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Introduction Classifications Beyond

The Constraint Satisfaction Problem CSP(B) takes as input a
primitive positive ({1}-pp) sentence Φ, i.e. of the form

∃v1 . . . vj φ(v1, . . . , vj),

where φ is a conjunction of atoms, and asks whether B |= Φ.

This is equivalent to the Homomorphism Problem – has A a
homomorphism to B?

The structure B is known as the template.
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Example homomorphisms.
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Φ := ∃v1, v2, v3, v4, v5 E (v1, v2) ∧ E (v2, v1) ∧ E (v2, v3) ∧ E (v3, v2)
E (v3, v4) ∧ E (v4, v3) ∧ E (v4, v5)
E (v5, v4) ∧ E (v5, v1) ∧ E (v!, v5).
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Finite CSPs occur a lot in nature.

• CSP(Km) is graph m-colourability.

• CSP({0, 1}; RNAE ), where BNAE is
{0, 1}3 \ {(0, 0, 0), (1, 1, 1)} is not-all-equal 3-satisfiabilty.

• CSP({0, 1}; RTTT ,RTTF ,RTFF ,RFFF ) is 3-satisfiabilty.

• CSP({0, 1}; {0}, {1}, {(0, 0), (1, 1)}) is graph s-t
unreachability.

Also vertex cover, clique and hamilton path – but these require
non-fixed template.

Infinite CSPs also occur a lot in nature (another story...)
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Feder-Vardi dichotomy conjecture. Each CSP(B) is either in P or
is NP-complete.

• Compare with Ladner non-dichotomy for NP.

Still open, but known for:

• Structures size 2 (Schaefer 1978).

• Structures size 3 (Bulatov 2002).

• Structures with unary relations (Bulatov 2003).

• Smooth digraphs (Barto, Kozik and Niven 2010).

• Structures size 4 (Marković 2011?).
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The Quantified CSP QCSP(B) takes as input a positive Horn
({1, |B|}-pp) sentence Φ, i.e. of the form

∀v 1∃v 2 . . . ,Qv j φ(v 1, v 2, . . . , v j),

where φ is a conjunction of atoms, and asks whether B |= Φ.

QCSP(B) is always in Pspace.
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Extant classifications

QCSP classifications are harder than CSP classifications.

• Boolean structures. Dichotomy P, Pspace-complete.
(Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)

• Graphs of permutations. Trichotomy P, NP-complete,
Pspace-complete. (Börner et al. 2002.)

• Various digraphs Dichotomies and trichotomies NL,
NP-complete, Pspace-complete. (M., Madelaine, Dapić,
Marković. 2006, 2011, 2013, 2014)

• Structures with 2-semilattice polymorphism. Dichotomy P,
coNP-hard. (Chen 2004.)

The algebraic approach is weaker for QCSPs and the combinatorial
method has fewer constructs. Separating NP-hard into
NP-complete and Pspace-complete is especially difficult.
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For B with |B| = n, let X ⊆ {1, . . . , n}. The X -CSP(B) has input
of the form X -pp

• Φ := Q1x1Q2x2 . . .Qmxm φ(x1, x2, . . . , xm),

where φ is a positive conjunction and each Qi is ∃≥j for some
j ∈ X .

• The yes-instances are those for which B |= Φ.

Counting quantifiers not studied here before.

• ∃≥1 is ∃ and ∃≥n is ∀.

So,

• {1}-CSP(B) is CSP(B), and

• {1, |B|}-CSP(B) is QCSP(B).

X -CSP(B) is always in Pspace.
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Basic results.

(CSR 2012.) Consider X a singleton.

1. {1}-CSP(B) is in NP for all B. For each n ≥ 2, there exists a
template Bn of size n s.t. {1}-CSP(Bn) is NP-complete.

2. {|B|}-CSP(B) is in L for all B.

3. For each n ≥ 3, there exists a template Bn of size n s.t.
{j}-CSP(Bn) is Pspace-complete for all 1 < j < n.
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The case of Cycles.

Theorem (CSR 2012)

For n ≥ 3 and X ⊆ {1, . . . , n}, the problem X -CSP(Cn) is either in
L, is NP-complete or is Pspace-complete. Namely:

(i) X -CSP(Cn) ∈ L if n = 4, or 1 /∈ X , or n is even and
X ∩

{
2, . . . , n/2

}
= ∅.

(ii) X -CSP(Cn) is NP-complete if n is odd and X = {1}.
(iii) X -CSP(Cn) is Pspace-complete in all other cases.
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The case of Cliques.

Theorem (CSR 2012)

For n ∈ N and X ⊆ {1, . . . , n}:
(i) X -CSP(Kn) is in L if n ≤ 2 or X ∩

{
1, . . . , bn/2c

}
= ∅.

(ii) X -CSP(Kn) is NP-complete if n > 2 and X = {1}.
(iii) X -CSP(Kn) is Pspace-complete if n > 2 and either j ∈ X for

1 < j < n/2 or {1, j} ⊆ X for j ∈
{
dn/2e, . . . , n

}
.

This is a near trichotomy – where n is even and we have just ∃≥n/2

is open. Clearly {1}-CSP(K2) is in L.

Theorem (CSR 2014)

(iv -i) {2}-CSP(K4) is in P.

(iv -ii) {j}-CSP(K2j) is Pspace-complete, for j ≥ 3.
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Hell and Nešeťril

Theorem (Hell and Nešeťril 1990)

Let H be a (undirected) graph. Then

– CSP(H) ∈ P, if H is bipartite

– CSP(H) is NP-complete, otherwise.

What can we say when we augment ∃ with ∃≥2?
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Generalising Hell and Nešeťril

Let [1m2∗]-pp be the fragment of {1, 2}-pp in which m ∃≥2

quantifiers are followed by nothing but ∃≥1 = ∃.

Theorem (CSR 2012)

Let H be a graph. Then

– [2m1∗]-CSP(H) ∈ P for all m, if H is a forest or a bipartite
graph containing C4

– [2m1∗]-CSP(H) is NP-complete for some m, if otherwise.

Theorem (CSR 2014)

Let H be a graph. Then

– {1, 2}-CSP(H) ∈ P, if H is a forest or a bipartite
graph containing C4

– {1, 2}-CSP(H) is NP-hard, otherwise.
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Is that all!?

The sub-case {1, 2}-CSP(Pω) in P is already complicated.

• but seriously...

the contribution seems so slight, but the combinatorics of counting
quantifiers is so awkward!

• The CSR submission was 35 pages!

The algebraic method now exists for X -CSP, but it has not proven
to be much better.
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{2}-CSP(K4) is in P
We iteratively construct the following three sets:

R+, R−, both ternary and F ⊇ E .

X1 If there are x , y , z ∈ V (G ) such that {x , y} < z where xz , yz ∈ F ,
then add xyz into R−.

X2 If there are vertices x , y ,w , z ∈ V (G ) such that {x , y ,w} < z with
wz ∈ F and xyz ∈ R−, then add xyw into R+.

x y z
→

x y z

x y zw
→

x y zw

x y zw
→

x y zw

x y zw
→

x y zw

Figure : Illustrating rules (X1) and (X2)
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{2}-CSP(K4) is in P

X3 If there are x , y ,w , z ∈ V (G ) s.t. {x , y ,w} < z , wz ∈ F and xyz ∈
R+, then if {x , y} < w , add xyw to R−, else add xw , yw to F .

X4 If there are vertices x , y ,w , z ∈ V (G ) s.t. {x ,w} < y < z with
xyz ∈ R+ and wyz ∈ R−, then add xw to F , and add xyw to R+.

X5 If there are vertices x , y ,w , z ∈ V (G ) such that {x , y ,w} < z where
either xyz ,wyz ∈ R+, or xyz ,wyz ∈ R−, then add xyw into R+.

X6 If there are vertices x , y , q,w , z ∈ V (G ) such that
{x , y ,w} < q < z where either xyz ,wqz ∈ R+, or xyz ,wqz ∈ R−,
then add xyw and xyq into R+.

X7 If there are vertices x , y , q,w , z ∈ V (G ) such that
{x , y ,w} < q < z where either xyz ∈ R+ and wqz ∈ R−, or
xyz ∈ R− and wqz ∈ R+, then add xyq into R−, and if {x , y} < w ,
also add xyw into R−, else add xw and yw into F .
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{2}-CSP(K4) is in P

x y z x y z

x y zw

x

y

w

z x y zw

Figure : Five forbidden configurations of {2}-CSP(K4)
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Further interesting results

Theorem
If H is a bipartite graph, then either {1, 2}-CSP(H) is in P, or
{1, 2}-CSP(H) is Pspace-complete.

Theorem
Let H be a (partially reflexive) graph on at most three vertices,
then either {1, 2}-CSP(H) is in P or it is Pspace-complete.

The smallest graph H so that {1, 2}-CSP(H) is in NP-complete is
size 4.
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Theorem
Let H be a graph with reflexive dominating vertex, then
{1, 2}-CSP(H) is either in P or is NP-complete.

Theorem
Let H := Ka1,...,an be a complete multipartite graph with
respective parts of size a1, . . . , an.

(i) If n = 2, then {1, 2}-CSP(H) is in L.

(ii) If n > 2 and the multiset {{a1, . . . , an}} contains at most 1,
then {1, 2}-CSP(H) is NP-complete.

(iii) {1, 2}-CSP(H) is Pspace-complete all other cases.

Conjecture

Let H be a graph. Either {1, 2}-CSP(H) is in P, or it is
NP-complete, or it is Pspace-complete.
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Combinatorics to a Galois theory.

• A homomorphism from Bk to B is termed a k-ary
polymorphism.

Let Pol(B), sPol(B) be the polymorphisms, surjective pols of B.

• Inv(Pol(B)) = 〈B〉{1}-pp.

• Inv(sPol(B)) = 〈B〉{1,|B|}-pp.
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Call a function f : Bk → B expanding if,

• for each m, |X1|, . . . , |Xk | = m implies |f (X1, . . . ,Xk)| ≥ m.

Let ePol(B) be the expanding polymorphisms of B.

Theorem (Bulatov and Hedayaty 2012)

For finite B, Inv(ePol(B)) = 〈B〉{1,...,|B|}-pp.

There is some hope this can help in the Mal’tsev case.



Introduction Classifications Beyond

Conjecture.

• For j > 1, {1, j}-CSP(B) is either in P, NP-complete or
Pspace-complete.

• {1, . . . , |B|}-CSP(B) is either in P or Pspace-complete.


	Introduction
	Introduction

	Classifications
	Graph classes
	Generalising Hell-Nesetril

	Beyond
	Beyond


