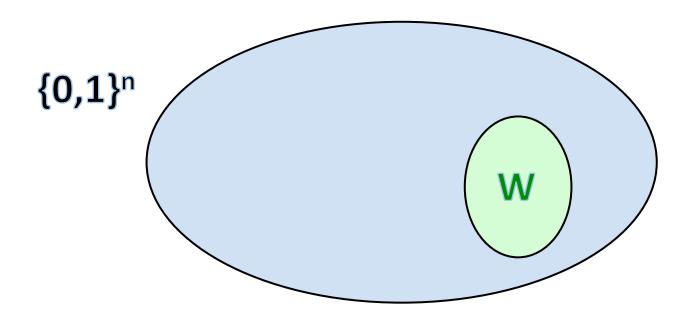
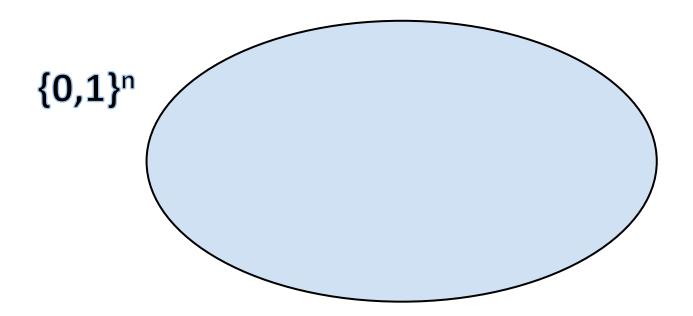
The Query Complexity of Witness Finding

Akinori Kawachi Ben Rossman Osamu Watanabe Tokyo Tech NII Tokyo Tech

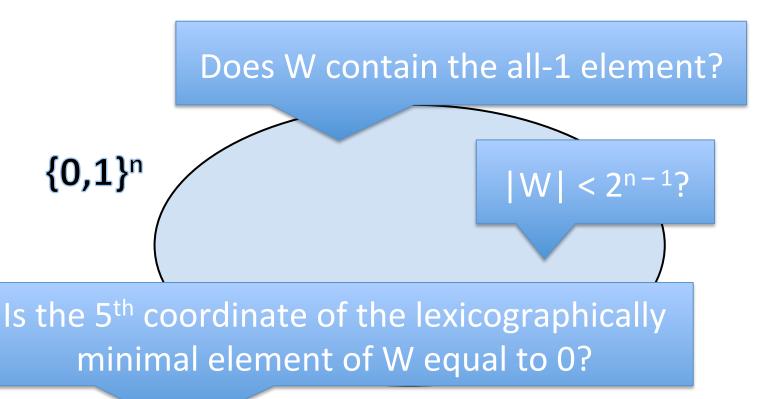
nonempty witness set $W \subseteq \{0,1\}^n$



• Hidden nonempty witness set $W \subseteq \{0,1\}^n$



- Hidden nonempty witness set $W \subseteq \{0,1\}^n$
- We ask queries (yes/no question about W)

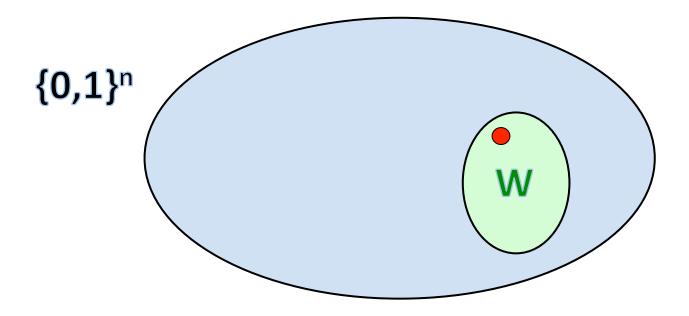


- Hidden nonempty witness set $W \subseteq \{0,1\}^n$
- We ask queries (yes/no question about W)

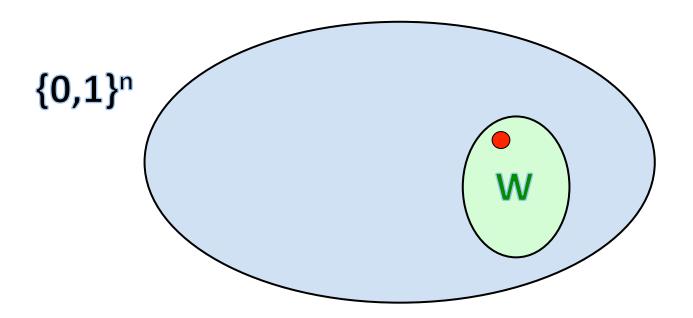
Queries are *randomized* and *non-adaptive*.

{0,1}ⁿ

- After receiving yes/no answers to our queries,
 we output an element x ∈ {0,1}ⁿ
- We succeed iff $x \in W$

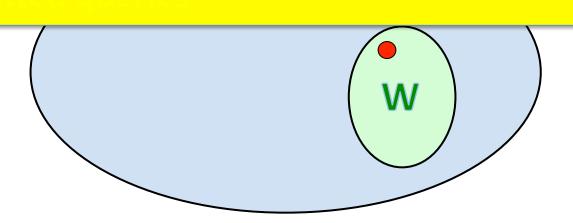


• Goal: Succeed with probability > 1/2 for every nonempty W $\subseteq \{0,1\}^n$



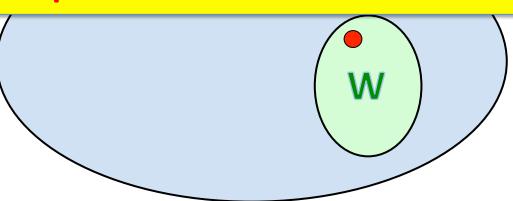
• Goal: Succeed with probability > 1/2 for every nonempty W $\subseteq \{0,1\}^n$

We are interested in the *query complexity* of this problem: the fewest number of (non-adaptive, randomized) queries



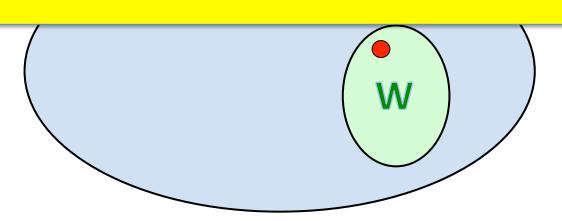
• Goal: Succeed with probability > 1/2 for every nonempty W $\subseteq \{0,1\}^n$

We are interested in the *query complexity* of this problem: the fewest number of (non-adaptive, randomized) queries **from a specific class of permitted queries**

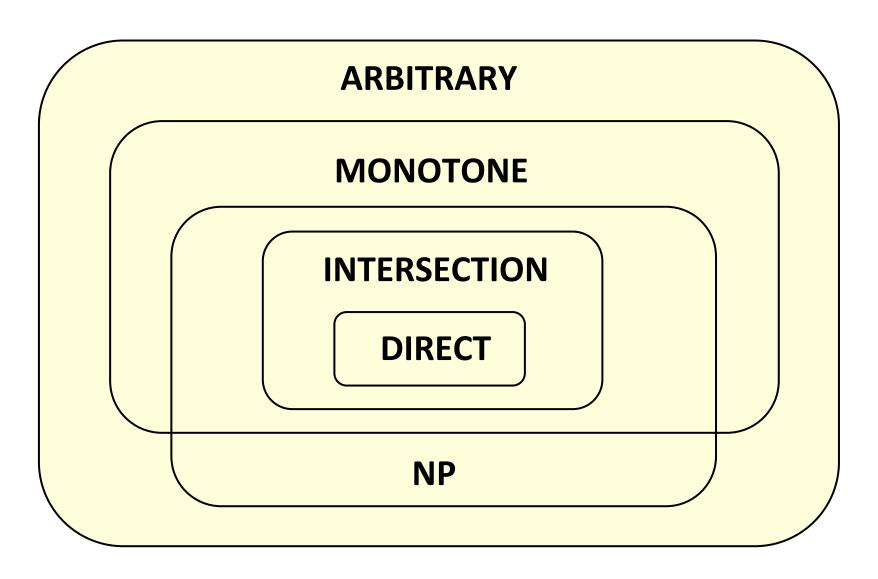


• Goal: Succeed with probability > 1/2 for every nonempty W $\subseteq \{0,1\}^n$

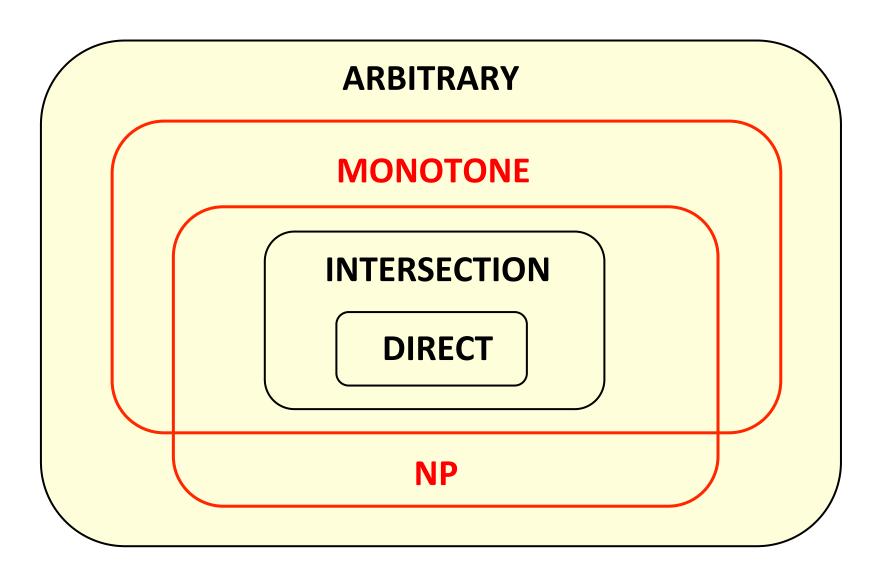
Our results are tight, information-theoretic **lower bounds** on the query complexity of witness finding for a few natural classes of queries.



Classes of Queries



Classes of Queries



Two Trivial Classes

ARBITRARY

DIRECT

Two Trivial Classes

DIRECT QUERY

"Is $x \in W$?" where $x \in \{0,1\}^n$

2ⁿ direct queries are necessary and sufficient to find a witness in every W with probability > ½

ARBITRARY QUERY

"Is $W \in F$?" where $F \subseteq Pow(\{0,1\}^n)$

n arbitrary queries are necessary and sufficient

Intersection Queries

ARBITRARY INTERSECTION

Intersection Queries

INTERSECTION QUERY

"Is $S \cap W$ nonempty?" where $S \subseteq \{0,1\}^n$

Theorem (Ben-David, Chor, Goldreich, Luby)

Witness finding is solvable with $O(n^2)$ intersection queries.

We show

Witness finding requires $\Omega(n^2)$ intersection queries.

Witness finding is solvable with $O(n^2)$ intersection queries.

Uses Valiant-Vazirani Isolation Lemma.

Witness finding is solvable with $O(n^2)$ intersection queries.

- If we know that 2^k ≤ |W| ≤ 2^{k+1}, then O(n)
 intersection queries suffice (⇒ O(n²) upper bound)
- For random S ⊆ {0,1}ⁿ of density 2^{-k},
 |S ∩ W| = 1 with constant probability (> 1/100).
- With 2 log|S| (= O(n)) simultaneous intersection queries, we can detect whether |S ∩ W| = 1 and identify the unique element: if S = {x₁,...,x_{|S|}}, we ask "does W intersect { x_i | tth bit of i equals b }?"

for all $i \in \{1,...,log|S|\}$ and $b \in \{0,1\}$

Witness finding is solvable with $O(n^2)$ intersection queries.

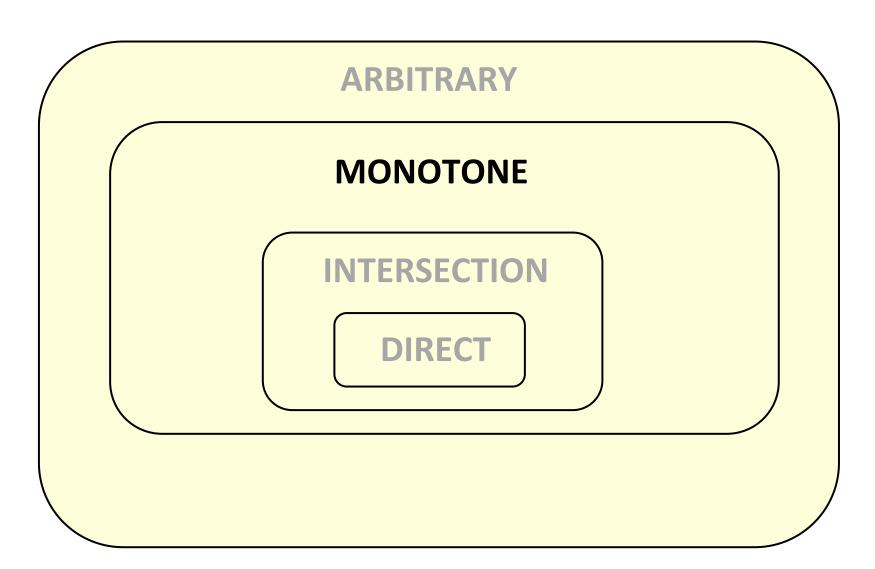
Gives an BPP_{II}^{NP} algorithm (search-to-decision reduction) that solves Search(Circuit-SAT) by making O(n²) non-adaptive calls to an oracle for Decision(Circuit-SAT).

Witness finding is solvable with $O(n^2)$ intersection queries.

Gives an BPP_{II}^{NP} algorithm (search-to-decision reduction) that solves Search(Circuit-SAT) by making O(n²) non-adaptive calls to an oracle for Decision(Circuit-SAT).

Obs: This search-to-decision reduction is **black-box**: it never "looks" at the input circuit C; it merely requires an oracle to the witness set $\{x \mid C(x) = 1\}$.

Monotone Queries



Monotone Queries

An monotone query is a query of the form

"
$$f(W) = 1?$$
"

where $f : Pow(\{0,1\}^n) \longrightarrow \{0,1\}$ is a monotone function

Every intersection query is monotone.

Monotone Queries

An monotone query is a query of the form

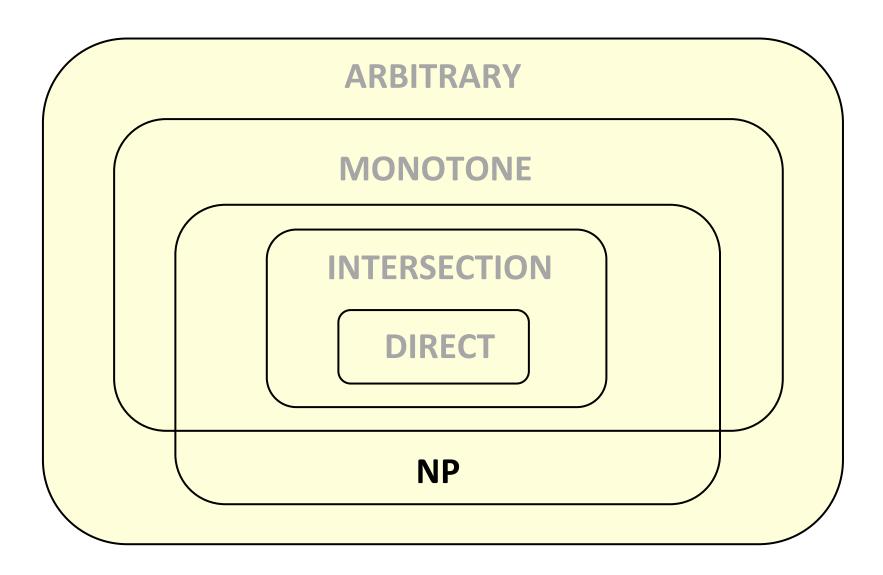
"
$$f(W) = 1?$$
"

where $f : Pow(\{0,1\}^n) \longrightarrow \{0,1\}$ is a monotone function

Every intersection query is monotone.

Theorem

Witness finding requires $\Omega(n^2)$ monotone queries.



An **NP query** is a query of the form

$$^{"}A(W) = 1?"$$

where A is a fixed *non-deterministic algorithm* which makes *poly(n) direct queries* and outputs a single bit

 A can guess a witness in W. However, A cannot guess the lexicographically minimal element of W.

An **NP query** is a query of the form

"
$$A(W) = 1?$$
"

where A is a fixed *non-deterministic algorithm* which makes *poly(n) direct queries* and outputs a single bit

- NP queries not necessarily monotone (& vice-versa)
- However, every intersection query is an NP query: given $S \subseteq \{0,1\}^n$, non-deterministically guess $x \in S$ and verify that $x \in W$ using a single direct query.

Main Theorem

Witness finding requires $\Omega(n^2)$ NP queries.

This shows that the procedure of Ben-David et al.
has <u>optimal</u> query complexity among *black-box*BPP_{II}^{NP} search-to-decision reductions.

PROOF SKETCHES

Theorem

Witness finding requires $\Omega(n^2)$ intersection queries.

Theorem

Witness finding requires $\Omega(n^2)$ intersection queries.

- Want a lower bound on *randomized algorithms* which output an element of W with probability > $\frac{1}{2}$ for *every fixed* nonempty witness set W $\subseteq \{0,1\}^n$.
- Invoking Yao's Minimax Principle, we flip the situation: we fix a *distribution* on witness sets and show that every *deterministic algorithm* which succeeds on this distribution with probability > $\frac{1}{2}$ requires $\Omega(n^2)$ intersection queries.

- We define the distribution on W as follows:
 - 1. pick $K \in \{1,...,n\}$ uniform at random,
 - 2. pick W uniformly among subsets of $\{0,1\}^n$ of size 2^K

- We define the distribution on W as follows:
 - 1. pick $K \in \{1,...,n\}$ uniform at random,
 - 2. pick W uniformly among subsets of $\{0,1\}^n$ of size 2^K
- Using this same distribution, Dell, Kabanets, van Melkebeek, Watanabe [CCC'12] proved an O(1/n) upper bound on the *success probability* of black-box *witness-isolation* procedures.

 A deterministic witness finding algorithm with m intersection queries is specified by

$$S_1, ..., S_m \subseteq \{0,1\}^n$$

f: $\{0,1\}^m \rightarrow \{0,1\}^n$

That is, the algorithm:

- 1. asks intersection queries "Is $S_i \cap W$ nonempty?"
- 2. receives answers $X_1,...,X_m \in \{0,1\}$
- 3. outputs $f(X_1,...,X_m) \in \{0,1\}^n$
- We view X₁,...,X_m as *0-1 valued random variables* (completely determined by W, once the algorithm is fixed)

 A deterministic witness finding algorithm with m intersection queries is specified by

$$S_1, ..., S_m \subseteq \{0,1\}^n$$

f: $\{0,1\}^m \rightarrow \{0,1\}^n$

That is, the algorithm:

- 1. asks intersection queries "Is S_i ∩ W nonempty?"
- 2. receives answers $X_1,...,X_m \in \{0,1\}$
- 3. outputs $f(X_1,...,X_m) \in \{0,1\}^n$

Theorem (restated)

If
$$Pr[f(X_1,...,X_m) \in W] > \frac{1}{2}$$
, then $m = \Omega(n^2)$

Theorem If $Pr[f(X_1,...,X_m) \in W] > \frac{1}{2}$, then $m = \Omega(n^2)$

Lemma 1 $H(f(X_1,...,X_m)) = \Omega(n)$

Lemma 2 $H(X_i | K) = O(1/n)$ for every i

Theorem If
$$Pr[f(X_1,...,X_m) \in W] > \frac{1}{2}$$
, then $m = \Omega(n^2)$

Lemma 1
$$H(f(X_1,...,X_m)) = \Omega(n)$$

Lemma 2
$$H(X_i | K) = O(1/n)$$
 for every i

Proof of Lemmas 1&2 => Theorem:

$$\Omega(n) = H(f(X_1,...,X_m))$$
 $\leq H(X_1,...,X_m)$
 $\leq H(X_1,...,X_m)$
 $\leq H(X_1,...,X_m,K)$
 $= H(K) + H(X_1,...,X_m | K)$
 $\leq \log(n) + H(X_1 | K) + ... + H(X_m | K)$
 $= \log(n) + O(m/n)$.

Lemma 1 $H(f(X_1,...,X_m)) = \Omega(n)$

More generally, we show that

W has ε -witness-entropy $\Omega(n)$ for every const. $\varepsilon > 0$

where the ε -witness-entropy of a random nonempty set U is defined as the minimum H(y) over random variables y such that $Pr[y \in U] \ge \varepsilon$

- Other examples: The uniform random nonempty subset of $\{0,1\}^n$ has witness-entropy O(1).
 - The random affine subspace of $\{0,1\}^n$ of dimension K (uniform in $\{1,...,n\}$) has ϵ -witness-entropy $\Omega(n)$ for every $\epsilon > 0$.

Lemma 2 $H(X_i | K) = O(1/n)$ for every i

• Recall that $X_i \in \{0,1\}$ is the indicator for the event " S_i intersects W" where $S_i \subseteq \{0,1\}^n$

Lemma 2 $H(X_i | K) = O(1/n)$ for every i

- $H(X_i | K) = (1/n) \sum_{k=1}^{n} H("S_i \text{ intersects } W" | W \text{ has size } 2^k)$
- Let $t = n \log |S_i|$ (so $|S_i| = 2^{n-t}$)

Lemma ("k = t is a threshold for X_i ")

```
k \le t \Rightarrow Pr[S_i \text{ intersects } W \mid W \text{ has size } 2^k] \le (\frac{1}{2})^{\Omega(t-k)}
k \ge t \Rightarrow Pr[S_i \text{ intersects } W \mid W \text{ has size } 2^k] \ge 1 - (\frac{1}{2})^{\Omega(k-t)}
```

- H("S_i intersects W" | W has size 2^k) $\leq (\frac{1}{2})^{\Omega(|t-k|)}$
- $H(X_i | K) = (1/n) \sum_{k=1}^{n} (\frac{1}{2})^{\Omega(|t-k|)} = O(1/n)$

PROOF SKETCHES

We showed:

Theorem

Witness finding requires $\Omega(n^2)$ intersection queries.

By essentially the same proof, we get:

Theorem

Witness finding requires $\Omega(n^2)$ monotone queries.

Lemma 2' For every monotone
$$f : Pow(\{0,1\}^n) \longrightarrow \{0,1\}$$
, $H(f(W) \mid K) = O(1/n)$.

- For $1 \le k \le n$, let $p_k = E[f(W) \mid W \text{ has size } 2^k]$
- Assuming f is non-trivial, $0 < p_1 < p_2 < ... < p_n = 1$
- Let t be the "threshold" such that $p_t < 1/2 \le p_{t+1}$
- By the Bollobas-Thomason Theorem:

Lemma

$$k \le t \Rightarrow p_k \le (\frac{1}{2})^{\Omega(t-k)}$$

 $k \ge t \Rightarrow p_k \ge 1 - (\frac{1}{2})^{\Omega(k-t)}$

PROOF SKETCHES

Main Theorem

Witness finding requires $\Omega(n^2)$ NP queries.

 Proof by reduction to setting of <u>monotone</u> queries: we show that every NP query is <u>well-approximated</u> by a monotone query.

Lemma

For every NP query Q, there is a monotone query Q⁺ such that Pr[Q(W) \neq Q⁺(W)] \leq 1/n^{ω (1)}

- Q non-deterministically makes poly(n) direct queries and returns a single bit.
- Wlog, Q guesses answers to its queries beforehand and simply verifies.
- We get Q⁺ by only verifying answers that are guessed to be positive.

AFFINE SUBSPACES

Too Many Witness Sets?

- For any given NP search problem, there are only 2^{poly(n)} possible witness sets.
- In the proof of our lower bounds, the distribution on W has support 2^{exp(n)}.
- Can a black-box search-to-decision reduction for a specific NP problem (3SAT, say) achieve better than O(n²) query complexity by exploiting the fact that W is the witness set of some (unseen) 3SAT instance?

Affine Witness Sets

- One natural approach: instead of a *random subset of* $\{0,1\}^n$ of size 2^K (where K uniform in $\{1,...,n\}$), consider a *random affine subspace of dimension K*.
- This distribution is the support of an actual NP search problem.

Affine Witness Sets

Theorem

Affine witness finding requires $\Omega(n^2)$ intersection queries.

OPEN

Does <u>affine</u> witness finding require $\Omega(n^2)$ monotone queries?

Let $f : Pow(\{0,1\}^n) \longrightarrow \{0,1\}$ be a monotone function

- For $1 \le k \le n$, let $p_k = E[f(A) \mid A \text{ affine space of dim } k]$
- Let t be the "threshold" such that $p_t < 1/2 \le p_{t+1}$

CONJECTURE

$$k \le t \Rightarrow p_k \le (\frac{1}{2})^{\Omega(t-k)}$$

 $k \ge t \Rightarrow p_k \ge 1 - (\frac{1}{2})^{\Omega(k-t)}$

We have a proof in the case where f is an
 intersection query (i.e. there exists S ⊆ {0,1}ⁿ such
 that f(A) = 1 iff A intersects S)

Let $f : Pow(\{0,1\}^n) \longrightarrow \{0,1\}$ be a monotone function

- For $1 \le k \le n$, let $p_k = E[f(A) \mid A \text{ affine space of dim } k]$
- Let t be the "threshold" such that $p_t < 1/2 \le p_{t+1}$

CONJECTURE

$$k \le t \Rightarrow p_k \le (\frac{1}{2})^{\Omega(t-k)}$$

 $k \ge t \Rightarrow p_k \ge 1 - (\frac{1}{2})^{\Omega(k-t)}$

 There is a "q-analogue" of the Bollobas-Thomason Theorem. However, it merely implies:

$$k \le t \Rightarrow p_k \le (\frac{1}{2})^{\Omega(t/k)}$$

 $k \ge t \Rightarrow p_k \ge 1 - (\frac{1}{2})^{\Omega((n-t)/(n-k))}$

- Let B(n) = lattice of subsets of {1,...,n},
 L(n) = lattice of linear subspaces of {0,1}ⁿ
- On the one hand, L(n) is the "q-analogue" of B(n).
 On the other hand, L(n) is a sub-(semi)lattice in B(2ⁿ).
- The essence of our conjecture is the question:
 Does the threshold behavior of monotone properties in L(n) scale like monotone properties in B(n) or in B(2ⁿ)?

- Let F be a family of k-dimensional linear subspaces of $\{0,1\}^n$ such that F has density $\geq 1/2$.
- The shadow ∂F is the set of k-1 dimensional subspaces of elements of F.

Main Case of Conjecture: Prove ∂F has density ≥ 0.51 .

 The best known "q-analogue" of the Kruskal-Katona Theorem [Chowdhury & Patkos 2010] only shows that ∂F has density (1/2)^{1-Ω(1/k)}.

THANK YOU