Processing Succinct Matrices and Vectors

Markus Lohrey and Manfred Schmidt-Schauß

Universität Siegen

June 10, 2014

Fix a finitely generated commutative monoid (S,+) (e.g. $S = \mathbb{N}$).

Fix a finitely generated commutative monoid (S, +) (e.g. $S = \mathbb{N}$). If necessary, we have a multiplication \cdot so that $(S, +, \cdot)$ is a semiring.

Fix a finitely generated commutative monoid (S, +) (e.g. $S = \mathbb{N}$). If necessary, we have a multiplication \cdot so that $(S, +, \cdot)$ is a semiring.

Definition MTDD (Fujita, McGeer, Yang 1997)

An MTDD is a triple $\mathbb{A} = (N, P, S)$ with N a finite set of variables, which is partitioned into levels $N_0, N_1, \ldots, N_h = \{S\}$ (S = start variable).

Fix a finitely generated commutative monoid (S, +) (e.g. $S = \mathbb{N}$). If necessary, we have a multiplication \cdot so that $(S, +, \cdot)$ is a semiring.

Definition MTDD (Fujita, McGeer, Yang 1997)

An MTDD is a triple $\mathbb{A} = (N, P, S)$ with N a finite set of variables, which is partitioned into levels $N_0, N_1, \ldots, N_h = \{S\}$ (S = start variable).

P contains for every $A \in N_i$ exactly one rule of the following form:

- ▶ $A \rightarrow \begin{pmatrix} B & C \\ D & E \end{pmatrix}$ with $B, C, D, E \in N_{i-1}$ (if $1 \le i \le h$)
- ightharpoonup A
 ightharpoonup a with $a \in S$ (if i = 0)

Fix a finitely generated commutative monoid (S, +) (e.g. $S = \mathbb{N}$). If necessary, we have a multiplication \cdot so that $(S, +, \cdot)$ is a semiring.

Definition MTDD (Fujita, McGeer, Yang 1997)

An MTDD is a triple $\mathbb{A} = (N, P, S)$ with N a finite set of variables, which is partitioned into levels $N_0, N_1, \ldots, N_h = \{S\}$ (S = start variable).

P contains for every $A \in N_i$ exactly one rule of the following form:

▶
$$A \rightarrow \begin{pmatrix} B & C \\ D & E \end{pmatrix}$$
 with $B, C, D, E \in N_{i-1}$ (if $1 \le i \le h$)

ightharpoonup A
ightharpoonup a with $a \in S$ (if i = 0)

A produces a $(2^h \times 2^h)$ -matrix denoted by val(A).

Fix a finitely generated commutative monoid (S, +) (e.g. $S = \mathbb{N}$). If necessary, we have a multiplication \cdot so that $(S, +, \cdot)$ is a semiring.

Definition MTDD (Fujita, McGeer, Yang 1997)

An MTDD is a triple $\mathbb{A} = (N, P, S)$ with N a finite set of variables, which is partitioned into levels $N_0, N_1, \ldots, N_h = \{S\}$ (S = start variable).

P contains for every $A \in N_i$ exactly one rule of the following form:

▶
$$A \rightarrow \begin{pmatrix} B & C \\ D & E \end{pmatrix}$$
 with $B, C, D, E \in N_{i-1}$ (if $1 \le i \le h$)

ightharpoonup A
ightharpoonup a with $a \in S$ (if i = 0)

A produces a $(2^h \times 2^h)$ -matrix denoted by val(A).

The height of \mathbb{A} is h, and its size if |N|.

Example: Hadamard matrix H_n

$$\begin{array}{ll} H_0 \rightarrow 1 & H_0' \rightarrow -1 \\ H_i \rightarrow \left(\begin{array}{cc} H_{i-1} & H_{i-1} \\ H_{i-1} & H_{i-1}' \end{array} \right) & H_i' \rightarrow \left(\begin{array}{cc} H_{i-1}' & H_{i-1}' \\ H_{i-1}' & H_{i-1} \end{array} \right) & (1 \leq i \leq n) \end{array}$$

Example: Hadamard matrix H_n

$$\begin{array}{ll} H_0 \rightarrow 1 & H_0' \rightarrow -1 \\ H_i \rightarrow \left(\begin{array}{cc} H_{i-1} & H_{i-1} \\ H_{i-1} & H_{i-1}' \end{array} \right) & H_i' \rightarrow \left(\begin{array}{cc} H_{i-1}' & H_{i-1}' \\ H_{i-1}' & H_{i-1} \end{array} \right) & (1 \leq i \leq n) \end{array}$$

Нз

Example: Hadamard matrix H_n

$$\begin{array}{ll} H_0 \rightarrow 1 & H_0' \rightarrow -1 \\ H_i \rightarrow \left(\begin{array}{cc} H_{i-1} & H_{i-1} \\ H_{i-1} & H_{i-1}' \end{array} \right) & H_i' \rightarrow \left(\begin{array}{cc} H_{i-1}' & H_{i-1}' \\ H_{i-1}' & H_{i-1} \end{array} \right) & (1 \leq i \leq n) \end{array}$$

Example: Hadamard matrix H_n

$$\begin{array}{ll} H_0 \rightarrow 1 & H_0' \rightarrow -1 \\ H_i \rightarrow \left(\begin{array}{cc} H_{i-1} & H_{i-1} \\ H_{i-1} & H_{i-1}' \end{array} \right) & H_i' \rightarrow \left(\begin{array}{cc} H_{i-1}' & H_{i-1}' \\ H_{i-1}' & H_{i-1} \end{array} \right) & (1 \leq i \leq n) \end{array}$$

H_1	H_1	H_1	H_1	
H_1	H_1'	H_1	H_1'	
H_1	H_1	H_1'	H_1'	
H_1	H_1'	H_1'	H_1	

Example: Hadamard matrix H_n

$$\begin{array}{ll} H_0 \rightarrow 1 & H_0' \rightarrow -1 \\ H_i \rightarrow \left(\begin{array}{ccc} H_{i-1} & H_{i-1} \\ H_{i-1} & H_{i-1}' \end{array} \right) & H_i' \rightarrow \left(\begin{array}{ccc} H_{i-1}' & H_{i-1}' \\ H_{i-1}' & H_{i-1}' \end{array} \right) & (1 \leq i \leq n) \end{array}$$

Example: Hadamard matrix H_n

$$\begin{array}{ll} H_0 \rightarrow 1 & H_0' \rightarrow -1 \\ H_i \rightarrow \left(\begin{array}{cc} H_{i-1} & H_{i-1} \\ H_{i-1} & H_{i-1}' \end{array} \right) & H_i' \rightarrow \left(\begin{array}{cc} H_{i-1}' & H_{i-1}' \\ H_{i-1}' & H_{i-1} \end{array} \right) & (1 \leq i \leq n) \end{array}$$

1	1	1	1	1	1	1	1
1	-1	1	-1	1	-1	1	-1
1	1	-1	-1	1	1	-1	-1
1	-1	-1	1	1	-1	-1	1
1	1	1	1	-1	-1	-1	-1
1	-1	1	-1	-1	1	-1	1
1	1	$\overline{-1}$	-1	$\overline{-1}$	$\overline{-1}$	1	1
1	-1	-1	1	-1	1	1	-1

Matrix Multiplication

Observation

For any semiring with at least two elements there exist MTDDs \mathbb{A}_n and \mathbb{B}_n with:

- $ightharpoonup \mathbb{A}_n$ and \mathbb{B}_n have size O(n).
- $ightharpoonup \mathbb{A}_n$ and \mathbb{B}_n have heigth n.
- ▶ $val(\mathbb{A}_n) \cdot val(\mathbb{B}_n)$ cannot be represented by an MTDD of size $< 2^n$.

Matrix Multiplication

Observation

For any semiring with at least two elements there exist MTDDs \mathbb{A}_n and \mathbb{B}_n with:

- ▶ \mathbb{A}_n and \mathbb{B}_n have size O(n).
- $ightharpoonup \mathbb{A}_n$ and \mathbb{B}_n have heigth n.
- ▶ $val(\mathbb{A}_n) \cdot val(\mathbb{B}_n)$ cannot be represented by an MTDD of size $< 2^n$.

Proof: (for the semiring $(\mathbb{N}, +, \cdot)$)

Multi-Terminal Decision Diagrams with Addition

Definition MTDD₊

An $\overline{\text{MTDD}}_+$ is defined as an MTDD but in addition may contain variables, whose associated rules have the form

$$A \rightarrow B + C$$
 (matrix addition)

Here A, B, C belong to the same level (and hence produce matrices of the same dimension).

The addition rules must be acyclic.

Multi-Terminal Decision Diagrams with Addition

Example

$$B_0 \to 1, \quad B_j \to \left(egin{array}{ccc} B_{j-1} + B_{j-1} & B_{j-1} + B_{j-1} \ B_{j-1} + B_{j-1} & B_{j-1} + B_{j-1} \end{array}
ight) \quad (1 \le j \le n)$$
 $A_0 \to 1, \quad A_j \to \left(egin{array}{ccc} A_{j-1} & A_{j-1} \ A_{j-1} + B_{j-1} & A_{j-1} + B_{j-1} \end{array}
ight) \quad (1 \le j \le n).$

Multi-Terminal Decision Diagrams with Addition

Example

$$B_0 \to 1, \quad B_j \to \left(egin{array}{ccc} B_{j-1} + B_{j-1} & B_{j-1} + B_{j-1} \ B_{j-1} + B_{j-1} & B_{j-1} + B_{j-1} \end{array}
ight) \quad (1 \le j \le n)$$
 $A_0 \to 1, \quad A_j \to \left(egin{array}{ccc} A_{j-1} & A_{j-1} \ A_{j-1} + B_{j-1} & A_{j-1} + B_{j-1} \end{array}
ight) \quad (1 \le j \le n).$

 A_i derives to the $(2^j \times 2^j)$ -matrix

$$\begin{pmatrix} 1 & 1 & \dots & 1 & 1 \\ 2 & 2 & \dots & 2 & 2 \\ 3 & 3 & \dots & 3 & 3 \\ & & \vdots & & \\ 2^{j} & 2^{j} & \dots & 2^{j} & 2^{j} \end{pmatrix}$$

Proposition

For given $\mathsf{MTDD}_+ \ \mathbb{A}$ and \mathbb{B} of the same height one can compute in time $O(|\mathbb{A}|\cdot|\mathbb{B}|)$ an $\mathsf{MTDD}_+ \ \mathbb{P}$ of size $O(|\mathbb{A}|\cdot|\mathbb{B}|)$ with

$$\mathsf{val}(\mathbb{P}) = \mathsf{val}(\mathbb{A}) \cdot \mathsf{val}(\mathbb{B}).$$

Proposition

For given $\mathsf{MTDD}_+ \ \mathbb{A}$ and \mathbb{B} of the same height one can compute in time $O(|\mathbb{A}|\cdot|\mathbb{B}|)$ an $\mathsf{MTDD}_+ \ \mathbb{P}$ of size $O(|\mathbb{A}|\cdot|\mathbb{B}|)$ with

$$\mathsf{val}(\mathbb{P}) = \mathsf{val}(\mathbb{A}) \cdot \mathsf{val}(\mathbb{B}).$$

Proposition

For given $\mathsf{MTDD}_+ \ \mathbb{A}$ and \mathbb{B} of the same height one can compute in time $O(|\mathbb{A}|\cdot|\mathbb{B}|)$ an $\mathsf{MTDD}_+ \ \mathbb{P}$ of size $O(|\mathbb{A}|\cdot|\mathbb{B}|)$ with

$$\mathsf{val}(\mathbb{P}) = \mathsf{val}(\mathbb{A}) \cdot \mathsf{val}(\mathbb{B}).$$

Proof: Let A and B be variables of \mathbb{A} and \mathbb{B} , resp., of the same level.

▶ If $A \rightarrow A_1 + A_2$ then $A \cdot B \rightarrow (A_1 \cdot B) + (A_2 \cdot B)$

Proposition

For given $\mathsf{MTDD}_+ \ \mathbb{A}$ and \mathbb{B} of the same height one can compute in time $O(|\mathbb{A}|\cdot|\mathbb{B}|)$ an $\mathsf{MTDD}_+ \ \mathbb{P}$ of size $O(|\mathbb{A}|\cdot|\mathbb{B}|)$ with

$$\mathsf{val}(\mathbb{P}) = \mathsf{val}(\mathbb{A}) \cdot \mathsf{val}(\mathbb{B}).$$

- ▶ If $A \rightarrow A_1 + A_2$ then $A \cdot B \rightarrow (A_1 \cdot B) + (A_2 \cdot B)$
- ▶ If $B \rightarrow B_1 + B_2$ then $A \cdot B \rightarrow (A \cdot B_1) + (A \cdot B_2)$

Proposition

For given $\mathsf{MTDD}_+ \ \mathbb{A}$ and \mathbb{B} of the same height one can compute in time $O(|\mathbb{A}|\cdot|\mathbb{B}|)$ an $\mathsf{MTDD}_+ \ \mathbb{P}$ of size $O(|\mathbb{A}|\cdot|\mathbb{B}|)$ with

$$\mathsf{val}(\mathbb{P}) = \mathsf{val}(\mathbb{A}) \cdot \mathsf{val}(\mathbb{B}).$$

- ▶ If $A \rightarrow A_1 + A_2$ then $A \cdot B \rightarrow (A_1 \cdot B) + (A_2 \cdot B)$
- ▶ If $B \rightarrow B_1 + B_2$ then $A \cdot B \rightarrow (A \cdot B_1) + (A \cdot B_2)$
- ▶ If $A \to \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}$ and $B \to \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix}$ then

Proposition

For given $\mathsf{MTDD}_+ \ \mathbb{A}$ and \mathbb{B} of the same height one can compute in time $O(|\mathbb{A}|\cdot|\mathbb{B}|)$ an $\mathsf{MTDD}_+ \ \mathbb{P}$ of size $O(|\mathbb{A}|\cdot|\mathbb{B}|)$ with

$$\mathsf{val}(\mathbb{P}) = \mathsf{val}(\mathbb{A}) \cdot \mathsf{val}(\mathbb{B}).$$

- ▶ If $A \rightarrow A_1 + A_2$ then $A \cdot B \rightarrow (A_1 \cdot B) + (A_2 \cdot B)$
- ▶ If $B \rightarrow B_1 + B_2$ then $A \cdot B \rightarrow (A \cdot B_1) + (A \cdot B_2)$
- ▶ If $A o \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}$ and $B o \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix}$ then

$$A\cdot B \to \left(\begin{array}{cc} A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{array} \right).$$

Let S = (S, +) be a commutative monoid finitely generated by Γ .

Let S = (S, +) be a commutative monoid finitely generated by Γ .

Let EQ(S) be the following problem:

INPUT: MTDD $_+$ \mathbb{A}_1 , \mathbb{A}_2 where only generators from Γ appear in rules.

QUESTION: Does $val(A_1) = val(A_2)$ hold?

Let S = (S, +) be a commutative monoid finitely generated by Γ .

Let EQ(S) be the following problem:

INPUT: MTDD₊ \mathbb{A}_1 , \mathbb{A}_2 where only generators from Γ appear in rules.

QUESTION: Does $val(A_1) = val(A_2)$ hold?

Theorem

If S is cancellative, then $EQ(S) \in P$, otherwise it is **coNP**-complete.

Let S = (S, +) be a commutative monoid finitely generated by Γ .

Let EQ(S) be the following problem:

INPUT: MTDD₊ \mathbb{A}_1 , \mathbb{A}_2 where only generators from Γ appear in rules.

QUESTION: Does $val(A_1) = val(A_2)$ hold?

$\mathsf{Theorem}_{\mathsf{l}}$

If S is cancellative, then $EQ(S) \in P$, otherwise it is **coNP**-complete.

Proof sketch:

Let S = (S, +) be a commutative monoid finitely generated by Γ .

Let EQ(S) be the following problem:

INPUT: MTDD₊ \mathbb{A}_1 , \mathbb{A}_2 where only generators from Γ appear in rules.

QUESTION: Does $val(A_1) = val(A_2)$ hold?

Theorem

If S is cancellative, then $EQ(S) \in \mathbf{P}$, otherwise it is **coNP**-complete.

Proof sketch:

Non-cancellative case: Prove **coNP**-hardness using a reduction from the complement of SUBSETSUM.

Let S = (S, +) be a commutative monoid finitely generated by Γ .

Let EQ(S) be the following problem:

INPUT: MTDD₊ \mathbb{A}_1 , \mathbb{A}_2 where only generators from Γ appear in rules.

QUESTION: Does $val(A_1) = val(A_2)$ hold?

Theorem

If S is cancellative, then $EQ(S) \in P$, otherwise it is **coNP**-complete.

Proof sketch:

Non-cancellative case: Prove **coNP**-hardness using a reduction from the complement of SUBSETSUM.

Cancellative case: A finitely generated commutative cancellative monoid can be embedded into a finitely generated abelian group.

Let S = (S, +) be a commutative monoid finitely generated by Γ .

Let EQ(S) be the following problem:

INPUT: MTDD₊ \mathbb{A}_1 , \mathbb{A}_2 where only generators from Γ appear in rules.

QUESTION: Does $val(A_1) = val(A_2)$ hold?

$\operatorname{Theorem}$

If S is cancellative, then $EQ(S) \in \mathbf{P}$, otherwise it is **coNP**-complete.

Proof sketch:

Non-cancellative case: Prove **coNP**-hardness using a reduction from the complement of SUBSETSUM.

Cancellative case: A finitely generated commutative cancellative monoid can be embedded into a finitely generated abelian group.

It suffices to consider the cases $S = \mathbb{Z}$ and $S = \mathbb{Z}_n$ for $n \ge 2$.

Lohrey, Schmidt-Schauß () Succinct Matrices June 10, 2014 8 / 11

Let $A_i = (N_i, P_i, S_i)$.

Let $\mathbb{A}_i = (N_i, P_i, S_i)$.

Start with the equation $S_1 - S_2 = 0$.

Let $\mathbb{A}_i = (N_i, P_i, S_i)$.

Start with the equation $S_1 - S_2 = 0$.

At each step, we store finitely linear equation system

$$\lambda_{i,1}A_{i,1}+\lambda_{i,2}A_{i,2}+\cdots+\lambda_{i,n_i}A_{i,n_i}=0 \quad (1\leq i\leq n)$$

where the $A_{i,j} \in N_1 \cup N_2$ produce matrices of the same dimension.

Let $A_i = (N_i, P_i, S_i)$.

Start with the equation $S_1 - S_2 = 0$.

At each step, we store finitely linear equation system

$$\lambda_{i,1}A_{i,1} + \lambda_{i,2}A_{i,2} + \cdots + \lambda_{i,n_i}A_{i,n_i} = 0 \quad (1 \le i \le n)$$

where the $A_{i,j} \in N_1 \cup N_2$ produce matrices of the same dimension.

Reduction:

▶ If there is a rule $A_{i,j} \to B_{i,j} + C_{i,j}$: Replace $A_{i,j}$ by $B_{i,j} + C_{i,j}$.

Let $\mathbb{A}_i = (N_i, P_i, S_i)$.

Start with the equation $S_1 - S_2 = 0$.

At each step, we store finitely linear equation system

$$\lambda_{i,1}A_{i,1} + \lambda_{i,2}A_{i,2} + \cdots + \lambda_{i,n_i}A_{i,n_i} = 0 \quad (1 \le i \le n)$$

where the $A_{i,j} \in N_1 \cup N_2$ produce matrices of the same dimension.

Reduction:

- ▶ If there is a rule $A_{i,j} \rightarrow B_{i,j} + C_{i,j}$: Replace $A_{i,j}$ by $B_{i,j} + C_{i,j}$.
- ▶ If for all $A_{i,j}$ the rule has the form $A_{i,j} \rightarrow \begin{pmatrix} B_{i,j} & C_{i,j} \\ D_{i,j} & E_{i,j} \end{pmatrix}$:
 Split every equation into four equations.

Let $A_i = (N_i, P_i, S_i)$.

Start with the equation $S_1 - S_2 = 0$.

At each step, we store finitely linear equation system

$$\lambda_{i,1}A_{i,1} + \lambda_{i,2}A_{i,2} + \cdots + \lambda_{i,n_i}A_{i,n_i} = 0 \quad (1 \le i \le n)$$

where the $A_{i,j} \in N_1 \cup N_2$ produce matrices of the same dimension.

Reduction:

- ▶ If there is a rule $A_{i,j} \to B_{i,j} + C_{i,j}$: Replace $A_{i,j}$ by $B_{i,j} + C_{i,j}$.
- ▶ If for all $A_{i,j}$ the rule has the form $A_{i,j} \rightarrow \begin{pmatrix} B_{i,j} & C_{i,j} \\ D_{i,j} & E_{i,j} \end{pmatrix}$:
 Split every equation into four equations.

By eliminating linearly dependent equations we can bound the number of equations.

Theorem (hardness of determinant)

It is **PSPACE**-complete to check whether det(val(A)) = 0 for a given MTDD A over Z.

Theorem (hardness of determinant)

It is **PSPACE**-complete to check whether $det(val(\mathbb{A})) = 0$ for a given MTDD \mathbb{A} over \mathbb{Z} .

Theorem (hardness of powering)

It is **PSPACE**-complete (**coNP**-complete) to check whether $val(\mathbb{A})^m = 0$ for a given MTDD \mathbb{A} over \mathbb{Z} and a binary (unary) encoded number m.

Theorem (hardness of determinant)

It is **PSPACE**-complete to check whether $det(val(\mathbb{A})) = 0$ for a given MTDD \mathbb{A} over \mathbb{Z} .

Theorem (hardness of powering)

It is **PSPACE**-complete (**coNP**-complete) to check whether $val(\mathbb{A})^m = 0$ for a given MTDD \mathbb{A} over \mathbb{Z} and a binary (unary) encoded number m.

Remarks:

Theorem (hardness of determinant)

It is **PSPACE**-complete to check whether $det(val(\mathbb{A})) = 0$ for a given MTDD \mathbb{A} over \mathbb{Z} .

Theorem (hardness of powering)

It is **PSPACE**-complete (**coNP**-complete) to check whether $val(\mathbb{A})^m = 0$ for a given MTDD \mathbb{A} over \mathbb{Z} and a binary (unary) encoded number m.

Remarks:

► Counting versions are complete for **#PSPACE** (resp., **#P**).

Theorem (hardness of determinant)

It is **PSPACE**-complete to check whether $det(val(\mathbb{A})) = 0$ for a given MTDD \mathbb{A} over \mathbb{Z} .

Theorem (hardness of powering)

It is **PSPACE**-complete (**coNP**-complete) to check whether $val(\mathbb{A})^m = 0$ for a given MTDD \mathbb{A} over \mathbb{Z} and a binary (unary) encoded number m.

Remarks:

- ► Counting versions are complete for **#PSPACE** (resp., **#P**).
- ▶ All proofs use the fact that the adjacency matrix of the configuration graph of a **PSPACE**-machine can be represented by a small MTDD.

Theorem (hardness of determinant)

It is **PSPACE**-complete to check whether $det(val(\mathbb{A})) = 0$ for a given MTDD \mathbb{A} over \mathbb{Z} .

Theorem (hardness of powering)

It is **PSPACE**-complete (**coNP**-complete) to check whether $val(\mathbb{A})^m = 0$ for a given MTDD \mathbb{A} over \mathbb{Z} and a binary (unary) encoded number m.

Remarks:

- ► Counting versions are complete for **#PSPACE** (resp., **#P**).
- All proofs use the fact that the adjacency matrix of the configuration graph of a PSPACE-machine can be represented by a small MTDD.

This allows to mimic Toda's proof for the fact that computing the determinant and matrix powering for explicit matrices is #L-complete.

Future work

► Compression of explicitly given matrices

Future work

- ► Compression of explicitly given matrices
- ► Parallel algorithms