Dynamic Complexity of
 Planar 3-connected Graph Isomorphism

Jenish C. Mehta

Dynamic Complexity

Fixed Problem

Input

Computed Solution

slight change

Complexity of
updating the solution?

Dynamic Complexity

Fixed Problem

Input
A Relation filled
with tuples
slight change
Insertion/Deletion
of a tuple

Computed Solution
A set of Relations

Complexity of
updating the solution?
Complexity Class in which the
Relations can be updated?

Definition. For any static complexity class C, we define its dynamic version, DynC as follows: Let $\rho=\left\langle R_{1}^{a_{1}}, \ldots, R_{s}^{a_{s}}, c_{1}, \ldots, c_{t}\right\rangle$, be any vocabulary and $S \subseteq \operatorname{STRUC}(\rho)$ be any problem. Let $R_{n, \rho}=\left\{\operatorname{ins}\left(i, a^{\prime}\right), \operatorname{del}\left(i, a^{\prime}\right), \operatorname{set}(j, a) \mid 1 \leq i \leq s, a^{\prime} \in\{0, \ldots, n-1\}^{a_{i}}, 1 \leq j \leq t\right\}$ be the request to insert/delete tuple a^{\prime} into/from the relation R_{i}, or set constant c_{j} to a.

Let $\operatorname{eval}_{n, \rho}: R_{n, \rho}^{*} \rightarrow \operatorname{STRUC}(\rho)$ be the evaluation of a sequence or stream of requests. Define $S \in \operatorname{DynC}$ iff there exists another problem $T \subset S T R U C(\tau)$ (over some vocabulary τ) such that $T \in \mathrm{C}$ and there exist maps f and g :

$$
f: R_{n, \rho}^{*} \rightarrow \operatorname{STRUC}(\tau), g: \operatorname{STRUC}(\tau) \times R_{n, \rho} \rightarrow \operatorname{STRUC}(\tau)
$$

satisfying the following properties:

1. (Correctness) For all $r^{\prime} \in R_{n, \rho}^{*},\left(\operatorname{eval}_{n, \rho}\left(r^{\prime}\right) \in S\right) \Leftrightarrow\left(f\left(r^{\prime}\right) \in T\right)$
2. (Update) For all $s \in R_{n, \rho}$, and $r^{\prime} \in R_{n, \rho}^{*}, f\left(r^{\prime} s\right)=g\left(f\left(r^{\prime}\right), s\right)$
3. (Bounded Universe) $\left\|f\left(r^{\prime}\right)\right\|=\left\|\operatorname{eval}_{n, \rho}\left(r^{\prime}\right)\right\|^{O(1)}$
4. (Initialization) The functions g and the initial structure $f(\emptyset)$ are computable in C as functions of n.

8 (Ansemine Brany

Dynamic Complexity

Problem: Vertex-colouring a graph using 3 colours?
Input: Relation (graph) $G(x, y)$
(a,b), (b,c), (c,d), (d,e), (e,f), $(a, c),(b, e),(b, f),(c, f),(g, h)$

Solution:
$R=a, e, g \quad B=b, d, h \quad G=c, f, i$
Change: Insertion/Deletion

of an edge, or tuple in G

Dynamic Complexity

Problem: Vertex-colouring a graph using 3 colours? Relations Maintained: $A(x, y), B(x, y, z, w), R(p, q, r)$, $D(a, b, c, d, e), C(s, r)$

Dynamic Complexity: Complexity class C, to update the relations A, B, C, D, R and

find the solution from them after insertion/deletion

Problem is in DynC

Dynamic Complexity

Problem: Parity of the String?
Input: Relation (string) $S(p, b) \quad 101110$ * 0 * 1
0123456789
Relations:
$B(z)=$ To find the parity of the string. The only tuple in the relation will be the parity of the string.

Simple DynP, DynL solution

Dynamic Complexity

Problem: Parity of the String?
Input: Relation (string) $S(p, b)$

$$
\begin{aligned}
& 101110 * 0 * 1 \\
& 0123456789
\end{aligned}
$$

Relations:
$A(x, y)=$ To store the old string
$B(z)=$ To find the parity of the string.
The only tuple in the relation will be the parity of the string.

Dynamic Complexity

Problem: Parity of the String?

$$
\begin{aligned}
& 101110 \text { * } 0 \text { * } \\
& 0123456789
\end{aligned}
$$

$\mathbf{S}(\mathrm{p}, \mathrm{b})=$
$(0,1),(1,0),(2,1),(3,1),(4,1),(5,0),(7,0),(9,1)$
$A(x, y)=$
$(0,1),(1,0),(2,1),(3,1),(4,1),(5,0),(7,0),(9,1)$
$B(z)=(1)$

Dynamic Complexity

Problem: Parity of the String?

User: insert(p, b)
$101110 * 0 * 1$
0123456789

$$
\begin{aligned}
\mathrm{A}^{\prime}(\mathrm{x}, \mathrm{y})= & \mathrm{A}(\mathrm{x}, \mathrm{y}) \text { OR } \\
& \mathrm{x}=\mathrm{p} \text { AND } \mathrm{y}=\mathrm{b}
\end{aligned}
$$

Dynamic Complexity

User: insert(p, b)
 [assume insert(6,1)]

101110 *0*1
 0123456789

$$
\begin{aligned}
& B^{\prime}(z)=A(p, b) \text { AND } B(z) \text { OR } \\
&!A(p, b) \text { AND } \\
& b=0 \text { AND } B(z) \text { OR } \\
& b=1 \text { AND } \\
& z=1 \text { AND } B(0) \text { OR } \\
& z=0 \text { AND } B(1)
\end{aligned}
$$

$R_{2}(v, x)=\operatorname{BFSEdge}(v, a, b) \wedge \operatorname{Path}(v, v, x,\{a, b\})$
$R_{1}(v, y)=\neg R_{2}(v, y)$
$P R(v, s, t)=R_{1}(v, s) \wedge R_{2}(v, t) \wedge E d g e(s, t)$ \{All edges connecting R_{1} and $\left.R_{2}\right\}$
$l_{\min }(v, w) \leftarrow \min \left\{\right.$ level $_{v}(s)+1+$ level $\left._{t}(w): P R(v, s, t)\right\}\{$ Length of the new shortest path from v to $w\}$
$P R_{\text {min }}(v, w, s, t)=R_{2}(v, w) \wedge P R(v, s, t) \wedge\left(\right.$ level $_{v}(s)+1+$ level $\left._{t}(w)=l_{\text {min }}(v, w)\right)\{$ Set of edges that lead to the shortest path\}
$P R_{l e x, \min }(v, w, s, t)=P R_{\text {min }}(v, w, s, t) \wedge(s \leq t) \wedge\left(\forall p, q, P R_{\text {min }}(v, w, p, q) \Rightarrow(s<p) \vee((s=\right.$ $p) \wedge(t \leq q)))$
\{Choosing the lexicographically smallest edge. $P R_{\text {lex }, \min }$ is the set of new edges that will be added. The queries are now exactly similar to insertion of edges\}
$\left\{\left|P_{2}\right|<\left|P_{1}\right|\right.$ or $\left|P_{1}\right|=\left|P_{2}\right| \wedge P_{2}<_{c} P_{1}$, and $\{x, y, z\}$ are on $\left.\left|P_{2}\right|\right\}$
$\left(l_{\text {old }}>l_{\text {new }}\right) \vee\left(l_{\text {old }}=l_{\text {new }} \wedge n_{1}>n_{2}\right)$ and
$\left(C P a t h\left(v, v_{e}, v, \alpha,\{x, y, z\}\right) \wedge C \operatorname{Path}\left(v, v_{e}, x, y, z\right)\right)\{$ All on the path from v to $\alpha\}$ $\vee\left(C \operatorname{Path}\left(\beta, \beta_{e}, w,\{x, y, z\}\right) \wedge C \operatorname{Path}\left(\beta, \beta_{e}, x, y, z\right)\right)\{$ All on the path from β to $w\}$ $\vee\left(C \operatorname{Path}\left(v, v_{e}, v, \alpha,\{x\}\right) \wedge C \operatorname{Path}\left(\beta, \beta_{e}, \beta, w,\{y, z\}\right) \wedge C \operatorname{Path}\left(\beta, \beta_{e}, \beta, y, z\right)\right)\left\{x\right.$ on path ${ }_{v, v_{e}}(v, \alpha)$ and y, z on $\left.\operatorname{path}_{\beta, \beta_{e}}(\beta, w)\right\}$
$\vee\left(C \operatorname{Path}\left(v, v_{e}, v, \alpha,\{x, z\}\right) \wedge C \operatorname{Path}\left(v, v_{e}, v, z, x\right) \wedge C \operatorname{Path}\left(\beta, \beta_{e}, \beta, w, y\right)\right)\left\{x, z\right.$ on path $v_{v, v_{e}}(v, \alpha)$ and y on $\left.\operatorname{path}_{\beta, \beta_{e}}(\beta, w)\right\}$
$\left\{\operatorname{EmbPar}\left(v, v_{e}, x, n_{p}\right)\right.$ denotes that the embedding number of x 's parent in $\left[v, v_{e}\right]$ is $\left.n_{p}\right\}$
$\operatorname{EmbPar}\left(v, v_{e}, x, n_{p}\right)=\exists x_{p}, \operatorname{Parent}\left(v, v_{e}, x_{p}, x\right) \wedge \operatorname{Emb}\left(x, x_{p}, n_{p}\right)$
$\operatorname{Emb}_{p}\left(v, v_{e}, t, x, n_{x}\right)=\operatorname{Edge}(x, t) \wedge \exists n_{p}, d_{t}, n_{\text {old }}, \operatorname{Deg}\left(t, d_{t}\right) \wedge \operatorname{EmbPar}\left(v, v_{e}, t, n_{p}\right) \wedge \operatorname{Emb}\left(t, x, n_{\text {old }}\right)$ $\wedge\left(n_{\text {old }} \geq n_{p} \Rightarrow n_{x}=n_{\text {old }}-n_{p}\right) \wedge\left(n_{\text {old }}<n_{p} \Rightarrow n_{x}=n_{\text {old }}+d_{x}-n_{p}\right)$
$E m b_{f}\left(v, x, n_{x}\right)=\exists n_{o l d}, d_{v}, \operatorname{Emb}\left(v, x, n_{o l d}\right) \wedge \operatorname{Deg}\left(v, d_{v}\right) \wedge\left(n_{x}=d_{v}-1-n_{o l d}\right)$
$P_{2}(c, x)=B F S E d g c(c, a, b) \wedge \operatorname{Path}(c, c, c \cdot\{a, b\})$
$P_{1}(r \cdot y)=\neg P_{2}(r, y)$
$P R(r, s, t)=P_{1}(r, s) \wedge P_{2}(r, t) \wedge$ Edge (s, t) \{All edges connecting P_{1} and
$I_{\min }(r \cdot w) \leftarrow \min \left\{l_{\text {for }} l_{v}(s)+1+\right.$ level $\left._{t}(w): \operatorname{PR}(r \cdot s . t)\right\}\{$ Length of th ow shortest path from c to " $\left.{ }^{\prime}\right\}$
 edges that lead to the shortest path\}
$P R_{\text {lex }, \min }\left(r \cdot w_{0}, s, t\right)=P R_{\min }(r \cdot u \cdot s, t) \wedge(s \leq t) \wedge(\forall p \cdot q \cdot P D \min (r \cdot u \cdot p \cdot q) \Rightarrow(s<p) \vee((s=$ p) $\wedge(t \leq q)))$
\{Choosing the lexicographically smallest edge. P'lí. is the set of new edges that will be added. The queries are now exactly similar to ins an of edges)
$\left\{\left|P_{2}\right|<\left|P_{1}\right|\right.$ or $\left|P_{1}\right|=\left|P_{2}\right| \wedge P_{2}<P_{1}$. and $\left(I_{\text {old }}>I_{\text {new }}\right) \vee\left(I_{\text {old }}=I_{\text {new }} \wedge \prime_{1}>\prime_{2}\right)$ and $\left(C\right.$ Path $\left(\cdots \cdot v_{e} \cdot \cdots \cdot a \cdot\{x \cdot y \cdot v\}\right) \wedge(P$ eth $(y)(x \cdot l \cdot y \cdot z))\{$ All on the path from "to a $\}$ $\left.\vee\left(C P a t h\left(3 \cdot \beta_{e} \cdot u \cdot\{x \cdot y \cdot z\}\right) \wedge(P a t), 3 . \beta_{e} \cdot x \cdot y \cdot z\right)\right)\left\{\right.$ All on the path from 3 to $\left.w^{\prime}\right\}$
 and!!: : on perth h.,.3. (3. (w) $\}$
 and !s on perth
$\{$ E. mb Pal EmbPar (r. ι_{c}
$E m b_{p}\left(r \cdot v_{e} \cdot t . n_{x}\right)=\operatorname{Edgg}(r \cdot t) \wedge \exists n_{p} \cdot d_{t} \cdot n_{\text {old }} . D_{c} g\left(t . d_{t}\right) \wedge E m b P a r\left(\cdots \cdot v_{e} . t . n_{p}\right) \wedge E m b\left(t, r \cdot n_{\text {old }}\right)$ $\wedge\left(n_{\text {old }} \geq n_{p} \Rightarrow n_{x}=n_{\text {old }}-n_{p}\right) \wedge\left(n_{\text {old }}<n_{p} \Rightarrow n_{x}=n_{\text {old }}+d_{x}-n_{p}\right)$
$E m b_{f}\left(r \cdot . r^{\prime} \cdot \|_{x}\right)=\exists n_{\text {old }} \cdot d_{v} \cdot E m b\left(r \cdot . r^{\prime} \cdot \|_{\text {old }}\right) \wedge D_{\bullet!}\left(r \cdot d_{v}\right) \wedge\left(\left\|_{x}=d_{v}-1-\right\|_{\text {old }}\right)$

Dynamic Complexity

Parity is NOT in FO (uniform $A C^{0}$)

Parity is in DynFO!

Undirected Reachability is in DynFO!

Dynamic Complexity

DST ('93) - FOIES, Acyclic Reach
IP ('97) - Dynamic Complexity, Undirected Reach Hesse ('01) - Reach in DynTC ${ }^{0}$
HI (‘02) - Complete problems for DynC
DHK ('14) - Triangulated PlanarReach in DynFO
Schwentick ('13) - Perspectives

Isomorphism in PlanarLand

	Trees	3-connected planar graphs	Planar Graphs
Quadratic/ Linear time	Elementary	Weinberg (‘66); Hopcroft, Tarjan ('73)	Hopcroft, Wong ('74)
Logspace	Lindell (‘92)	Datta, Limaye, Nimbhorkar (‘08)	Datta, Limaye, Nimbhorkar, Thierauf, Wagner (‘09)
DynFO	Etessami (‘98)	This work	

This work

Main Results:

1. Breadth-First Search for general undirected graphs is in DynFO
2. Isomorphism for Planar 3-connected graphs is in DynFO+

Breadth-First Search in DynFO (general undirected graphs)

Breadth-First Search in DynFO (general undirected graphs)

Main Idea:
Maintain BFS-tree from every vertex in the graph

Breadth-First Search in DynFO (general undirected graphs)

Edge (x, y)
$(a, b),(b, a)$,
(b,c), (c,b), ...
Level (v, x, l)
($a, b, 1$),
(a, d, 2), ...

BFSEdge (v, x, y)

(a, a, b),

$(a, b, e), \ldots$

Path ($\mathbf{v}, \mathbf{x}, \mathbf{y}, \mathbf{z}$)
(a, e, d, b),
(a, a, d, c), ...

Breadth-First Search in DynFO (general undirected graphs)

Lemma 1:

After the insertion of edge $\{a, b\}$, the level of a vertex x cannot change both in the BFS trees of a and b.

Breadth-First Search in DynFO (general undirected graphs)

Lemma 2:
If any vertex t lies on path (b, b, w) and on $\operatorname{path}(v, v, a)$, then the shortest path from v to x does not change after the insertion of (a, b)

Breadth-First Search in DynFO (general undirected graphs)

 insert (a,b)- Find the shorter path: path (a, a, x) or path (b, b, x) [Lemma 1]
- Only New path to consider: path $(v, v, a)+(a, b)+\operatorname{path}(b, b, x)$

Breadth-First Search in DynFO (general undirected graphs)

insert (a,b)

- Find the shorter path:
path (v, v, x) or
path $(v, v, a)+(a, b)+$
path (b, b, x)
[Lemma 2]
- Update the relations if new path

is shorter

Breadth-First Search in DynFO (general undirected graphs)

BFSEdge($v, x, y)$:

Edge (x, y) belongs to the BFS tree of vertex v, if:
There exists a vertex w in BFS tree of v whose level has not changed AND (x, y) lies on the path from v to w
 OR ...

Breadth-First Search in DynFO (general undirected graphs)

BFSEdge(v,x,y):

... OR
There exists a vertex w in BFS tree of v whose level has changed AND (x, y) lies on the path from v to a OR the path from b to
 $w \operatorname{OR}$ is (a, b).

Breadth-First Search in DynFO (general undirected graphs)

Path $(v, x, y, z):$

Breadth-First Search in DynFO (general undirected graphs)

Breadth-First Search in DynFO

 (general undirected graphs)
Lemma 3:

When an edge (a, b) separates a set of vertices T from the BFS tree of v, and r and x are vertices belonging to T, then path (r, r, x) cannot pass through (a, b)

Breadth-First Search in DynFO (general undirected graphs)

Consistency?

A Theorem of Whitney

Theorem (Whitney, 1933):
A planar 3-connected graph has a unique embedding on the sphere

Anti/clockwise from d :
e b a fe

Impossible to re-draw such that ordering is: e a f b e

Embedding a planar 3-connected graph

Emb ($\mathbf{v}, \mathbf{x}, \mathbf{n}$):
(d, a, 1),
(g, e, 3), ...
Face (f, x, y, z):
(F, e, g, f),
($F, \mathrm{~d}, \mathrm{f}, \mathrm{d}$),
(F, g, d, e), ...

Embedding a planar 3-connected graph

Lemma:

Two distinct vertices lie on at most one face in a 3-connected planar graph

Canonical Breadth-First Search
(Thierauf, Wagner, 2007)

Canonical Breadth-First Search in DynFO+ (planar 3-connected graphs)

Key Idea:
Maintain CBFS-trees from every vertex, for every edge taken as the starting embedding edge

Canonical Breadth-First Search in DynFO+ (planar 3-connected graphs)

Edge (x, y), Level ($\mathrm{v}, \mathrm{x}, \mathrm{l}$) CBFSEdge (v, q, x, y):
(b, d, c, g),
(b, d, b, a), ...
CPath ($\mathbf{v}, \mathrm{q}, \mathrm{x}, \mathrm{y}, \mathrm{z}$):
(b, d, f, g, c),
(b, d, e, f, d), ...

Canonical Breadth-First Search in DynFO+ (planar 3-connected graphs)

Canonical Ordering on Paths: P1 < ${ }_{c}$ P2 if

- |P1| < |P2| OR
- |P1| = |P2| AND

$$
\begin{aligned}
& d=\operatorname{Ica}(x, y), \\
& e m b(d, d p)=0,
\end{aligned}
$$

$e m b(d, d x)<e m b(d, d y)$

Canonical Breadth-First Search in DynFO+ (planar 3-connected graphs)

insert (a,b)

Canonical Breadth-First Search in DynFO+ (planar 3-connected graphs)

delete(a,b):
Use < ${ }_{c}$ relation to find the edge (p, r)

Canon from a CBFS tree

Canon(v,q,x) =
\{

($1, m$) :

for some ancestor w of x, let $p w$ be the parent of w, ppw be the parent of pw , emb (v, q, pw, ppw) = 0, $\mathrm{I}=\operatorname{level}(\mathrm{v}, \mathrm{w})$ AND m = emb (v, q, pw, w)

Canon from a CBFS tree

Starting vertex: b
Starting edge: (b, d)

Pre-canon:
$(a)=\{(b, 0),(a, 2)\}$
(b) $=\{(b, 0)\}$
$(c)=\{(b, 0),(c, 1)\}$
$(d)=\{(b, 0),(d, 0)\}$
$(e)=\{(b, 0),(d, 0),(e, 3)\}$
$(f)=\{(b, 0),(d, 0),(f, 2)\}$
$(g)=\{(b, 0),(c, 1),(g, 2)\}$

Canon from a CBFS tree

Starting vertex: b

Starting edge: (b, d)

Canon:
(a) $=\{(0,0),(1,2)\}$
(b) $=\{(0,0)\}$
(c) $=\{(0,0),(1,1)\}$
$(d)=\{(0,0),(1,0)\}$
$(e)=\{(0,0),(1,0),(2,3)\}$
$(f)=\{(0,0),(1,0),(2,2)\}$
$(\mathbf{g})=\{(0,0),(1,1),(2,2)\}$

Canon from a CBFS tree

Canon:

(a) $=\{(0,0),(1,2)\}$
(b) $=\{(0,0)\}$
(c) $=\{(0,0),(1,1)\}$
(d) $=\{(0,0),(1,0)\}$
$(e)=\{(0,0),(1,0),(2,3)\}$
(f) $=\{(0,0),(1,0),(2,2)\}$
$(\mathrm{g})=\{(0,0),(1,1),(2,2)\}$

Canon for the Graph:
$\operatorname{Canon}(G, b, d)=$ \{ ($\{(0,0),(1,2)\}$,
$\{(0,0),(1,0)\}), \ldots\}$

Isomorphism

Testing for isomorphism between \mathbf{G} and H : Graphs G and H are isomorphic if and only if: For some starting vertex/edge pair (v, q) in G, There exists a vertex/edge pair (w, r) in H, Such that, Canon(G,v,q)=Canon(H,w,r)

Open Problems

Is Planar Graph Isomorphism decidable in DynFO? Yes

Does the dynamic version of every language in L belong to DynFO?

No
(Static Complexity) Upper Bound for DynFO?

arxiv.org/abs/1312.2141

Thank You

