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n × n STRUCTURED MATRIX S

a) IS REPRESENTED WITH O(n) PARAMETERS (vs. n2)

b) IS LINKED TO POLYNOMIALS AND RATIONAL
FUNCTIONS

c) ITS INVERSE (IF IT EXISTS) KEEPS THE STRUCTURE

d) WE NEED Õ(n) OPS TO COMPUTE SV (vs. 2n2 − n)

e) WE NEED Õ(n) OPS TO SOLVE Sx = b (vs. ≈ 2
3n

3).

WE IGNORE LOGARITHMIC FACTORS:

Õ(n) MEANS O(n logd(n)) FOR A CONSTANT d



Table : FOUR CLASSES OF STRUCTURED MATRICES
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STRUCTURES AND PROPERTIES CAN BE EXTENDED TO

MORE GENERAL CLASSES T , H, Vs, AND Cs,t



TOEPLITZ AND HANKEL MATRICES ARE USED IN SIGNAL
AND IMAGE PROCESSING, ODE, PDE, INTEGRAL

EQUATIONS, MARKOV CHAINS, QUEUING THEORY ETC.

WE COVER VANDERMONDE AND CAUCHY MATRICES WITH
APPLICATIONS TO CLASSICAL POLYNOMIAL AND

RATIONAL EVALUATION AND INTERPOLATION, SKIPPING
THEIR OTHER IMPORTANT APPLICATIONS (STUDY OF

POTENTIAL FIELDS, PARTICLE SIMULATION ETC.)



T , H, V, AND C HAVE DISTINCT PROPERTIES

CAUCHY AND CAUCHY-LIKE MATRICES HAVE RATIONAL
ENTRIES.

COLUMN INTERCHANGE KEEPS CAUCHY-LIKE STRUCTURE,
BUT DESTROYS THE STRUCTURES OF T , H, V.

Cas,at = 1
aCs,t FOR ANY SCALAR a 6= 0 AND

Cs,t = ( 1
si−tj )

n−1
i ,j=0 = ( 1

si−c−(tj−c) )n−1
i ,j=0 = −CT

t,s,

BUT NOTHING SIMILAR IS KNOWN FOR Vs = (s ji )n−1
i ,j=0.



T , H, V, AND C HAVE DISTINCT PROPERTIES, BUT ...
THE REVERSION (UNIT HANKEL) MATRIX

J =


0 0 · · · 0 1
0 0 ..

.
1 0

... ..
.

..
.
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. ...

1 0 · · · 0 0

 .

LET US REVERSE VECTORS AND MATRICES:

J


v0

v1
...

vn−1

 =


vn−1

vn−2
...
v0


J2 = I , TJ IS H, JT IS H, HJ IS T , JH IS T ,
T J IS H, J T IS H, HJ IS T , JH IS T .

H−1 = J(HJ)−1, Hb = J(JH)b, Hy = b =⇒ JHy = Jb.



T , H, V, AND C HAVE DISTINCT PROPERTIES, BUT

VsT IS IN Vs, V T
s Vs IS IN H, VsV−1

t IS IN Cs,t, Cs,tTt IS IN Vt.

FAST INVERSION IN ONE OF THE CLASSES T , H, V, OR C,
ENABLES FAST INVERSION IN ALL 4 CLASSES; THE SAME
FOR PRODUCTS BY A VECTOR AND SOLVING A LINEAR

SYSTEM OF EQUATIONS.

P89 (ISSAC), P90 (MATH OF COMP)



”HORNER’S” POLYNOMIAL EVALUATION

((. . . (pnx + pn−1)x + · · ·+ p2)x + p1)x + p0

USES n MULTIPLICATIONS AND n ADDITIONS

TO EVALUATE A POLYNOMIAL

pnx
n + . . . , p2x

2 + p1x + p0 AT A POINT x = s.

THIS IS OPTIMAL P63 (Prob. Kib), P66(UMN),

BUT NOT SO FOR EVALUATION AT n POINTS s0, s1, . . . , sn−1



PROBLEM 1. MULTIPOINT POLYNOMIAL EVALUATION
OR VANDERMONDE-BY-VECTOR MULTIPLICATION

PROBLEM 2. POLYNOMIAL INTERPOLATION OR
A VANDERMONDE LINEAR SYSTEM OF EQUATIONS
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OR EQUIVALENTLY

vi = p(si ), i = 0, . . . , n − 1

FOR p(x) = p0 + p1x + · · ·+ pn−1x
n−1



PROBLEM 3. MULTIPOINT RATIONAL EVALUATION OR
CAUCHY-BY-VECTOR MULTIPLICATION

PROBLEM 4. RATIONAL INTERPOLATION OR
A CAUCHY LINEAR SYSTEM OF EQUATIONS


1
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u0

u1
...

un−1

 =


v0

v1
...

vn−1


OR EQUIVALENTLY

vi =
n−1∑
j=0

uj
si − tj

, i = 0, . . . , n − 1.



THE FOUR PROBLEMS CAN BE SOLVED IN NEARLY LINEAR
ARITHMETIC TIME, BY USING

O(n log2(n)) = Õ(n) AR. OPS,

BUT THE KNOWN NUMERICAL ALGORITHMS

RUN IN QUADRATIC ARITHMETIC TIME, OF ORDER n2.



OUR NUMERICAL ALGORITHMS USE

O(n log2(n/ε)) = Õ(n) AR. OPS FOR ε-EVALUATION,

AND

O(n log3(n/ε)) = Õ(n) FOR ε-INTERPOLATION.

log(n/ε) is O(log n) if ε = 1/nO(1).



EXTENSIONS:

VANDERMONDE-LIKE Vs,

CAUCHY-LIKE Cs,t,

TRANSPOSES V T
s AND VTs .

NOTE THAT CTs,t = −Ct,s



1. CV MATRICES.

2. HSS (LOCALLY LOW-RANK) MATRICES. FAST
COMPUTATIONS WITH THEM

3. CV MATRICES ≈ EXTENDED HSS MATRICES.

4. FAST NUMERICAL COMPUTATIONS WITH CV MATRICES.

5. EXTENSIONS AND CHALLENGES.



OUR BASIC TOOL IS

TRANSFORMATION OF MATRIX STRUCTURES



Table : VANDERMONDE AND CAUCHY MATRICES

.
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[MRT 05]: ANOTHER DIFFERENCE BETWEEN C AND V

MATRICES C CAN BE APPROXIMATED BY HSS MATRICES,
WHICH HAVE LOCALLY LOW RANKS.

FAST MULTIPLOLE ALGORITHM (FMM) OPERATES WITH
THEM FAST.

FMM IS ONE OF THE TEN MOST IMPORTANT ALGORITHMS
OF XX CENTURY.

=⇒ TRANSFORM V INTO C; V INTO C.



n-TH ROOTS OF UNITY: 1, ω, ω2, ω3, . . . , ωn−1,

ωn = 1. ω = exp(2π
√
−1/n) IS A PRIMITIVE nTH ROOT OF

UNITY.



Ω =


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

...
...

...

1 ωn−1 ω2(n−1) · · · ω(n−1)2

 = (ωij)n−1
i ,j=0.

Ω IS THE MATRIX OF DISCRETE FOURIER TRANSFORM
(DFT). IT IS A SPECIAL VANDERMONDE MATRIX.

FFT IS ALSO IN THE LIST OF TEN MOST IMPORTANT
ALGORITHMS OF XX CENTURY.

IT MULTIPLIES Ω AND Ω−1 BY A VECTOR BY USING
1.5n log2(n) (RESP., 1.5n log2(n) + n) AR. OPS,

VS. ORDER OF n2, (RESP. n3) FOR GENERAL n × n MATRIX.



FFT LINKS THE CLASSES
Vs WITH Cs,t(Ω) (CV MATRICES),

Vs WITH Cs,t(Ω) (CV-LIKE MATRICES),

THAT IS, FFT LINKS VANDERMONDE AND CAUCHY
MATRICES AND STRUCTURES.

t(Ω) = (1, ω, ω2, . . . , ωn−1)T IS FILLED WITH ROOTS OF
UNITY,

ω = exp((2π/n)
√
−1) IS A PRIMITIVE ROOT OF 1,

AND s = (si )
n−1
i=0 WITH ANY (UNRESTRICTED) si .

Vs =
1√
n

diag
(
sni − 1

)N−1

i=0
Cs,t(Ω) diag(ωj)n−1

j=0 Ω.



WE CAN MULTIPLY A LOW-RANK MATRIX BY A VECTOR
FAST.

AN 9× 7 MATRIX M OF A RANK 2 HAS A GENERATOR OF
LENGTH 2: M = FG , F IS 9× 2 and G IS 2× 7:

M =



f11 f12

f21 f22

f31 f32

f41 f42

f51 f52

f61 f62

f71 f72

f81 f82

f91 f92



(
g11 g12 g13 g14 g15 g16 g17

g21 g22 g23 g24 g25 26 g27

)
.

NUMBER OF ENTRIES IS (9 + 7) ∗ 2 < 9 ∗ 7,
GENERALLY (m + n)ρ� mn IF ρ� m, ρ� n

NUMBER OF FLOPS IS (2m − 1)n FOR Mv;
IT IS 2(m + n)ρ− n − ρ FOR FGv



WE CAN MULTIPLY A BANDED MATRIX BY A VECTOR
FAST.

A (1,2)-BANDED MATRIX

M =



Σ0 B0 C0 O O O O O
A1 Σ1 B1 C1 O O O O
O A2 Σ2 B2 C2 O O O
O O A3 Σ3 B3 C3 O O
O O O A4 Σ4 B4 C4 O
O O O O A5 Σ5 B5 C5

O O O O O A6 Σ6 B6

O O O O O O A7 Σ7


.

(l , u)-BANDED MATRIX BY A VECTOR: O((l + u)n) FLOPS.

(l , u)-BANDED LIN·SOLVE: O((l + u)2n) FLOPS.



WE CAN MULTIPLY AN HSS AND AN EXTENDED HSS
MATRIX BY A VECTOR FAST.



1. AN n × n HSS MATRIX HAS A BLOCK DIAGONAL WITH,
SAY, O(n log(n)) ENTRIES

2. RANKS ρ OF ITS OFF-DIAGONAL BLOCKS ARE, SAY,
O(log(n)).

AND EACH OFF-DIAGONAL BLOCK HAS A GENERATOR
(F ,G ) OF LENGTH ≤ ρ = O(log(n)).

3. THE INVERSE IS AGAIN HSS MATRIX WITH THE SAME
PROPERTIES.

BANDED MATRICES AND THEIR INVERSES ARE A SPECIAL
CASE OF HSS MATRICES.

THE FMM EXTENDS THE COST BOUNDS ABOVE TO HSS
MATRICES: USE SHORT GENERATORS FOR OFF-DIAGONAL

BLOCKS



WE WORK WITH EXTENDED HSS MATRICES, AND EXTEND
THE ALGORITHMS AND COST BOUNDS













[R85], [MRT05], [CGS07]:
ASSUME C = ( 1

si−tj )
n−1
i ,j=0 AND GLOBAL COMPLEX CENTER c

SUCH THAT |qi ,j | = | tj−csi−c | ARE SMALL FOR ALL (i , j).

THEN C CAN BE APPROXIMATED BY A MATRIX M OF A
LOW RANK.



LEMMA. WRITE q = t−c
s−c . LET |q| ≤ θ < 1. (THE PAIR s AND

t IS (θ, c)-SEPARATED.) THEN

1

s − t
=

1

s − c

ρ−1∑
h=0

(t − c)h

(s − c)h
+

qρ
s − c

, |qρ| =
|q|ρ

1− |q|
≤ θρ

1− θ
.

(0.1)

Proof.
1

s−t = 1
s−c

1
1−q , 1

1−q =
∑∞

h=0 q
h (NEWMAN’S EXPANSION).

SO 1
1−q =

∑ρ−1
h=0 q

h +
∑∞

h=ρ q
h =

∑ρ−1
h=0 q

h + qρ

1−q .



Theorem
[MRT05], [CGS07]. Assume two integers k and n such that
0 < k < n and a Cauchy matrix C = ( 1

si−tj )
n−1
i ,j=0. Suppose all pairs

(si , tj) are (θ, c)-separated from one another for 0 < θ < 1 and a

center c . Then C = FGT + ∆ where rank(Ĉ ) ≤ k + 1,

F = (1/(si − c)h+1)n−1,k
i ,h=0 , G

T = ((tj − c)h)n,kj ,h=0, and |∆| ≤
θk

(1−θ)δ

for δ = minn−1
i=0 |si − c |. (One can compute the matrices F and G

by using 2kn + 2n − 2 ar. ops.)

Proof.
Apply (0.1) for s = si , t = tj and all pairs {i , j}.



GENERALLY A CAUCHY MATRIX C = ( 1
si−tj )

n−1
i ,j=0 HAS NO

SUCH GLOBAL CENTERS, BUT FOR ANY CV MATRIX C WE
SEEK A SET OF LOCAL CENTERS THAT SUPPORT

APPROXIMATION BY AN HSS MATRIX, WHICH STILL CAN
BE MULTIPLIED BY A VECTOR AND INVERTED FAST.

WE SEEK A BLOCK DIAGONAL OF C WITH O(n log n)
ENTRIES OVERALL SUCH THAT EVERY OFF-DIAGONAL
BLOCK B THE RATIOS |qi ,j | = | tj−c(B)

si−c(B) | ARE SMALL FOR

SOME CENTER c = c(B) AND ALL PAIRS (si , tj) IN THE
BLOCK.



C = Cs,t =
(

1
si−tj

)n
i ,j=1

, tj = ωj and si UNRESTRICTED.

DEFINE LOCAL CENTERS AND DIAGONAL BLOCKS



1. REPRESENT ALL si = |si | exp(φi
√
−1) IN POLAR

COORDINATES AND REENUMERATE THEM IN
NONDECREASING ORDER OF ARGUMENTS φi .

SIMILARLY DO FOR ALL tj = exp(ψj

√
−1).

2. PARTITION THE UNIT CIRCLE z : |z | = 1 INTO k ARCS Aq

OF THE SAME LENGTH 2π/k . CHOOSE LOCAL CENTERS AT
THE MIDPOINTS.

3. DEFINE BLOCKS C = (Cpq)kp,q=1, Cpq =
(

1
si−tj

)
φi∈Ap ,ψj∈Aq



WE HAVE APPROXIMATED A CV
(CAUCHY-VANDERMONDE) MATRIX BY HSS MATRIX,
WHOSE OFF-TRIDIAGONAL (ADMISSIBLE) BLOCKS

HAVE SMALL RANKS



OUR PROGRESS:

WE USE O(n log2(n/ε)) = Õ(n) AR. OPS FOR ε-EVALUATION,

WE USE O(n log3(n/ε)) = Õ(n) FOR ε-INTERPOLATION.

log(n/ε) is O(log n) if ε = 1/nO(1).

MORE ADVANCED TECHNIQUES CAN PROBABLY SAVE A
LOGARITHMIC FACTOR FOR MULTIPLICATION BY A

VECTOR
WE CAN EXTEND THE RESULTS TO VANDERMONDE

TRANSPOSES, TO MATRICES
WITH A STRUCTURE OF VANDERMONDE TYPE, AND

TO A LARGE CLASS OF MATRICES

WITH A STRUCTURE OF CAUCHY TYPE (REPRESENTING
PROBLEMS 3 AND 4 OF RATIONAL EVALUATION AND

INTERPOLATION)



1. VANDERMONDE AND CAUCHY LINKS

2. APPROXIMATION OF CAUCHY BY HSS MATRICES.



3. CV, CV T MATRICES, AND EXTENDED HSS MATRICES.

4. FASTER VANDERMONDE AND CAUCHY COMPUTATIONS,
EXTENSIONS

5. A CHALLENGE: NEW TRANSFORMATIONS OF MATRIX
STRUCTURES WITH ALGORITHMIC APPLICATIONS BY

EXTENDING [P 1990] (MATH. OF COMP.)



CAUCHY-LIKE LINEAR SYSTEM =⇒ CV-LIKE LINEAR
SYSTEM + CV-BY-VECTOR

Cs,tx = b.

WRITE x = Ct,t(Ω)y,

C̃ = Cs,tCt,t(Ω)y IS CV-LIKE.

THEN C̃y = b.


