

First-Order Logic on CPDA Graphs

Paweł Parys

University of Warsaw

Higher order pushdown systems (automata) - HOPDS

A 1-stack is an ordinary stack. A 2-stack
(resp. (n+1)-stack) is a stack of 1-stacks (resp. n-stacks).

Operations on 2-stacks: (s
i
 are 1-stacks, top of stack is on right)

push
1
x : [s

1
...s

i-1
[a

1
...a

j-1
a

j
]] -> [s

1
...s

i-1
[a

1
...a

j-1
a

j
x]]

pop
1
 : [s

1
...s

i-1
[a

1
...a

j-1
a

j
]] -> [s

1
...s

i-1
[a

1
...a

j-1
]]

push
2
 : [s

1
...s

i-1
s

i
] -> [s

1
...s

i-1
s

i
s

i
]

pop
2
 : [s

1
...s

i-1
s

i
] -> [s

1
...s

i-1
]

An order-n PDS has an order-n stack, and
has push

i
 and pop

i
 for each i∈{1,...,n}.

● on each “a” put a symbol on the stack

a a a a

Example: language {anbncn}

Higher order pushdown systems (automata) - HOPDS

● on each “a” put a symbol on the stack
● copy the 1-stack (the push

2
 operation)

a a a a b

Example: language {anbncn}

in our picture 2-stack grows to the right

Higher order pushdown systems (automata) - HOPDS

● on each “a” put a symbol on the stack
● copy the 1-stack (the push

2
 operation)

● on each “b” on input remove one symbol from the stack

a a a a b b b b

Example: language {anbncn}

Higher order pushdown systems (automata) - HOPDS

● on each “a” put a symbol on the stack
● copy the 1-stack (the push

2
 operation)

● on each “b” on input remove one symbol from the stack
● on each “c” on input remove one symbol from the stack

a a a a b b b b c c c c

Example: language {anbncn}

Higher order pushdown systems (automata) - HOPDS

Configuration graph

(?, q1)  (push1a, q1)a

(?, q1)  (push1b, q1)b

(?, q1)  (no-op, q2)ε

(a, q2)  (pop1, q2)a

(b, q2)  (pop1, q2)b

...

a
a

b
b

a a b
b

b
ba

a

...

ε-closure of the configuration graph

(?, q1)  (push1a, q1)a

(?, q1)  (push1b, q1)b

(?, q1)  (no-op, q2)ε

(a, q2)  (pop1, q2)a

(b, q2)  (pop1, q2)b

...

a
a b

b
a a

b

b

b
ba

a

– remove epsilon-edges (blue)
– add edges for sequences of epsilons ended by a letter (red)

...

a a

b b

b
a

configuration tree
(unfolding of the configuration graph)

a graph: its unfolding:

a

b

c

a

b c

a

b c

a

…

a

…

a

b c

a

…

a

…

(a single configuration is represented
by several nodes of the tree)

Logics

We are interested in decidability of logics (FO, MSO) on
configuration graphs/trees:
INPUT: a pushdown system S and a formula ϕ
QUESTION: is ϕ satisfied in the configuration graph/tree of S?

MSO logic = FO logic + quantification over sets of nodes

It is an expressive logic, we can e.g. write that:
– a node with state q is reachable
– there exists a loop of odd length
– there exists a path containing infinitely many “a”

MSO logic on HOPDS graphs/trees

[Caucal 2002]
ε-closures of
n-PDS graphs

graphs that can be MSO-interpreted
in configuration trees of (n-1)-PDS

=

We are interested in decidability of logics (FO, MSO) on
configuration graphs/trees:
INPUT: a pushdown system S and a formula ϕ
QUESTION: is ϕ satisfied in the configuration graph/tree of S?

MSO logic on HOPDS graphs/trees

[Caucal 2002]
ε-closures of
n-PDS graphs

graphs that can be MSO-interpreted
in configuration trees of (n-1)-PDS

Corollary: an MSO-formula over an n-PDS graph can be
translated to a formula over an (n-1)-PDS tree.

Fact (nontrivial): an MSO-formula over the unfolding of a graph G
(over an n-PDS tree) can be translated to a formula over G (over an
n-PDS graph).

Thus MSO logic over HOPDA graphs and trees is decidable.

Moreover, these graphs have a nice, logical, machine-
independent characterization.

We are interested in decidability of logics (FO, MSO) on
configuration graphs/trees:
INPUT: a pushdown system S and a formula ϕ
QUESTION: is ϕ satisfied in the configuration graph/tree of S?

=

Fact (nontrivial): an MSO-formula over the unfolding of a graph G
(over an n-PDS tree) can be translated to a formula over G (over an
n-PDS graph).

We are interested in decidability of logics (FO, MSO) on
configuration graphs/trees:
INPUT: a pushdown system S and a formula ϕ
QUESTION: is the ϕ satisfied in the configuration graph/tree of S?

MSO logic on HOPDS graphs/trees

[Caucal 2002]
ε-closures of
n-PDS graphs

graphs that can be MSO-interpreted
in configuration trees of (n-1)-PDS=

Corollary: an MSO-formula over an n-PDS graph can be
translated to a formula over an (n-1)-PDS tree.

Thus MSO logic over HOPDA graphs and trees is decidable.

Moreover, these graphs have a nice, logical, machine-
independent characterization.

Of course there exist graphs
having undecidable
MSO logic, e.g. a grid:

Stack vs. recursion

programs with stack = recursive programs

What if we allow higher-order recursion (functions taking functions
as parameters)?

Stack vs. recursion

programs with stack = recursive programs

What if we allow higher-order recursion (functions taking functions
as parameters)?

[Knapik, Niwiński, Urzyczyn 2002]

n-HOPDS trees = trees generated by safe recursion schemes
 of order n

programs without variables
ranging over infinite domains

a syntactic restriction (functions of order k
cannot contain values of order <k)

Stack vs. recursion

programs with stack = recursive programs

What if we allow higher-order recursion (functions taking functions
as parameters)?

[Knapik, Niwiński, Urzyczyn 2002]

n-HOPDS trees = trees generated by safe recursion schemes
 of order n

programs without variables
ranging over infinite domains

a syntactic restriction (functions of order k
cannot contain values of order <k)

NO! - [P. 2012] There exists a tree generated by a recursion scheme
of order 2, which is not generated by a safe recursion scheme of any
order.

Maybe each recursion scheme can be converted into equivalent safe scheme?

Stack vs. recursion

programs with stack = recursive programs

What if we allow higher-order recursion (functions taking functions
as parameters)?

[Knapik, Niwiński, Urzyczyn 2002]

n-HOPDS trees = trees generated by safe recursion schemes
 of order n

programs without variables
ranging over infinite domains

a syntactic restriction (functions of order k
cannot contain values of order <k)

NO! - [P. 2012] There exists a tree generated by a recursion scheme
of order 2, which is not generated by a safe recursion scheme of any
order.

Maybe each recursion scheme can be converted into equivalent safe scheme?

Motivation: verification of programs
– for arbitrary programs even basic
 problems are undecidable
– some properties (which we may want
 to check) remain true even after
 abstracting away values of variables
– here we only consider decidability/
 undecidability, but there exist practical
 tools verifying higher-order programs

Stack vs. recursion

[Hague, Murawski, Ong, Serre 2008]

trees generated by safe
recursion schemes of order n

configuration trees
of n-HOPDS=

trees generated by all
recursion schemes of order n

configuration trees of Collapsible
Pushdown Systems of order n=

Collapsible Pushdown Systems (CPDS)

It is an extension of HOPDS:
– Each element of a 1-stack can contain a link (pointer) to some
 prefix of its k-stack (for any order k).
– For each k we have operation push1,kx – it pushes x together
 with a link to the topmost k-stack without its topmost (k-1)-stack.
– Higher order push operations do not modify the pointers.
– A new operation “collapse” replaces the topmost k-stack by the
 k-stack from the pointer contained in the topmost stack symbol.

Collapsible Pushdown Systems (CPDS)

It is an extension of HOPDS:
– Each element of a 1-stack can contain a link (pointer) to some
 prefix of its k-stack (for any order k).
– For each k we have operation push1,kx – it pushes x together
 with a link to the topmost k-stack without its topmost (k-1)-stack.
– Higher order push operations do not modify the pointers.
– A new operation “collapse” replaces the topmost k-stack by the
 k-stack from the pointer contained in the topmost stack symbol.

Collapsible Pushdown Systems (CPDS)

It is an extension of HOPDS:
– Each element of a 1-stack can contain a link (pointer) to some
 prefix of its k-stack (for any order k).
– For each k we have operation push1,kx – it pushes x together
 with a link to the topmost k-stack without its topmost (k-1)-stack.
– Higher order push operations do not modify the pointers.
– A new operation “collapse” replaces the topmost k-stack by the
 k-stack from the pointer contained in the topmost stack symbol.

push1,3

Collapsible Pushdown Systems (CPDS)

It is an extension of HOPDS:
– Each element of a 1-stack can contain a link (pointer) to some
 prefix of its k-stack (for any order k).
– For each k we have operation push1,kx – it pushes x together
 with a link to the topmost k-stack without its topmost (k-1)-stack.
– Higher order push operations do not modify the pointers.
– A new operation “collapse” replaces the topmost k-stack by the
 k-stack from the pointer contained in the topmost stack symbol.

push1,3
push2

Collapsible Pushdown Systems (CPDS)

It is an extension of HOPDS:
– Each element of a 1-stack can contain a link (pointer) to some
 prefix of its k-stack (for any order k).
– For each k we have operation push1,kx – it pushes x together
 with a link to the topmost k-stack without its topmost (k-1)-stack.
– Higher order push operations do not modify the pointers.
– A new operation “collapse” replaces the topmost k-stack by the
 k-stack from the pointer contained in the topmost stack symbol.

push1,3
push2
push1,2

Collapsible Pushdown Systems (CPDS)

It is an extension of HOPDS:
– Each element of a 1-stack can contain a link (pointer) to some
 prefix of its k-stack (for any order k).
– For each k we have operation push1,kx – it pushes x together
 with a link to the topmost k-stack without its topmost (k-1)-stack.
– Higher order push operations do not modify the pointers.
– A new operation “collapse” replaces the topmost k-stack by the
 k-stack from the pointer contained in the topmost stack symbol.

push1,3
push2
push1,2
push2

Collapsible Pushdown Systems (CPDS)

It is an extension of HOPDS:
– Each element of a 1-stack can contain a link (pointer) to some
 prefix of its k-stack (for any order k).
– For each k we have operation push1,kx – it pushes x together
 with a link to the topmost k-stack without its topmost (k-1)-stack.
– Higher order push operations do not modify the pointers.
– A new operation “collapse” replaces the topmost k-stack by the
 k-stack from the pointer contained in the topmost stack symbol.

push1,3
push2
push1,2
push2
push2

Collapsible Pushdown Systems (CPDS)

push1,3
push2
push1,2
push2
push2
push3

Collapsible Pushdown Systems (CPDS)

push1,3
push2
push1,2
push2
push2
push3
collapse

Collapsible Pushdown Systems (CPDS)

push1,3
push2
push1,2
push2
push2
push3
collapse
collapse

Stack vs. recursion

[Hague, Murawski, Ong, Serre 2008]

trees generated by safe
recursion schemes of order n

configuration trees
of n-HOPDS=

trees generated by all
recursion schemes of order n

configuration trees of Collapsible
Pushdown Systems of order n=

Stack vs. recursion

[Hague, Murawski, Ong, Serre 2008]

trees generated by safe
recursion schemes of order n

configuration trees
of n-HOPDS=

trees generated by all
recursion schemes of order n

configuration trees of Collapsible
Pushdown Systems of order n=

Moreover, these trees have decidable MSO theory!

However, the configuration graph of some 2-CPDA
has undecidable MSO theory!

Stack vs. recursion

[Hague, Murawski, Ong, Serre 2008]

trees generated by safe
recursion schemes of order n

configuration trees
of n-HOPDS=

trees generated by all
recursion schemes of order n

configuration trees of Collapsible
Pushdown Systems of order n=

Moreover, these trees have decidable MSO theory!

However, the configuration graph of some 2-CPDA
has undecidable MSO theory!

What about First-Order logic?

[Kartzow 2010] FO over ε-closures of 2-CPDA graphs is decidable
 (these graphs are tree-automatic).

Logics on CPDA-graphs

k-CPDA, k≥2 MSO  undecidable

[Broadbent 2012]

2-CPDA FO  decidable

k-CPDA, k≥3 FO undecidable

Logics on CPDA-graphs

k-CPDA, k≥2 MSO  undecidable

[Broadbent 2012]

2-CPDA FO  decidable

k-CPDA, k≥3 FO undecidable

a lot of results on the border:

nm-CPDA, n≥3, 3≤m≤n Σ2 form. undecidable

n-CPDA in which only links
of order m are allowed

∃x...∃y (∀z...∀t (quantifier free))

Logics on CPDA-graphs

k-CPDA, k≥2 MSO  undecidable

[Broadbent 2012]

2-CPDA FO  decidable

k-CPDA, k≥3 FO undecidable

a lot of results on the border:

nm-CPDA, n≥3, 3≤m≤n Σ2 form. undecidable

nm-CPDA, n≥4, 2≤m≤n-2 Σ1 form. undecidable

32-CPDA Σ2 form. undecidable on  ε-closure

∃x...∃y (quantifier free)

Logics on CPDA-graphs

k-CPDA, k≥2 MSO  undecidable

[Broadbent 2012]

2-CPDA FO  decidable

k-CPDA, k≥3 FO undecidable

a lot of results on the border:

nm-CPDA, n≥3, 3≤m≤n Σ2 form. undecidable

nm-CPDA, n≥4, 2≤m≤n-2 Σ1 form. undecidable

32-CPDA Σ2 form. undecidable on  ε-closure

2-CPDA (FO+transitive closure of quant.free formulas)  decidable

32-CPDA FO  decidable without ε-closure

nn-CPDA and 32-CPDA Σ1 form.  decidable

Only a few cases left, among them Σ1 formulas on 3-CPDA graphs
without ε-closure (the only one for order 3).

Contribution 1: it is decidable!!! (we extend Broadbent's methods)

Logics on CPDA-graphs (with unreachable configurations)

Notice that FO (in graphs without ε-closure) describes only local
properties, but we restrict our graph to configurations reachable
from the initial one. Reachability is not expressible in FO, it is much
more difficult. So maybe this is the main problem for decidability of FO?
What if we consider graphs without restricting to reachable confs?

Logics on CPDA-graphs (with unreachable configurations)

But which configurations are allowed in our graph?
Three possibilities:
1) only those which can be constructed from the empty stack using
 stack operations (constructible stacks)
2) also non-constructible, but links have to point to prefixes of the stack
 (links as numbers/pointers – classical stacks)
3) links are allowed to contain any stack, not necessarily a prefix of the
 “external” stack (links containing stacks – annotated stacks)

Notice that FO (in graphs without ε-closure) describes only local
properties, but we restrict our graph to configurations reachable
from the initial one. Reachability is not expressible in FO, it is much
more difficult. So maybe this is the main problem for decidability of FO?
What if we consider graphs without restricting to reachable confs?

Logics on CPDA-graphs
(with unreachable configurations, without ε-closure)

Which configurations are allowed in our graph?
Three possibilities:
1) only those which can be constructed from the empty stack using
 stack operations (constructible stacks)
2) also non-constructible, but links have to point to prefixes of the stack
 (links as numbers/pointers – classical stacks)
3) links are allowed to contain any stack, not necessarily a prefix of the
 “external” stack (links containing stacks – annotated stacks)

Case 2 – FO undecidable (for 3-CPDA) [Broadbent 2012]

This paper:

Case 1 – FO undecidable (for 4-CPDA) (a similar encoding to Broadbent's)

Case 3 – FO decidable (the graph is very uniform, for each quantifier it is enough
 to check candidates from a finite set)

Conclusion

Three new results about decidability of FO on CPDA graphs
2 x decidability
1 x undecidability
filling holes left in earlier results.

Thank you.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

