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nonempty witness set W < {0,1}"
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Witness Finding Problem

 Hidden nonempty witness set W < {0,1}"
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Witness Finding Problem

 Hidden nonempty witness set W < {0,1}"

* We ask queries (yes/no question about W)

Does W contain the all-1 element?

Is the 5% coordinate of the lexicographically
minimal element of W equal to 0?




Witness Finding Problem

 Hidden nonempty witness set W < {0,1}"

* We ask queries (yes/no question about W)

(0

Queries are randomized and non-adaptive.
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Witness Finding Problem

* After receiving yes/no answers to our queries,
we output an element x € {0,1}"

e Wesucceediffx e W
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Witness Finding Problem

e Goal: Succeed with probability > 1/2 for every

nonempty W < {0,1}"
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Witness Finding Problem

e Goal: Succeed with probability > 1/2 for every

nonempty W < {0,1}" PN
(D )

We are interested in the query complexity of this
problem: the fewest number of (non-adaptive,
randomized) queries




Witness Finding Problem

e Goal: Succeed with probability > 1/2 for every
nonempty W < {0,1}"
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We are interested in the query complexity of this
problem: the fewest number of (non-adaptive,

randomized) queries from a specific class of
permitted queries
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Witness Finding Problem

e Goal: Succeed with probability > 1/2 for every

nonempty W < {0,1}" PN
(D )

Our results are tight, information-theoretic
lower bounds on the query complexity of witness
finding for a few natural classes of queries.
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Two Trivial Classes
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Two Trivial Classes

DIRECT QUERY

“Is x € W?” where x € {0,1}"

2" direct queries are necessary and sufficient to
find a witness in every W with probability > 2

ARBITRARY QUERY
“Is W € F?” where F < Pow({0,1}")

n arbitrary queries are necessary and sufficient




Intersection Queries
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Intersection Queries

-
INTERSECTION QUERY

“IsS N W nonempty?” where S < {0,1}"

-

Theorem (Ben-David, Chor, Goldreich, Luby)

Witness finding is solvable with O(n?) intersection
queries.

We show
Witness finding requires Q(n?) intersection queries.



Theorem (Ben-David, Chor, Goldreich, Luby)

Witness finding is solvable with O(n?) intersection
queries.

e Uses Valiant-Vazirani Isolation Lemma.



Theorem (Ben-David, Chor, Goldreich, Luby)

Witness finding is solvable with O(n?) intersection
queries.

* If we know that 2k< |W| <21 then O(n)
intersection queries suffice (= O(n?) upper bound)

* Forrandom S € {0,1}" of density 27X,
|S N W| =1 with constant probability (> 1/100).

* With 2 log|S| (= O(n)) simultaneous intersection
queries, we can detect whether |S n W| =1 and
identify the unique element: if S = {xl,...,xlsl}, we ask

“does W intersect { x. | t'" bit of i equals b }?”
foralli € {1,...,log|S|}and b € {0,1}



Theorem (Ben-David, Chor, Goldreich, Luby)

Witness finding is solvable with O(n?) intersection
queries.

* Gives an BPP)\P algorithm (search-to-decision
reduction) that solves Search(Circuit-SAT) by making
O(n?) non-adaptive calls to an oracle for
Decision(Circuit-SAT).



Theorem (Ben-David, Chor, Goldreich, Luby)

Witness finding is solvable with O(n?) intersection
queries.

* Gives an BPP)\P algorithm (search-to-decision
reduction) that solves Search(Circuit-SAT) by making
O(n?) non-adaptive calls to an oracle for
Decision(Circuit-SAT).

Obs: This search-to-decision reduction is black-box:
it never “looks” at the input circuit C; it merely

requires an oracle to the witness set {x | C(x) = 1}.



Monotone Queries
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Monotone Queries

An monotone query is a query of the form A
“t(W) =1?"
where f : Pow({0,1}") — {0,1} is a monotone function/

* Every intersection query is monotone.



Monotone Queries

An monotone query is a query of the form A
“t(W) =1?"
where f : Pow({0,1}") — {0,1} is a monotone function/

* Every intersection query is monotone.

Theorem
Witness finding requires Q(n?) monotone queries.



NP Queries
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NP Queries

4 An NP query is a query of the form A

“A(W) = 1?”
where A is a fixed non-deterministic algorithm which
makes poly(n) direct queries and outputs a single bit

/
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* A can guess a witness in W. However, A cannot
guess the lexicographically minimal element of W.




NP Queries

4 An NP query is a query of the form A

“A(W) =17
where A is a fixed non-deterministic algorithm which
makes poly(n) direct queries and outputs a single bitj

\_

NP queries not necessarily monotone (& vice-versa)

* However, every intersection query is an NP query:
given S € {0,1}", non-deterministically guess x € S
and verify that x € W using a single direct query.



NP Queries

Main Theorem
Witness finding requires Q(n?) NP queries.

* This shows that the procedure of Ben-David et al.
has optimal query complexity among black-box
BPP)* search-to-decision reductions.




PROOF SKETCHES



Theorem
Witness finding requires Q(n?) intersection queries.



Theorem

Witness finding requires Q(n?) intersection queries.

 Want a lower bound on randomized algorithms
which output an element of W with probability > %2
for every fixed nonempty witness set W < {0,1}".

* |Invoking Yao's Minimax Principle, we flip the
situation: we fix a distribution on witness sets and
show that every deterministic algorithm which
succeeds on this distribution with probability > 1%
requires Q(n?) intersection queries.



e We define the distribution on W as follows:
1. pick K € {1,...,n} uniform at random,

2. pick W uniformly among subsets of {0,1}" of size 2K



 We define the distribution on W as follows:
1. pick K € {1,...,n} uniform at random,
2. pick W uniformly among subsets of {0,1}" of size 2K
e Using this same distribution, Dell, Kabanets, van
Melkebeek, Watanabe [CCC’12] proved an O(1/n)

upper bound on the success probability of black-box
witness-isolation procedures.



* A deterministic witness finding algorithm with m
intersection queries is specified by

S, - S, €{0,1}"
f:{0,1}™ — {0,1}"
That is, the algorithm:
1. asks intersection queries “Is S; n W nonempty?”

2. receives answers X,,...,. X, € {0,1}
3. outputs f(X,,...,. X ) € {0,1}

* We view X,,..., X, as 0-1 valued random variables
(completely determined by W, once the algorithm is
fixed)



* A deterministic witness finding algorithm with m
intersection queries is specified by

S, - S, €{0,1}"
f:{0,1}™ — {0,1}"
That is, the algorithm:
1. asks intersection queries “Is S, N W nonempty?”

2. receives answers X,,...,. X, € {0,1}
3. outputs f(X,,...,. X ) € {0,1}

Theorem (restated)
If Pr{f(X,...X )€ W]>%, then m=Q(n?)



Theorem If Pr[f(X,..,.X ) € W]>%, then m=Q(n?)
Lemma 1l H(f(X,,...,.X)) = Q(n)
Lemma 2 H(X |K) =0(1/n) for every i



Theorem If Pr[f(X,..,.X ) € W]>%, then m=Q(n?)
Lemma 1l H(f(X,,...,.X)) = Q(n)
Lemma 2 H(X |K) =0(1/n) for every i

Proof of Lemmas 1&2 => Theorem:

Q(n) = H(f(X,...,X..))
< H(Xy, X )
< H(Xq, X, K)
= H(K) + H(X,,....X_|K)
<log(n) + H(X,|K) + ... + H(X_ | K)
= log(n) + O(m/n).

hence, m = Q(n?)



Lemma 1l H(f(X,,...,.X ) = Q(n)
 More generally, we show that

W has e-witness-entropy Q(n) for every const. € >0

where the e-witness-entropy of a random nonempty
set U is defined as the minimum H(y) over random
variables y such that Prly € U] > ¢

 Other examples: The uniform random nonempty
subset of {0,1}" has witness-entropy O(1).

The random affine subspace of {0,1}" of dimension K
(uniform in {1,...,n}) has e-witness-entropy Q(n) for
every € > 0.



Lemma 2 H(X |K) =0(1/n) for every i

* Recall that X, € {0,1} is the indicator for the event
“S; intersects W” where S, < {0,1}"



Lemma 2 H(X |K) =0(1/n) for every i
* H(X|K)=(1/n) 3., H(“S; intersects W’ | W has size 2¥)
* Lett=n-log|S;| (so |S,| =2"~F)

Lemma (“k =t is a threshold for X.")
k <t = Pr[S; intersects W | W has size 2] < (%5)?(t-k)
k>t = Pr[S, intersects W | W has size 2] > 1 — (14)?{k-t)

* H(“S; intersects W” | W has size 2¥) < (14)(It-kl)

* H(X;|K) = (1/n) 34y ()20 = O(1/n)



PROOF SKETCHES

We showed:

Theorem
Witness finding requires Q(n?) intersection queries.

By essentially the same proof, we get:

Theorem
Witness finding requires Q(n?) monotone queries.




Lemma 2’ For every monotone f : Pow({0,1}") — {0,1},
H(f(W) | K)=0(1/n).

For1<k<n,letp, =E[f(W) | W has size 2¥]

* Assuming fis non-trivial, 0 <p,<p,<..<p,=1
Let t be the “threshold” such that p, < 1/2 < p,,,
By the Bollobas-Thomason Theorem:

Lemma
k<t = p, < (%)2tk
k>t = p 21— (%)%



PROOF SKETCHES

Main Theorem
Witness finding requires Q(n?) NP queries.

* Proof by reduction to setting of monotone queries:
we show that every NP query is well-approximated
by a monotone query.




Lemma

For every NP query Q, there is a monotone query Q*
such that Pr[ Q(W) # Q*(W) ] £ 1/nv{1)

* Q non-deterministically makes poly(n) direct queries
and returns a single bit.

* Wlog, Q guesses answers to its queries beforehand
and simply verifies.

* We get Q* by only verifying answers that are guessed
to be positive.



AFFINE SUBSPACES



Too Many Witness Sets?

* For any given NP search problem, there are only
2rolv(n) hossible witness sets.

* In the proof of our lower bounds, the distribution on
W has support 2¢xp(n),

e Can a black-box search-to-decision reduction for a
specific NP problem (3SAT, say) achieve better than
O(n?%) query complexity by exploiting the fact that W
is the witness set of some (unseen) 3SAT instance?



Affine Witness Sets

* One natural approach: instead of a random subset of
{0,1}" of size 2X (where K uniform in {1,...,n}),
consider a random affine subspace of dimension K.

* This distribution is the support of an actual NP
search problem.



Affine Witness Sets

Theorem

Affine witness finding requires Q(n?) intersection
queries.

OPEN

Does affine witness finding require Q(n’) monotone
queries?



Let f : Pow({0,1}") — {0,1} be a monotone function
* Forl1<k<n,letp, =E[f(A) | Aaffine space of dim k ]
* Let t be the “threshold” such that p,<1/2 <p,,,

CONJECTURE
k<t = p, < (%)0H
k>t = p, 21— (%)0k
 We have a proof in the case where f is an

intersection query (i.e. there exists S < {0,1}" such
that f(A) = 1 iff A intersects S)



Let f : Pow({0,1}") — {0,1} be a monotone function
* Forl1<k<n,letp, =E[f(A) | Aaffine space of dim k ]
* Let t be the “threshold” such that p,<1/2 <p,,,

CONJECTURE
k<t = p, < (%)0H
k>t = p, 21— (%)0k

* There is a “g-analogue” of the Bollobas-Thomason
Theorem. However, it merely implies:

k<t = p, < (%)WK
k>t = p, 21 - (%)2n-t/n-k)



 Let B(n) = lattice of subsets of {1,...,n},
L(n) = lattice of linear subspaces of {0,1}"

 Onthe one hand, L(n) is the “g-analogue” of B(n).
On the other hand, L(n) is a sub-(semi)lattice in B(2").

* The essence of our conjecture is the question:

Does the threshold behavior of monotone properties
in L(n) scale like monotone properties in B(n) or in
B(2")?



* Let F be a family of k-dimensional linear subspaces of
{0,1}" such that F has density > 1/2.

 The shadow OF is the set of k-1 dimensional
subspaces of elements of F.

Main Case of Conjecture: Prove OF has density > 0.51.

* The best known “g-analogue” of the Kruskal-Katona
Theorem [Chowdhury & Patkos 2010] only shows
that OF has density (1/2)1-(1/k),
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