot \operatorname{val}\left(\mathbb{B}_{n}\right)$ cannot be represented by an MTDD of size $<2^{n}$.

Proof: (for the semiring $(\mathbb{N},+, \cdot))$

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4
\end{array}\right)
$$

Multi-Terminal Decision Diagrams with Addition

Definition MTDD+

An MTDD + is defined as an MTDD but in addition may contain variables, whose associated rules have the form

$$
A \rightarrow B+C \quad \text { (matrix addition) }
$$

Here A, B, C belong to the same level (and hence produce matrices of the same dimension).

The addition rules must be acyclic.

Multi-Terminal Decision Diagrams with Addition

Example

$$
\begin{aligned}
& B_{0} \rightarrow 1, \quad B_{j} \rightarrow\left(\begin{array}{ll}
B_{j-1}+B_{j-1} & B_{j-1}+B_{j-1} \\
B_{j-1}+B_{j-1} & B_{j-1}+B_{j-1}
\end{array}\right) \quad(1 \leq j \leq n) \\
& A_{0} \rightarrow 1, \quad A_{j} \rightarrow\left(\begin{array}{ll}
A_{j-1} & A_{j-1} \\
A_{j-1}+B_{j-1} & A_{j-1}+B_{j-1}
\end{array}\right) \quad(1 \leq j \leq n)
\end{aligned}
$$

Multi-Terminal Decision Diagrams with Addition

Example

$$
\begin{aligned}
& B_{0} \rightarrow 1, \quad B_{j} \rightarrow\left(\begin{array}{ll}
B_{j-1}+B_{j-1} & B_{j-1}+B_{j-1} \\
B_{j-1}+B_{j-1} & B_{j-1}+B_{j-1}
\end{array}\right) \quad(1 \leq j \leq n) \\
& A_{0} \rightarrow 1, \quad A_{j} \rightarrow\left(\begin{array}{ll}
A_{j-1} & A_{j-1} \\
A_{j-1}+B_{j-1} & A_{j-1}+B_{j-1}
\end{array}\right) \quad(1 \leq j \leq n)
\end{aligned}
$$

A_{j} derives to the $\left(2^{j} \times 2^{j}\right)$-matrix

$$
\left(\begin{array}{ccccc}
1 & 1 & \ldots & 1 & 1 \\
2 & 2 & \ldots & 2 & 2 \\
3 & 3 & \ldots & 3 & 3 \\
& & \vdots & & \\
2^{j} & 2^{j} & \ldots & 2^{j} & 2^{j}
\end{array}\right)
$$

Matrix multiplication for MTDD +

Proposition

For given $M T D D_{+} \mathbb{A}$ and \mathbb{B} of the same height one can compute in time $O(|\mathbb{A}| \cdot|\mathbb{B}|)$ an $\mathrm{MTDD}_{+} \mathbb{P}$ of size $O(|\mathbb{A}| \cdot|\mathbb{B}|)$ with

$$
\operatorname{val}(\mathbb{P})=\operatorname{val}(\mathbb{A}) \cdot \operatorname{val}(\mathbb{B})
$$

Matrix multiplication for MTDD+

Proposition

For given $\mathrm{MTDD}_{+} \mathbb{A}$ and \mathbb{B} of the same height one can compute in time $O(|\mathbb{A}| \cdot|\mathbb{B}|)$ an $\mathrm{MTDD}_{+} \mathbb{P}$ of size $O(|\mathbb{A}| \cdot|\mathbb{B}|)$ with

$$
\operatorname{val}(\mathbb{P})=\operatorname{val}(\mathbb{A}) \cdot \operatorname{val}(\mathbb{B})
$$

Proof: Let A and B be variables of \mathbb{A} and \mathbb{B}, resp., of the same level.

Matrix multiplication for MTDD+

Proposition

For given $\mathrm{MTDD}_{+} \mathbb{A}$ and \mathbb{B} of the same height one can compute in time $O(|\mathbb{A}| \cdot|\mathbb{B}|)$ an $\mathrm{MTDD}_{+} \mathbb{P}$ of size $O(|\mathbb{A}| \cdot|\mathbb{B}|)$ with

$$
\operatorname{val}(\mathbb{P})=\operatorname{val}(\mathbb{A}) \cdot \operatorname{val}(\mathbb{B})
$$

Proof: Let A and B be variables of \mathbb{A} and \mathbb{B}, resp., of the same level.

- If $A \rightarrow A_{1}+A_{2}$ then $A \cdot B \rightarrow\left(A_{1} \cdot B\right)+\left(A_{2} \cdot B\right)$

Matrix multiplication for MTDD+

Proposition

For given $\mathrm{MTDD}_{+} \mathbb{A}$ and \mathbb{B} of the same height one can compute in time $O(|\mathbb{A}| \cdot|\mathbb{B}|)$ an $\mathrm{MTDD}_{+} \mathbb{P}$ of size $O(|\mathbb{A}| \cdot|\mathbb{B}|)$ with

$$
\operatorname{val}(\mathbb{P})=\operatorname{val}(\mathbb{A}) \cdot \operatorname{val}(\mathbb{B})
$$

Proof: Let A and B be variables of \mathbb{A} and \mathbb{B}, resp., of the same level.

- If $A \rightarrow A_{1}+A_{2}$ then $A \cdot B \rightarrow\left(A_{1} \cdot B\right)+\left(A_{2} \cdot B\right)$
- If $B \rightarrow B_{1}+B_{2}$ then $A \cdot B \rightarrow\left(A \cdot B_{1}\right)+\left(A \cdot B_{2}\right)$

Matrix multiplication for MTDD+

Proposition

For given $\mathrm{MTDD}_{+} \mathbb{A}$ and \mathbb{B} of the same height one can compute in time $O(|\mathbb{A}| \cdot|\mathbb{B}|)$ an $\mathrm{MTDD}_{+} \mathbb{P}$ of size $O(|\mathbb{A}| \cdot|\mathbb{B}|)$ with

$$
\operatorname{val}(\mathbb{P})=\operatorname{val}(\mathbb{A}) \cdot \operatorname{val}(\mathbb{B})
$$

Proof: Let A and B be variables of \mathbb{A} and \mathbb{B}, resp., of the same level.

- If $A \rightarrow A_{1}+A_{2}$ then $A \cdot B \rightarrow\left(A_{1} \cdot B\right)+\left(A_{2} \cdot B\right)$
- If $B \rightarrow B_{1}+B_{2}$ then $A \cdot B \rightarrow\left(A \cdot B_{1}\right)+\left(A \cdot B_{2}\right)$
- If $A \rightarrow\left(\begin{array}{ll}A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2}\end{array}\right)$ and $B \rightarrow\left(\begin{array}{ll}B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2}\end{array}\right)$ then

Matrix multiplication for MTDD+

Proposition

For given $M T D D_{+} \mathbb{A}$ and \mathbb{B} of the same height one can compute in time $O(|\mathbb{A}| \cdot|\mathbb{B}|)$ an $\mathrm{MTDD}_{+} \mathbb{P}$ of size $O(|\mathbb{A}| \cdot|\mathbb{B}|)$ with

$$
\operatorname{val}(\mathbb{P})=\operatorname{val}(\mathbb{A}) \cdot \operatorname{val}(\mathbb{B})
$$

Proof: Let A and B be variables of \mathbb{A} and \mathbb{B}, resp., of the same level.

- If $A \rightarrow A_{1}+A_{2}$ then $A \cdot B \rightarrow\left(A_{1} \cdot B\right)+\left(A_{2} \cdot B\right)$
- If $B \rightarrow B_{1}+B_{2}$ then $A \cdot B \rightarrow\left(A \cdot B_{1}\right)+\left(A \cdot B_{2}\right)$
- If $A \rightarrow\left(\begin{array}{ll}A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2}\end{array}\right)$ and $B \rightarrow\left(\begin{array}{ll}B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2}\end{array}\right)$ then
$A \cdot B \rightarrow\left(\begin{array}{ll}A_{1,1} B_{1,1}+A_{1,2} B_{2,1} & A_{1,1} B_{1,2}+A_{1,2} B_{2,2} \\ A_{2,1} B_{1,1}+A_{2,2} B_{2,1} & A_{2,1} B_{1,2}+A_{2,2} B_{2,2}\end{array}\right)$.

Equality checking for MTDD +

Let $S=(S,+)$ be a commutative monoid finitely generated by Γ.

Equality checking for MTDD +

Let $S=(S,+)$ be a commutative monoid finitely generated by Γ.
Let $\mathrm{EQ}(S)$ be the following problem:
INPUT: MTDD ${ }_{+} \mathbb{A}_{1}, \mathbb{A}_{2}$ where only generators from Γ appear in rules. QUESTION: Does val $\left(\mathbb{A}_{1}\right)=\operatorname{val}\left(\mathbb{A}_{2}\right)$ hold?

Equality checking for MTDD +

Let $S=(S,+)$ be a commutative monoid finitely generated by Γ.
Let $\mathrm{EQ}(S)$ be the following problem:
INPUT: MTDD ${ }_{+} \mathbb{A}_{1}, \mathbb{A}_{2}$ where only generators from Γ appear in rules. QUESTION: Does val $\left(\mathbb{A}_{1}\right)=\operatorname{val}\left(\mathbb{A}_{2}\right)$ hold?

[^0]
Equality checking for MTDD +

Let $S=(S,+)$ be a commutative monoid finitely generated by Γ.
Let $\mathrm{EQ}(S)$ be the following problem:
INPUT: MTDD ${ }_{+} \mathbb{A}_{1}, \mathbb{A}_{2}$ where only generators from Γ appear in rules. QUESTION: Does val $\left(\mathbb{A}_{1}\right)=\operatorname{val}\left(\mathbb{A}_{2}\right)$ hold?

Theorem
 If S is cancellative, then $\mathrm{EQ}(S) \in \mathbf{P}$, otherwise it is coNP-complete.

Proof sketch:

Equality checking for MTDD +

Let $S=(S,+)$ be a commutative monoid finitely generated by Γ.
Let $\mathrm{EQ}(S)$ be the following problem:
INPUT: MTDD ${ }_{+} \mathbb{A}_{1}, \mathbb{A}_{2}$ where only generators from Γ appear in rules. QUESTION: Does val $\left(\mathbb{A}_{1}\right)=\operatorname{val}\left(\mathbb{A}_{2}\right)$ hold?

Theorem
 If S is cancellative, then $\mathrm{EQ}(S) \in \mathbf{P}$, otherwise it is coNP-complete.

Proof sketch:

Non-cancellative case: Prove coNP-hardness using a reduction from the complement of SUBSETSUM.

Equality checking for MTDD +

Let $S=(S,+)$ be a commutative monoid finitely generated by Γ.
Let $\mathrm{EQ}(S)$ be the following problem:
INPUT: MTDD ${ }_{+} \mathbb{A}_{1}, \mathbb{A}_{2}$ where only generators from Γ appear in rules. QUESTION: Does val $\left(\mathbb{A}_{1}\right)=\operatorname{val}\left(\mathbb{A}_{2}\right)$ hold?

Theorem

If S is cancellative, then $\mathrm{EQ}(S) \in \mathbf{P}$, otherwise it is coNP-complete.

Proof sketch:

Non-cancellative case: Prove coNP-hardness using a reduction from the complement of SUBSETSUM.

Cancellative case: A finitely generated commutative cancellative monoid can be embedded into a finitely generated abelian group.

Equality checking for MTDD +

Let $S=(S,+)$ be a commutative monoid finitely generated by Γ.
Let $\mathrm{EQ}(S)$ be the following problem:
INPUT: MTDD $\mathbb{A}_{1}, \mathbb{A}_{2}$ where only generators from Γ appear in rules. QUESTION: Does val $\left(\mathbb{A}_{1}\right)=\operatorname{val}\left(\mathbb{A}_{2}\right)$ hold?

Theorem

If S is cancellative, then $\mathrm{EQ}(S) \in \mathbf{P}$, otherwise it is coNP-complete.

Proof sketch:

Non-cancellative case: Prove coNP-hardness using a reduction from the complement of SUBSETSUM.

Cancellative case: A finitely generated commutative cancellative monoid can be embedded into a finitely generated abelian group.
It suffices to consider the cases $S=\mathbb{Z}$ and $S=\mathbb{Z}_{n}$ for $n \geq 2$.

Equality checking for MTDD +

Let $\mathbb{A}_{i}=\left(N_{i}, P_{i}, S_{i}\right)$.

Equality checking for MTDD +

Let $\mathbb{A}_{i}=\left(N_{i}, P_{i}, S_{i}\right)$.
Start with the equation $S_{1}-S_{2}=0$.

Equality checking for MTDD +

Let $\mathbb{A}_{i}=\left(N_{i}, P_{i}, S_{i}\right)$.
Start with the equation $S_{1}-S_{2}=0$.
At each step, we store finitely linear equation system

$$
\lambda_{i, 1} A_{i, 1}+\lambda_{i, 2} A_{i, 2}+\cdots+\lambda_{i, n_{i}} A_{i, n_{i}}=0 \quad(1 \leq i \leq n)
$$

where the $A_{i, j} \in N_{1} \cup N_{2}$ produce matrices of the same dimension.

Equality checking for MTDD ${ }_{+}$

Let $\mathbb{A}_{i}=\left(N_{i}, P_{i}, S_{i}\right)$.
Start with the equation $S_{1}-S_{2}=0$.
At each step, we store finitely linear equation system

$$
\lambda_{i, 1} A_{i, 1}+\lambda_{i, 2} A_{i, 2}+\cdots+\lambda_{i, n_{i}} A_{i, n_{i}}=0 \quad(1 \leq i \leq n)
$$

where the $A_{i, j} \in N_{1} \cup N_{2}$ produce matrices of the same dimension. Reduction:

- If there is a rule $A_{i, j} \rightarrow B_{i, j}+C_{i, j}$: Replace $A_{i, j}$ by $B_{i, j}+C_{i, j}$.

Equality checking for MTDD +

Let $\mathbb{A}_{i}=\left(N_{i}, P_{i}, S_{i}\right)$.
Start with the equation $S_{1}-S_{2}=0$.
At each step, we store finitely linear equation system

$$
\lambda_{i, 1} A_{i, 1}+\lambda_{i, 2} A_{i, 2}+\cdots+\lambda_{i, n_{i}} A_{i, n_{i}}=0 \quad(1 \leq i \leq n)
$$

where the $A_{i, j} \in N_{1} \cup N_{2}$ produce matrices of the same dimension.
Reduction:

- If there is a rule $A_{i, j} \rightarrow B_{i, j}+C_{i, j}$: Replace $A_{i, j}$ by $B_{i, j}+C_{i, j}$.
- If for all $A_{i, j}$ the rule has the form $A_{i, j} \rightarrow\left(\begin{array}{cc}B_{i, j} & C_{i, j} \\ D_{i, j} & E_{i, j}\end{array}\right)$:

Split every equation into four equations.

Equality checking for MTDD +

Let $\mathbb{A}_{i}=\left(N_{i}, P_{i}, S_{i}\right)$.
Start with the equation $S_{1}-S_{2}=0$.
At each step, we store finitely linear equation system

$$
\lambda_{i, 1} A_{i, 1}+\lambda_{i, 2} A_{i, 2}+\cdots+\lambda_{i, n_{i}} A_{i, n_{i}}=0 \quad(1 \leq i \leq n)
$$

where the $A_{i, j} \in N_{1} \cup N_{2}$ produce matrices of the same dimension.
Reduction:

- If there is a rule $A_{i, j} \rightarrow B_{i, j}+C_{i, j}$: Replace $A_{i, j}$ by $B_{i, j}+C_{i, j}$.
- If for all $A_{i, j}$ the rule has the form $A_{i, j} \rightarrow\left(\begin{array}{cc}B_{i, j} & C_{i, j} \\ D_{i, j} & E_{i, j}\end{array}\right)$: Split every equation into four equations.

By eliminating linearly dependent equations we can bound the number of equations.

Hard problems for MTDD

Hard problems for MTDD

Theorem (hardness of determinant)

It is PSPACE-complete to check whether $\operatorname{det}(\operatorname{val}(\mathbb{A}))=0$ for a given MTDD \mathbb{A} over \mathbb{Z}.

Hard problems for MTDD

Theorem (hardness of determinant)

It is PSPACE-complete to check whether $\operatorname{det}(\operatorname{val}(\mathbb{A}))=0$ for a given MTDD \mathbb{A} over \mathbb{Z}.

Theorem (hardness of powering)

It is PSPACE-complete (coNP-complete) to check whether val($\mathbb{A})^{m}=0$ for a given MTDD \mathbb{A} over \mathbb{Z} and a binary (unary) encoded number m.

Hard problems for MTDD

Theorem (hardness of determinant)

It is PSPACE-complete to check whether $\operatorname{det}(\operatorname{val}(\mathbb{A}))=0$ for a given MTDD \mathbb{A} over \mathbb{Z}.

Theorem (hardness of powering)

It is PSPACE-complete (coNP-complete) to check whether val($\mathbb{A})^{m}=0$ for a given MTDD \mathbb{A} over \mathbb{Z} and a binary (unary) encoded number m.

Remarks:

Hard problems for MTDD

Theorem (hardness of determinant)

It is PSPACE-complete to check whether $\operatorname{det}(\operatorname{val}(\mathbb{A}))=0$ for a given MTDD \mathbb{A} over \mathbb{Z}.

Theorem (hardness of powering)

It is PSPACE-complete (coNP-complete) to check whether val($\mathbb{A})^{m}=0$ for a given MTDD \mathbb{A} over \mathbb{Z} and a binary (unary) encoded number m.

Remarks:

- Counting versions are complete for \#PSPACE (resp., \#P).

Hard problems for MTDD

Theorem (hardness of determinant)

It is PSPACE-complete to check whether $\operatorname{det}(\operatorname{val}(\mathbb{A}))=0$ for a given MTDD \mathbb{A} over \mathbb{Z}.

Theorem (hardness of powering)

It is PSPACE-complete (coNP-complete) to check whether val($\mathbb{A})^{m}=0$ for a given MTDD \mathbb{A} over \mathbb{Z} and a binary (unary) encoded number m.

Remarks:

- Counting versions are complete for \#PSPACE (resp., \#P).
- All proofs use the fact that the adjacency matrix of the configuration graph of a PSPACE-machine can be represented by a small MTDD.

Hard problems for MTDD

Theorem (hardness of determinant)

It is PSPACE-complete to check whether $\operatorname{det}(\operatorname{val}(\mathbb{A}))=0$ for a given MTDD \mathbb{A} over \mathbb{Z}.

Theorem (hardness of powering)

It is PSPACE-complete (coNP-complete) to check whether val($\mathbb{A})^{m}=0$ for a given MTDD \mathbb{A} over \mathbb{Z} and a binary (unary) encoded number m.

Remarks:

- Counting versions are complete for \#PSPACE (resp., \#P).
- All proofs use the fact that the adjacency matrix of the configuration graph of a PSPACE-machine can be represented by a small MTDD. This allows to mimic Toda's proof for the fact that computing the determinant and matrix powering for explicit matrices is \#L-complete.

Future work

- Compression of explicitly given matrices

Future work

- Compression of explicitly given matrices
- Parallel algorithms

[^0]: Theorem
 If S is cancellative, then $\mathrm{EQ}(S) \in \mathbf{P}$, otherwise it is coNP-complete.

