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If necessary, we have a multiplication - so that (5, +,-) is a semiring.
Definition MTDD (Fujita, McGeer, Yang 1997)

An MTDD is a triple A = (N, P, S) with N a finite set of variables, which
is partitioned into levels No, Ny,..., N = {S} (S = start variable).
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An MTDD is a triple A = (N, P, S) with N a finite set of variables, which
is partitioned into levels No, Ny,..., N = {S} (S = start variable).

P contains for every A € N; exactly one rule of the following form:

> A <g g>with B,C,D,E € Ni_y (if1<i<h)

» A—awithae S (if i =0)
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P contains for every A € N; exactly one rule of the following form:

> A <g g>with B,C,D,E € Ni_y (if1<i<h)

» A—awithae S (if i =0)
A produces a (2" x 2")-matrix denoted by val(4).
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Multi-Terminal Decision Diagrams (MTDD):
A succinct description of a matrices

Fix a finitely generated commutative monoid (S, +) (e.g. S =N).
If necessary, we have a multiplication - so that (5, +,-) is a semiring.
Definition MTDD (Fujita, McGeer, Yang 1997)

An MTDD is a triple A = (N, P, S) with N a finite set of variables, which
is partitioned into levels No, Ny,..., N = {S} (S = start variable).

P contains for every A € N; exactly one rule of the following form:

> A <g g>with B,C,D,E € Ni_y (if1<i<h)

» A—awithae S (if i =0)
A produces a (2" x 2")-matrix denoted by val(4).
The height of A is h, and its size if |N]|.
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Multi- Terminal Decision Diagrams

Example: Hadamard matrix H,

H0—>].

_ Hi—1 Hi_1
S ( Hi—1x Hi_4 >
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Multi- Terminal Decision Diagrams

Example: Hadamard matrix H,

Hy — 1 Hy — -1

Hi_1 Hi_y , H_, H_, .
. AN / ’ <1<
H ( Hisy H_, ) f ( H_, Hi (l=isn)

H | HH | Hi | H1

Hy | H | Hy | H

Hi | H | H | H,

Ho| H|H | H
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Multi- Terminal Decision Diagrams

Example: Hadamard matrix H,

Hy — 1 H6—>—1

Hi_1 Hi_y , H_, H_, .
. ! / ’ <1<
= < Hia Hi > b= < Hiy Hia (L=izn)

Ho| Ho] Hol Ho| Ho Ho] ol Ho
Ho| HE[HL| Ho| Ho| H5[H5| Ho
Ho| Ho| Ho| Ho| [ HAHA[HE
Ho| HE [ Ho| HE|Hi [ HolHi[Ho
Ho| Ho| [ H[HE[HAHo| Ho
Ho| HE[HL[ Ho| HE [ Hol Ho| HE
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Multi- Terminal Decision Diagrams

Example: Hadamard matrix H,

Hy — 1 Hy — -1

Hi_1 Hi_y , H_, H_, .
. AN / ’ <1<
H ( Hisy H_, ) f ( H_, Hi (l=isn)

RlR)kRlRrlRR|R[=]=
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Matrix Multiplication

For any semiring with at least two elements there exist MTDDs A, and B,
with:

» A, and B, have size O(n).
» A, and B, have heigth n.

» val(A,) - val(B,) cannot be represented by an MTDD of size < 2".
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Matrix Multiplication

For any semiring with at least two elements there exist MTDDs A, and B,
with:

» A, and B, have size O(n).
» A, and B, have heigth n.
» val(A,) - val(B,) cannot be represented by an MTDD of size < 2".

Proof: (for the semiring (N, +,-))

= = ==
_ = = O
= = OO
_H O O o
e e
e e
= = ==
= = ==
|
A W N =
B W N =
A W DND R
A W N R
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Multi- Terminal Decision Diagrams with Addition

Definition MTDD

An MTDD. is defined as an MTDD but in addition may contain variables,
whose associated rules have the form

A — B+ C (matrix addition)

Here A, B, C belong to the same level (and hence produce matrices of the
same dimension).

The addition rules must be acyclic.
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Multi- Terminal Decision Diagrams with Addition

Bji-1+Bj-1 Bj-1+ Bj—1 1
By -1, B B . B.-+B =
o— 1, Bj— < Bi-1+Bj-1 Bi1+Bj1 ) fsi=n
Ay Ai_q
Ag— 1, A ’ i PRI
0o—1, Ai— ( Ai1+Bi1 A1+ B ) fsi=n
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Multi- Terminal Decision Diagrams with Addition

Bji-1+Bj-1 Bj-1+ Bj—1 1
By -1, B B . B.-+B =
o— 1, Bj— < Bi-1+Bj-1 Bi1+Bj1 ) fsi=n
Ay Ai_q
Ag— 1, A ’ i PRI
0o—1, Ai— ( Ai1+Bi1 A1+ B ) fsi=n

A; derives to the (2/ x 2/)-matrix

1 1 ... 1 1
3 3 ... 3 3
pIE)] .:. pIE)]
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Matrix multiplication for MTDD ..

Proposition

For given MTDD, A and B of the same height one can compute in time
O(|A] - |B|) an MTDD_ P of size O(|A| - |B|) with

val(P) = val(A) - val(B).
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Proof: Let A and B be variables of A and B, resp., of the same level.
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Matrix multiplication for MTDD ..
For given MTDD, A and B of the same height one can compute in time
O(|A] - |B|) an MTDD_ P of size O(|A| - |B|) with

val(P) = val(A) - val(B).

Proof: Let A and B be variables of A and B, resp., of the same level.

» If A— A+ Ay then A- B — (A1 B) + (A2 B)
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Matrix multiplication for MTDD ..
For given MTDD, A and B of the same height one can compute in time
O(|A] - |B|) an MTDD_ P of size O(|A| - |B|) with

val(P) = val(A) - val(B).

Proof: Let A and B be variables of A and B, resp., of the same level.
» If A— A+ Ay then A- B — (A1 B) + (A2 B)
» If B— B; + B> then AB—>(A81)—|—(ABQ)
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Matrix multiplication for MTDD ..

For given MTDD, A and B of the same height one can compute in time

O(|A] - |B|) an MTDD_ P of size O(|A| - |B|) with

val(P) = val(A) - val(B).

Proof: Let A and B be variables of A and B, resp., of the same level.

» If A— A+ Ay then A- B — (A1 B) + (A2 B)
» If B— B; + B> then AB—>(ABl)—|—(ABQ)

A1 1 A1 2 Bl 1 Bl 2
> If A ’ ' and B ' ' then
- ( Ax1 Ao > - ( Br1 Bop >

)
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Matrix multiplication for MTDD ..

For given MTDD, A and B of the same height one can compute in time

O(|A] - |B|) an MTDD_ P of size O(|A| - |B|) with

val(P) = val(A) - val(B).

Proof: Let A and B be variables of A and B, resp., of the same level.

» If A— A+ Ay then A- B — (A1 B) + (A2 B)
» If B— B; + B> then AB—>(ABl)—|—(ABQ)

A1 1 A1 2 Bl 1 Bl 2
> If A ’ ' and B ' ' then
- ( Ax1 Ao > - ( Br1 Bop >

)

A B < A11Bii+ A1pBo1 A1Bio+ A12Bos >
A21B11+ A2pBo1 Ax1Bip + AxpBop
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Equality checking for MTDD

Let S =(S,+) be a commutative monoid finitely generated by T.
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Let EQ(S) be the following problem:

INPUT: MTDD, Aj, Ay where only generators from [ appear in rules
QUESTION: Does val(A;) = val(Ay) hold?
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If S is cancellative, then EQ(S) € P, otherwise it is coNP-complete.
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If S is cancellative, then EQ(S) € P, otherwise it is coNP-complete.

Proof sketch:

Non-cancellative case: Prove coNP-hardness using a reduction from the
complement of SUBSETSUM.
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Equality checking for MTDD

Let S =(S,+) be a commutative monoid finitely generated by T.

Let EQ(S) be the following problem:
INPUT: MTDD, Aj, Ay where only generators from [ appear in rules.
QUESTION: Does val(A;) = val(Ay) hold?

If S is cancellative, then EQ(S) € P, otherwise it is coNP-complete.

Proof sketch:

Non-cancellative case: Prove coNP-hardness using a reduction from the
complement of SUBSETSUM.

Cancellative case: A finitely generated commutative cancellative monoid
can be embedded into a finitely generated abelian group.

It suffices to consider the cases S =Z and S = Z,, for n > 2.
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Equality checking for MTDD
Let A,’ = (N,', P,', 5,)
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Equality checking for MTDD
Let A; = (N,', P,',S,').

Start with the equation $; — S, = 0.
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Equality checking for MTDD
Let A; = (N,', P;, 5,)
Start with the equation $; — S, = 0.

At each step, we store finitely linear equation system
Xi1Air +Ai2Aio+ -+ XA =0 (1<i<n)

where the A; ; € N; U N> produce matrices of the same dimension.
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Start with the equation $; — S, = 0.

At each step, we store finitely linear equation system
Xi1Air +Ai2Aio+ -+ XA =0 (1<i<n)

where the A; ; € N; U N> produce matrices of the same dimension.

Reduction:

> If there is a rule A;j — B;; + C;j: Replace A;; by B, + G ;.
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Equality checking for MTDD
Let A; = (N,', P;, 5,)
Start with the equation $; — S, = 0.

At each step, we store finitely linear equation system
Xi1Air +Ai2Aio+ -+ XA =0 (1<i<n)

where the A; ; € N; U N> produce matrices of the same dimension.

Reduction:

> If there is a rule A;j — B;; + C;j: Replace A;; by B, + G ;.

» If for all A;; the rule has the form A;; — Bij Gy :
Di; Eij
Split every equation into four equations.
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Equality checking for MTDD
Let A; = (N,', P;, S,)
Start with the equation $; — S, = 0.

At each step, we store finitely linear equation system
Xi1Air +Ai2Aio+ -+ XA =0 (1<i<n)

where the A; ; € N; U N> produce matrices of the same dimension.

Reduction:
> If there is a rule A;j — B;; + C;j: Replace A;; by B, + G ;.

» If for all A;; the rule has the form A;; — ( Bij Gij >:

Split every equation into four equations.

By eliminating linearly dependent equations we can bound the number of
equations.
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Hard problems for MTDD
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Hard problems for MTDD

Theorem (hardness of determinant)

It is PSPACE-complete to check whether det(val(A)) = 0 for a given
MTDD A over Z.
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Theorem (hardness of determinant)

It is PSPACE-complete to check whether det(val(A)) = 0 for a given
MTDD A over Z.

Theorem (hardness of powering)

It is PSPACE-complete (coNP-complete) to check whether val(A)™ = 0
for a given MTDD A over Z and a binary (unary) encoded number m.
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for a given MTDD A over Z and a binary (unary) encoded number m.

Remarks:

» Counting versions are complete for #PSPACE (resp., #P).
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Theorem (hardness of determinant)

It is PSPACE-complete to check whether det(val(A)) = 0 for a given
MTDD A over Z.

Theorem (hardness of powering)

It is PSPACE-complete (coNP-complete) to check whether val(A)™ = 0
for a given MTDD A over Z and a binary (unary) encoded number m.
Remarks:

» Counting versions are complete for #PSPACE (resp., #P).

» All proofs use the fact that the adjacency matrix of the configuration
graph of a PSPACE-machine can be represented by a small MTDD.
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Hard problems for MTDD

Theorem (hardness of determinant)

It is PSPACE-complete to check whether det(val(A)) = 0 for a given
MTDD A over Z.
Theorem (hardness of powering)

It is PSPACE-complete (coNP-complete) to check whether val(A)™ = 0
for a given MTDD A over Z and a binary (unary) encoded number m.

Remarks:

» Counting versions are complete for #PSPACE (resp., #P).

» All proofs use the fact that the adjacency matrix of the configuration
graph of a PSPACE-machine can be represented by a small MTDD.
This allows to mimic Toda's proof for the fact that computing the
determinant and matrix powering for explicit matrices is #L-complete.
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Future work

» Compression of explicitly given matrices
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Future work

» Compression of explicitly given matrices

» Parallel algorithms
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