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Les quantités du langage et leurs rapports sont regulièrement
exprimables dans leur nature fondamentale, par des formules
mathématiques. . . . L’expression simple [of linguistic concepts] sera
algébrique ou elle ne sera pas. . . . On aboutit à des théorèmes qu’il faut
démontrer.

Ferdinand de Saussure1

This chapter describes the framework of categorial type logic, a grammar architecture that can be
seen as the logical development of the categorial approach to natural language analysis initiated
in the Thirties in the work of Ajdukiewicz ([Ajdukiewicz 35]). The choice of grammatical num-
ber in the title stresses the pluralistic nature of the enterprise: this chapter systematically charts
a landscape of systems of grammatical inference — the categorial counterpart of the Chomsky
Hierarchy in the framework of phrase structure grammars.

The chapter has been written for two types of readers. For the reader with a background in linguis-
tics, it tries to provide a useful compendium of the logical tools and results one needs to appreciate
current categorial research. Such a compendium, we hope, will make the research literature more
accessible. The reader with a logic background is justified in classifying the grammar formalism
discussed here under the rubric Applied Logic. To measure progress in this field, then, one has to
be in a position to evaluate the ‘closeness of fit’ between the formal systems proposed and the lin-
guistic reality they intend to model. For the logical part of the audience, we try to provide enough
linguistic background to make it possible to assess the motivation for categorial design choices.

In organizing the material one can opt for a ‘historical’ mode of development, or for a state-of-
the-art presentation of the ‘internal dynamics’ of the field. Only the second approach adequately
reveals the connections between linguistic composition and logical deduction. The major orga-
nizing principle for the chapter is the vocabulary of the ‘logical constants’ of grammatical reason-
ing, the type-forming operators. A brief preview is given below.

MULTIPLICATIVE OPERATORS: ♦,2, /, •, \. The core part of the vocabulary. Unary and binary con-
nectives dealing with grammatical composition in the form and meaning dimensions.

BOOLEAN AND/OR ADDITIVE OPERATORS: ∧,∨,u,t. Conjunctive/disjunctive type specifications,
with set-theoretic or additive interpretation in the sense of Linear Logic.

POLYMORPHIC TYPES: first and second order quantification ∀1, ∃1, ∀2, ∃2. Dependent types and
type schemata expressing generalizations accross type assignments.

Given the space limitations of the handbook format, the information packaging of this chapter
will be dense. Fortunately, we can refer the interested reader to a number of monographs that
deal with logical and linguistic aspects of the type-logical approach in a more spacious manner.
For the general logical background, Language in Action ([van Benthem 91,95]) is essential reading.
Type Logical Grammar ([Morrill 94a]) situates the type-logical approach within the framework of
Montague’s Universal Grammar and presents detailed linguistic analyses for a substantive frag-
ment of syntactic and semantic phenomena in the grammar of English. Type Logical Semantics
([Carpenter 96]) offers a general introduction to natural language semantics studied from a type-
logical perspective. Chapter Twelve of this handbook discusses categorial grammar logics form
the perspective of mathematical linguistics and logical proof theory.

1 Introduction: grammatical reasoning

The central objective of the type-logical approach is to develop a uniform deductive account of the
composition of form and meaning in natural language: formal grammar is presented as a logic — a

1N10 and N13a in R. Godel Les sources manuscrites du CLG de F. de Saussure, Genève, 1957. Quoted without reference
by Roman Jakobson in his introduction of [Jakobson 61].
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system for reasoning about structured linguistic resources. In the sections that follow, the model-
theoretic and proof-theoretic aspects of this program will be executed in technical detail. First, we
introduce the central concept of ‘grammatical composition’ in an informal way. It will be useful
to distinguish two aspects of the composition relation: a fixed logical component, and a variable
structural component. We discuss these in turn.

GRAMMATICAL COMPOSITION: LOGIC. The categorial perspective on the form-meaning articula-
tion in natural language is based on a distinction, which can be traced back to Frege, between
‘complete’ and ‘incomplete’ expressions. Such a distinction makes it possible to drastically sim-
plify the traditional Aristotelian theory of categories (or types): one can reserve atomic category
names for the complete expressions, and for the categorization of the incomplete expressions one
inductively defines an infinite supply of category names out of the atomic types and a small num-
ber of type-forming connectives.

For the categorization of incomplete expressions, Ajdukiewicz in his seminal [Ajdukiewicz 35]
used a fractional notation A

B , inspired by Husserl’s Bedeutungskategorien and Russell’s Theory of
Types. The fractional notation immediately suggests the basic combination schema via an anal-
ogy with multiplication: A

B × B yields A. Bar-Hillel (see the papers in [Bar-Hillel 64]) refined the
impractical fractional notation by splitting up A

B into a division from the left B\A and a division
from the rightA/B, in order to discriminate between incomplete expressions that will produce an
expression of typeAwhen composed with an arbitrary expression of type B to the left, and to the
right, respectively.

It will be helpful for what follows to take a logical (rather than arithmetical) perspective on the cat-
egory formulas, and read A/B, B\A as directionally-sensitive ‘implications’ — implications with
respect to structural composition of linguistic material, rather than logical conjunction of propo-
sitions. Let us write Γ ` A for the basic judgement of the grammar logic: the judgement that the
structured configuration of linguistic expressions Γ can be categorized as a well-formed expres-
sion of type A. The inference pattern (1) tells us how to arrive at a grammaticality judgement for
the composite structure Γ,∆ from judgements for the parts Γ and ∆ — it tells us how we can use
the implications / and \ in grammatical reasoning. Where the premises are immediate, the basic
law of grammatical composition takes the form of a Modus Ponens inference: A/B,B ` A and
B,B\A ` A.

from Γ ` A/B and ∆ ` B, infer Γ,∆ ` A from Γ ` B and ∆ ` B\A, infer Γ,∆ ` A (1)

In the example (2), one finds a little piece of grammatical reasoning leading from lexical catego-
rizations to the conclusion that ‘Kazimierz talks to the mathematician’ is a well-formed sentence.
In this example, sentences s, (proper) noun phrases np, common nouns n, and prepositional
phrases pp are taken to be ‘complete expressions’, whereas the verb ‘talk’, the determiner ‘the’ and
the preposition ‘to’ are categorized as incomplete with respect to these complete phrases. The se-
quence of Modus Ponens inference steps is displayed in the so-called Natural Deduction format,
with labels [/E], [\E] for the ‘elimination’ of the implication connectives.

Kazimierz

np

talks

((np\s)/pp)

to

(pp/np)

the

(np/n)

mathematician

n

np
/E

pp
/E

(np\s)
/E

s
\E

(2)

The inferences of (1) build more complex structural configurations out of their parts by using
the grammatical implications. What about looking at grammatical structure from the opposite
perspective? In other words: given information about the categorization of a composite structure,
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what conclusions could we draw about the categorization of its parts? Suppose we want to find
out whether a structure Γ can be appropriately categorized as A/B. Given the interpretation we
had in mind for the implication /, such a conclusion would be justified if we could show that Γ in
construction with an arbitrary expression of typeB can be categorized as an expression of typeA.
Similarly, from the grammaticality judgement that B in construction with Γ is of type A, we can
conclude that Γ itself is of typeB\A. The inference patterns (3), introduced in [Lambek 58], tell us
how to prove formulasA/B orB\A, just as the (1) inferences told us how to use these implications.

from Γ, B ` A, infer Γ ` A/B from B,Γ ` A, infer Γ ` B\A (3)

In order to see where this type of ‘deconstructive’ reasoning comes into play, consider the relative
clause example ‘the mathematician whom Kazimierz talks to’. There is one new lexical item in
this example: the relative pronoun whom. This item is categorized as incomplete: on the right, it
wants to enter into composition with the relative clause body — an expression which we would
like to assign to the category s/np.

the

(np/n)

mathematician

n

whom

((n\n)/(s/np))

Kazimierz

np

talks

((np\s)/pp)

to

(pp/np) np

pp
/E

(np\s)
/E

s
\E

(s/np)
/I

(n\n)
/E

n
\E

np
/E

(4)

In order to show that ‘Kazimierz talks to’ is indeed of type s/np, we make a hypothetical assump-
tion, and suppose we have an arbitrary np expression. With the aid of this hypothetical assump-
tion, we derive s for ‘Kazimierz talks to np’, using the familiar Modus Ponens steps of inference. At
the point where we have derived s, we withdraw the hypothetical np assumption, and conclude
that ‘Kazimierz talks to’ can be categorized as s/np. This step is labeled [/I], for the ‘introduction’
of the implication connective, and the withdrawn assumption is marked by overlining.

The relation between the wh pronoun and the hypothetical np position which it pre-empts is of-
ten described metaphorically in terms of ‘movement’. Notice that in our deductive setting we
achieve the effects of ‘movement’ without adding anything to the theory of grammatical compo-
sition: there is no need for abstract syntactic place-holders (such as the ‘empty’ trace categories
of Chomskyan syntax, or the hei syntactic variables of Montague’s PTQ), nor for extra combina-
tion schemata beyond Modus Ponens. The similarity between the Natural Deduction graphs and
phrase structure trees, in other words, is misleading: what we have represented graphically are the
steps in a deductive process — not to be confused with the construction of a syntactic tree.

In the above, we have talked about the form dimension of grammatical composition: about putting
together linguistic resources into well-formed structural configurations. But a key point of the cat-
egorial approach is that one can simultaneously consider the types/categories, and hence gram-
matical composition, in the meaning dimension. From the semantic perspective, one fixes the
kind of meaning objects one wants for the basic types that categorize complete expressions, and
then interprets objects of types A/B, B\A as functions from A type objects to B type objects.
Structural composition by means of Modus Ponens can then be naturally correlated with func-
tional application, and Hypothetical Reasoning with functional abstraction in the semantic di-
mension. Composition of linguistic form and meaning composition thus become aspects of one
and the same process of grammatical inference.
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GRAMMATICAL COMPOSITION: STRUCTURE. An aspect we have ignored so far in our discussion of
the Modus Ponens and Hypothetical Reasoning inferences is the management of the linguistic re-
sources — the manipulations we allow ourselves in using linguistic assumptions. Some aspects of
resource management are explicitly encoded in the logical vocabulary — the distinction between
the ‘implications’ / and \, for example, captures the fact that grammatical inference is sensitive
to the linear order of the resources. But other equally important aspects of resource management
have remained implicit. In the relative clause example, we inferred Γ ` A/B from Γ, B ` A.
In withdrawing the hypothetical B assumption, we didn’t take into account the hierarchical em-
bedding of the B resource: we ignored its vertical nesting in the configuration of assumptions.
Resource management, in other words, was implicitly taken to be associative: different hierarchi-
cal groupings over the same linear ordering of assumptions were considered as indistinguishable
for the purposes of grammatical inference. On closer inspection, the implicit claim that restruc-
turing of resources would not affect derivability (grammatical well-formedness) might be justified
in some cases, whereas in other cases a more fine-grained notion of grammatical consequence
might be appropriate. Similarly, the sensitivity to linear order, which restricts hypothetical rea-
soning to the withdrawal of a peripheral assumption, might be too strong in some cases. Compare
(4) with the variant ‘whom Kazimierz talked to yesterday’, where one would like to withdraw a
hypothetical np assumption from the non-peripheral position ‘Kazimierz talked to np yesterday’.
Switching to a commutative resource management regime would be too drastic — we would not
be able anymore to deductively distinguish between the well-formed relative clause and its ill-
formed permutations. In cases like this, one would like the grammar logic to provide facilities for
controlled modulation of the management of linguistic resources, rather than to implement this
in a global fashion as a hard-wired component of the type-forming connectives.

A BRIEF HISTORY OF TYPES. The above discussion recapitulates the crucial phases in the historical
development of the field. The Modus Ponens type of reasoning, with its functional application
interpretation, provided the original motivation for the development of categorial grammar in
[Ajdukiewicz 35]. The insight that Modus Ponens and Hypothetical Reasoning are two inseparable
aspects of the interpretation of the ‘logical constants’ /, \ is the key contribution of Lambek’s work
in the late Fifties. In the papers [Lambek 58, Lambek 61] it is shown that attempts to generalize
Modus Ponens in terms of extra rule schemata, such as Type Lifting or Functional Composition,
are in fact weak approximations of Hypothetical Reasoning: viewing the type-forming operators
as logical connectives, such schemata are reduced to theorems, given appropriate resource man-
agement choices. In retrospect, one can see that the core components of the type-logical archi-
tecture were worked out in 1958. But it took a quarter of a century before Lambek’s work had a
clear impact on the linguistic community. Contributions such as [Lyons 68, Lewis 72, Geach 72]
are continuations of the rule-based Ajdukiewicz/Bar-Hillel tradition. Ironically, when linguists
developed a renewed interest in categorial grammar in the early Eighties, they did not adopt Lam-
bek’s deductive view on grammatical composition, but fell back on an essentially rule-based ap-
proach. The framework of Combinatory Categorial Grammar (CCG, [Steedman 88]) epitomizes
the rule-based generalized categorial architecture. In this framework, laws of type change and
type combination are presented as theoretical primitives (‘combinators’) as a matter of method-
ological principle. For a good tutorial introduction to CCG, and a comparison with the deductive
approach, we refer the reader to [Steedman 93].

The 1985 Tucson conference on Categorial Grammar brought together the adherents of the rule-
based and the deductive traditions. In the proceedings of that conference, Categorial Grammars
and Natural Language Structures ([Oehrle e.a. 88]) one finds a comprehensive picture of the vari-
eties of categorial research in the Eighties.

Lambek originally presented his type logic as a calculus of syntactic types. Semantic interpreta-
tion of categorial deductions along the lines of the Curry-Howard correspondence was put on the
categorial agenda in [van Benthem 83]. This contribution made it clear how the categorial type
logics realize Montague’s Universal Grammar program — in fact, how they improve on Montague’s
own execution of that program in offering an integrated account of the composition of linguistic
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meaning and form. Montague’s adoption of a categorial syntax does not go far beyond notation:
he was not interested in offering a principled theory of allowable ‘syntactic operations’ going with
the category formalism.

The introduction of Linear Logic in [Girard 87] created a wave of research in the general land-
scape of ‘substructural’ logics: logics where structural rules of resource management are con-
trolled rather than globally available. The importance of the distinction between the logical and
the structural aspects of grammatical composition is a theme that directly derives from this re-
search. The analysis of the linguistic ramifications of this distinction has guided the development
of the present-day ‘multimodal’ type-logical architecture to be discussed in the pages that follow.

2 Linguistic inference: the Lambek systems

In the following sections we present the basic model-theory and proof-theory for the logical con-
stants /, •, \, the so-called multiplicative connectives. On the model-theoretic level, we introduce
abstract mathematical structures that capture the relevant aspects of grammatical composition.
On the proof-theoretic level, we want to know how to perform valid inferences on the basis of the
interpreted type language. We are not interested in syntax as the manipulation of meaningless
symbols: we want the grammatical proof-theory to be sound and complete with respect to the
abstract models of grammatical composition.

We proceed in two stages. In the present section, we develop a landscape of simple Lambek sys-
tems. Simple Lambek systems are obtained by taking the logic of residuation for a family of mul-
tiplicative connectives /, •, \, together with a package of structural postulates characterizing the
resource management properties of the • connective. As resource management options, we con-
sider Associativity and Commutativity. Different choices for these options yield the type logics
known as NL, L, NLP, LP. Each of these systems has its virtues in linguistic analysis. But none of
them in isolation provides a basis for a realistic theory of grammar. Mixed architectures, which
overcome the limitations of the simple systems, are the subject of §4.

2.1 Modeling grammatical composition

Consider the language F of category formulae of a simple Lambek system. F is obtained by clos-
ing a set A of atomic formulae (or: basic types, prime formulae, e.g. s, np, n, . . . ) under binary
connectives (or: type forming operators) /, •, \. We have already seen the connectives /, \ at work
in our informal introduction. The • connective will make it possible to explicitly refer to composed
structures — in the introduction we informally used a comma for this purpose.

F ::= A | F/F | F • F | F\F (5)

In this chapter we will explore a broad landscape of categorial type logics. On the semantic level,
we are interested in a uniform model theory that naturally accommodates the subtle variations in
categorial inference we want to study. A suitable level of abstraction can be obtained by viewing
the categorial connectives as modal operators, and interpreting the type formulae in the powerset
algebra of Kripke-style relational structures. The frame-based semantics for categorial logics is
developed in [Došen 92]. As will become clear later on, it extends smoothly to the generalized and
mixed architectures that form the core of this chapter. The ‘modal’ semantics also offers a suit-
able basis for comparison of the categorial systems with the feature-based grammar architectures
studied in Chapter Eight.

A modal frame, in general, is a set of ‘worlds’ W together with an n + 1-ary ‘accessibility relation’
R for the n-ary modal operators. In the case of the binary categorial connectives, we interpret
with respect to ternary relational structures and consider frames 〈W,R3〉. The domain W is to be
thought of here as the set of linguistic resources (or: signs, form-meaning complexes of linguistic
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information). The ternary accessibility relation Rmodels the core notion of grammatical compo-
sition. We obtain a model by adding a valuation v assigning subsets v(p) of W to prime formulae
p and satisfying the clauses of Def 2.1 for compound formulae.

Definition 2.1 Frame semantics: interpretation of compound formulae.

v(A •B) = {x |∃y∃z[Rxyz & y ∈ v(A) & z ∈ v(B)]}
v(C/B) = {y |∀x∀z[(Rxyz & z ∈ v(B))⇒ x ∈ v(C)]}
v(A\C) = {z |∀x∀y[(Rxyz & y ∈ v(A))⇒ x ∈ v(C)]}

Notice that the categorial vocabulary is highly restricted in its expressivity. In contrast with stan-
dard Modal Logic, where the modal operators interact with the usual Boolean connectives, the
formula language of the type logics we are considering here is purely modal. In §?? we will con-
sider the addition of Boolean operations to the basic categorial language of (5).

We are interested in characterizing a relation of derivability between formulae such thatA→ B is
provable iff v(A) ⊆ v(B) for all valuations v over ternary frames. Consider the deductive system
NL, given by the basic properties of the derivability relation REFL and TRANS, together with the
so-called residuation laws RES establishing the relation between • and the two implications /, \
with respect to derivability. Prop 2.3 states the essential soundness and completeness result with
respect to the frame semantics. (We write ‘L ` A→ B’ for ‘A→ B is provable in logic L’).

Definition 2.2 The pure logic of residuation NL ([Lambek 61]).

(REFL) A→ A (TRANS) fromA→ B andB → C, infer A→ C

(RES) A→ C/B iff A •B → C iff B → A\C

Proposition 2.3 ([Došen 92]). NL ` A→ B iff v(A) ⊆ v(B) for every valuation v on every ternary
frame.

The proof of the (⇒) soundness part is by induction on the length of the derivation of A→ B.
For the (⇐) completeness direction, one uses a simple canonical model, which effectively falsifies
non-theorems. To show that the canonical model is adequate, one proves a Truth Lemma to the
effect that, for any formula φ,MK , A |= φ iff NL ` A→ φ. Due to the Truth Lemma we have that
if NL 6` A→ B, thenA ∈ vK(A) butA 6∈ vK(B), so vK(A) 6⊆ vK(B).

Definition 2.4 Define the canonical model asMK = 〈WK , R
3
K , vK〉, where

(i) WK is the set of formulae F
(ii) R3

K(A,B,C) iff NL ` A→ B • C
(iii) A ∈ vK(p) iff NL ` A→ p

STRUCTURAL POSTULATES, CONSTRAINTS ON FRAMES. In §1, we gave a deconstruction of the notion
of grammatical composition into a fixed ‘logical’ component and a variable ‘structural’ compo-
nent. The pure logic of residuation NL captures the fixed logical component: the completeness
result of Prop 2.3 puts no interpretive constraints whatsoever on the grammatical composition
relation. Let us turn now to the resource management component.

Starting from NL one can unfold a landscape of categorial type logics by gradually relaxing struc-
ture sensitivity in a number of linguistically relevant dimensions. Consider the dimensions of
linear precedence (order sensitivity) and immediate dominance (constituent sensitivity). Adding
structural postulates licensing associative or commutative resource management (or both) to the
pure logic of residuation, one obtains the systems L, NLP, and LP. In order to maintain complete-
ness in the presence of these structural postulates, one has to impose restrictions on the interpre-
tation of the grammatical composition relation R3. Below we give the postulates of Associativity
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and Commutativity with the corresponding frame constraints. The completeness result of Prop
2.3 is then extended to the stronger logics by restricting the attention to the relevant classes of
frames.

Definition 2.5 Structural postulates and their frame conditions (∀x, y, z, u ∈ W ).

(ASS) (A •B) • C ←→ A • (B • C) ∃t.Rtxy & Rutz ⇔ ∃v.Rvyz &Ruxv
(COMM) A •B → B •A Rxyz ⇔ Rxzy

Proposition 2.6 ([Došen 92]). L,NLP,LP ` A→ B iff v(A) ⊆ v(B) for every valuation v on every
ternary frame satisfying (ASS), (COMM), (ASS)+(COMM), respectively.

CORRESPONDENCE THEORY. In the remainder of this chapter, we will consider more dimensions
of linguistic structuring than those affected by the Associativity and Commutativity postulates. In
[Kurtonina 95] it is shown that one can use the tools of modal Correspondence Theory ([van Benthem 84])
to generalize the completeness results discussed above to these other dimensions. A useful class
of structural postulates with pleasant completeness properties is characterized in Def 2.7. The
frame conditions for structural postulates of the required weak Sahlqvist form can be effectively
computed using the Sahlqvist-Van Benthem algorithm as discussed in [Kurtonina 95].

Definition 2.7 Weak Sahlqvist Axioms. A weak Sahlqvist axiom is an arrow of the form φ→ ψ
where φ is a pure product formula, associated in any order, without repetition of proposition letters,
and ψ is a pure product formula containing at least one •, all of whose atoms occur in φ.

Proposition 2.8 Sahlqvist Completeness ([Kurtonina 95]). If P is a weak Sahlqvist axiom, then (i)
NL+P is frame complete for the first order frame condition corresponding to P , and (ii) L+P has a
canonical model whenever L does.

SPECIALIZED SEMANTICS. As remarked above, the choice for the modal frame semantics is moti-
vated by the desire to have a uniform interpretation for the extended and mixed categorial archi-
tectures that form the core of this chapter. Grammatical composition is modeled in an abstract
way, as a relation between grammatical processes. There is no trace, in this view, of what one
could call ‘syntactic representationalism’. As a matter of fact, the relational view on composition
does not even require that for resources y, z ∈ W there will always be a resource x such that Rxyz
(Existence), or if such an x exists, that it be unique (Uniqueness).

For many individual systems in the categorial hierarchy, completeness results have been obtained
for more concrete models. The ‘dynamic’ interpretation of Lambek calculus interprets formulae
with respect to pairs of points — transitions between information states. The • connective, in this
setting, is seen as relational composition. In [Andréka & Mikulás 94], L is shown to be complete
for this interpretation. In groupoid semantics, one considers structures 〈W, ·〉, which can be seen
as specializations of the composition relation R3: one now reads Rxyz as x = y · z, where ‘·’ is an
arbitrary binary operation. Formulae are interpreted in the powerset algebra over these structures,
with the simplified interpretation clauses of (6) for the connectives, because the properties of ‘·’
now guarantee Existence and Uniqueness.

v(A •B) = {x · y | x ∈ v(A) & y ∈ v(B)}
v(C/B) = {x | ∀y ∈ v(B) x · y ∈ v(C)}
v(A\C) = {y | ∀x ∈ v(A) x · y ∈ v(C)}

(6)

In the groupoid setting, options for resource management can be realized by attributing associa-
tivity and/or commutativity properties to the groupoid operation. Notice that the groupoid mod-
els are inappropriate if one wants to consider ‘one-directional’ structural postulates (e.g. one half
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of the Associativity postulate, A • (B • C)→ (A •B) • C, allowing restructuring of left-branching
structures), unless one is willing to reintroduce abstractness in the form of a partial order on the
resources W . See [Došen 92, Buszkowski 86] and Chapter Twelve for discussion.

Even more concrete are the language models or free semigroup semantics for L. In the language
models, one takes W as V + (non-empty strings over the vocabulary) and · as string concatena-
tion. This type of semantics turns out to be too specialized for our purposes: whereas [Pentus 94],
with a quite intricate proof, has been able to establish completeness of L with respect to the free
semigroup models, there is an incompleteness result for NL with respect to the corresponding free
non-associative structures, viz. finite tree models. See [Venema 94] for discussion.

GENERAL MODELS VERSUS SPECIFIC GRAMMARS. In the discussion so far we have studied type-
logical derivability in completely general terms, abstracting away from language-specific gram-
mar specifications. Let us see then how we can relativize the general notions so as to take actual
grammar specification into account. In accordance with the categorial tenet of radical lexicalism,
we assume that the grammar for a language L is given by the conjunction of the general type logic
L with a language-specific lexicon LEX(L). The lexicon itself is characterized in terms of a type
assignment function f : VL 7→ P(F), stipulating the primitive association of lexical resources VL

with their types. (We assume that for all lexical resources x ∈ VL, the sets f(x) are finite. In the
so-called rigid categorial grammars, one further restricts the values of f to be singletons.)

For a general modelM = 〈W,R3, v〉 to qualify as appropriate for LEX(L), we assume VL ⊆ W ,
and we require the valuation v to be compatible with lexical type assignment, in the sense that,
for all x ∈ VL, A ∈ f(x) implies x ∈ v(A). Given this, we will say that the grammar assigns
type B to a non-empty string of lexical resources x1 . . . xn ∈ V +

L , provided there are lexical type
specifications Ai ∈ f(xi) such that we can deduce B from ◦(A1, . . . , An) in the general type-logic
L. By ◦(A1, . . . , An) we mean any of the possible products of the formulasA1, . . . , An, in that order.

CATEGORICAL COMBINATORS AND CCG. To round off the discussion of the axiomatic presentation,
we present the logics NL, L, NLP, LP with a proof term annotation, following [Lambek 88]. The
proof terms — categorical combinators — are motivated by Lambek’s original category-theoretic
interpretation of the type logics. The category-theoretic connection is not further explored here,
but the combinator proof terms will be used in later sections as compact notation for complete
deductions.

Definition 2.9 Combinator proof terms ([Lambek 88]). Deductions of the form f : A→ B, where f
is a process for deducing B fromA.

1A : A→ A
f : A→ B g : B → C

g ◦ f : A→ C

f : A •B → C
βA,B,C(f) : A→ C/B

f : A •B → C
γA,B,C(f) : B → A\C

g : A→ C/B

β−1
A,B,C(g) : A •B → C

g : B → A\C
γ−1

A,B,C(g) : A •B → C

αA,B,C : A • (B •C)←→ (A •B) • C : α−1
A,B,C

πA,B : A •B → B •A

Example 2.10 Combinator proof terms for rightward functional application, and for leftward type
lifting. (We omit the type subscripts where they are clear from context.) In the derivation of lifting,
we write RA for β−1(1A/B).
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1A/B : A/B → A/B

β−1(1A/B) : A/B •B → A

RA : A/B •B → A

γ(RA) : B → (A/B)\A

This presentation makes obvious a variety of methods for creating fragments (subsystems) and
extensions: restrict or extend the formula language; remove or add inference rules; remove or add
structural postulates. The Ajdukiewicz/Bar-Hillel system [Ajdukiewicz 35, Bar-Hillel 64] appears
in this guise as a subsystem lacking the hypothetical reasoning rules β and γ and the permuta-
tion rule π, but implicitly countenancing associativity. A more complex example is the rule-based
approach of Combinatory Categorial Grammar (CCG, [Steedman 93]) where a finite collection of
unary type transitions and binary type combinations (such as Lifting, Application) are postulated
as primitive rule schemata. Within the CCG framework, Combinatory Logic ([Curry & Feys 58]) is
put forward as the general theory for the class of grammatical operations natural languages draw
upon. Combinatory Logic in itself, being equivalent with the full Lambda Calculus in its expressiv-
ity, is not very informative as to the fine-structure of grammatical inference. A decomposition of
the CCG combinators in their logical and structural parts uncovers the hidden assumptions about
grammatical resource management and makes it possible to situate the CCG systems within a
more articulate landscape of grammatical inference. Comparing the CCG framework with the
type-logical approach studied here, one should realize that CCG systems are, by necessity, only
approximations of logics such as L, LP. These logics have been shown to be not finitely axioma-
tizable (see [Zielonka 89] and Chapter Twelve), which means that no finite set of combinators in
combination with Modus Ponens can equal their deductive strength.

2.2 Gentzen calculus, cut elimination and decidability

The axiomatic presentation is the proper vehicle for model-theoretic investigation of the logics we
have considered: it closely follows the semantics, thus providing a suitable basis for ‘easy’ com-
pleteness results. But proof-theoretically the axiomatic presentation has a serious drawback: it
does not offer an appropriate basis for proof search. The problematic rule of inference is TRANS,
which is used to compose type transitions A→ B andB → C into a transition A→ C. A type tran-
sitionA→ C, in the presence of TRANS, could be effected with the aid of a formulaB of which one
finds no trace in the conclusion of the TRANS inference. Since there is an infinity of candidate for-
mulae B, exhaustive traversal of the search space for the auxiliary B formula in a TRANS inference
is not an option.

For proof-theoretic investigation of the categorial type logics one introduces a Gentzen presen-
tation which is shown to be equivalent to the axiomatic presentation. The main result for the
Gentzen calculus (the Hauptsatz of [Gentzen 34]) then states that the counterpart of the TRANS

rule, the Cut inference, can be eliminated from the logic without affecting the set of derivable
theorems. An immediate corollary of this Cut Elimination Theorem is the subformula property
which limits proof search to the subformulae of the theorem one wants to derive. In the ab-
sence of resource-affecting structural rules, decidability follows. The essential results for L have
been established in [Lambek 58]. They have been extended to the full landscape of type logics in
[Kandulski 88, Došen 89].

In the axiomatic presentation, we considered derivability as a relation between formulae, i.e. we
considered arrows A→ B with A,B ∈ F . In the Gentzen presentation, the derivability relation is
stated to hold between a term S (the antecedent) and a type formula (the succedent). A Gentzen
term is a structured configuration of formulae — a structured database, in the terminology of
[Gabbay 94]. The term language is defined inductively as S ::= F | (S,S). The binary structural
connective (·, ·) in the term language tells you how structured databases ∆1 and ∆2 have been
put together into a structured database (∆1,∆2). The structural connective mimics the logical
connective • in the type language. A sequent is a pair (Γ, A) with Γ ∈ S and A ∈ F , written as
Γ⇒ A.
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To establish the equivalence between the two presentations, we define the formula translation ∆◦

of a structured database ∆: (∆1,∆2)◦ = ∆◦
1 •∆◦

2, and A◦ = A, for A ∈ F .

Proposition 2.11 ([Lambek 58]). For every arrow f : A→ B there is a Gentzen proof ofA⇒ B, and
for every proof of a sequent Γ⇒ B there is an arrow f : Γ◦ → B.

Definition 2.12 NL: Gentzen presentation. Sequents S ⇒ F where S ::= F | (S,S). We write Γ[∆]
for a term Γ containing a distinguished occurrence of the subterm ∆. (The distinguished occurrences
in premise and conclusion of an inference rule are supposed to occupy the same position within Γ.)

[Ax]
A⇒ A

∆⇒ A Γ[A]⇒ C
Γ[∆]⇒ C

[Cut]

[/R]
(Γ, B)⇒ A
Γ⇒ A/B

∆⇒ B Γ[A]⇒ C
Γ[(A/B,∆)]⇒ C

[/L]

[\R]
(B,Γ)⇒ A
Γ⇒ B\A

∆⇒ B Γ[A]⇒ C
Γ[(∆, B\A)]⇒ C

[\L]

[•L]
Γ[(A,B)]⇒ C
Γ[A •B]⇒ C

Γ⇒ A ∆⇒ B
(Γ,∆)⇒ A •B [•R]

As was the case for the axiomatic presentation of Def 2.2, the Gentzen architecture of Def 2.12
consists of three components: (i) [Ax] and [Cut] capture the basic properties of the derivability
relation ‘⇒’: reflexivity and contextualized transitivity for the Cut rule, (ii) each connective comes
with two logical rules: a rule of use introducing the connective to the left of ‘⇒’ and a rule of
proof introducing it on the right of ‘⇒’, finally (iii) there is a block of structural rules, empty in the
case of NL, with different packages of structural rules resulting in systems with different resource
management properties. (We should note here that sometimes the Cut rule is counted among the
structural rules. We will reserve the term ‘structural rule’ for the Gentzen counterpart of the struc-
tural postulates governing the resource management properties of the composition operation.)

STRUCTURAL RULES. Structural postulates, in the axiomatic presentation, have been presented as
transitions A→ B where A and B are constructed out of formula variables p1, . . . , pn and the log-
ical connective •. For corresponding structure variables ∆1, . . . ,∆n and the structural connective
(·, ·), define the structural equivalent σ(A) of a formula A: σ(pi) = ∆i, σ(A • B) = (σ(A), σ(B)).
The transformation of structural postulates into Gentzen rules allowing Cut Elimination is then
straightforward: a postulate A→ B translates as the Gentzen rule (7):

Γ[σ(B)]⇒ C

Γ[σ(A)]⇒ C
(7)

To obtain the logics L, NLP, LP from NL, one thus adds the structural rules of Associativity and/or
Permutation. Such additions result in less fine-grained notions of linguistic inference, where
structural discrimination with respect to the dimensions of dominance and/or precedence is lost,
as discussed above. (The double line in [A] stands for a two-way inference.)

Γ[(∆2,∆1)]⇒ A
Γ[(∆1,∆2)]⇒ A

[P]
Γ[((∆1,∆2),∆3)]⇒ A

Γ[(∆1, (∆2,∆3))]⇒ A
[A] (8)

SUGARING. For the logics L and LP where • is associative, resp. associative and commutative, ex-
plicit application of the structural rules is generally compiled away by means of syntactic sug-
aring of the sequent language. Antecendent terms then take the form of sequences of formulae
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A1, . . . , An where the comma is now of variable arity, rather than a binary connective. Reading
these antecedents as sequences, one avoids explicit reference to the Associativity rule; reading
them as multisets, one also makes Permutation implicit.

Definition 2.13 Sugared Gentzen presentation: implicit structural rules. Sequents S ⇒ F where
S ::= F | F ,S. L: implicit Associativity, interpreting S as a sequence. LP: implicit Associativ-
ity+Permutation, interpreting S as a multiset. (The context variables Γ,Γ′ can be empty.)

[Ax]
A⇒ A

∆⇒ A Γ, A,Γ′ ⇒ C
Γ,∆,Γ′ ⇒ C

[Cut]

[/R]
∆, B ⇒ A
∆⇒ A/B

∆⇒ B Γ, A,Γ′ ⇒ C
Γ, A/B,∆,Γ′ ⇒ C

[/L]

[\R]
B,∆⇒ A
∆⇒ B\A

∆⇒ B Γ, A,Γ′ ⇒ C
Γ,∆, B\A,Γ′ ⇒ C

[\L]

[•L]
Γ, A,B,Γ′ ⇒ C
Γ, A •B,Γ′ ⇒ C

∆⇒ A ∆′ ⇒ B
∆,∆′ ⇒ A •B [•R]

CUT ELIMINATION AND DECIDABILITY. A categorial version of Gentzen’s Hauptsatz is the core of
[Lambek 58], who proves Cut Elimination for L, on the basis of the ‘sugared’ presentation intro-
duced in Def 2.13. In [Došen 89] the result is extended to the full landscape of categorial logics,
using the structured term representation of antecedent databases, and explicit structural rules. It
is important to carefully distinguish between an admissible rule of inference versus a derived one.
We will see examples of derived rules of inference in Prop 2.18: as the name indicates, one can
deduce the derived inference rules using the basic logical rules for the connectives. The Cut rule
cannot be so derived — it does not mention any logical connectives. But is admissible in the sense
that it does not increase the set of theorems that can already be derived using just the logical rules
of inference.

Proposition 2.14 Cut Elimination ([Lambek 58, Došen 89]). The Cut rule is admissible in NL, L,
NLP, LP: every theorem has a cut-free proof.

Below we present the general strategy for the cut elimination transformation, so that the reader
can check how the various extensions of the type-logical vocabulary we will consider in the re-
mainder of this chapter can be accommodated under the general cases of the elimination schema.

CUT ELIMINATION ALGORITHM. The proof of the admissibility of the Cut rule is a constructive
algorithm for a stepwise transformation of a derivation involving Cut inferences into a Cut-free
derivation. Eliminability of the Cut rule is proved by induction on the complexity d of Cut infer-
ences, measured in the number of connective occurrences. For the Cut rule of Def 2.13, we have
the following schema, with Cut complexity d defined as d(Cut) = d(∆)+d(Γ)+d(Γ′)+d(A)+d(B).

∆⇒ A Γ, A,Γ′ ⇒ B

Γ,∆,Γ′ ⇒ B
Cut (9)

The targets for the elimination algorithm are instances of Cut which have themselves been derived
without using the Cut rule. It is shown that in the derivation in question such a Cut inference can
be replaced by one or two Cuts of lower degree. One repeats the process until all Cuts have been
removed. The following main cases can be distinguished.
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Case 1 The base case of the recursion: one of the Cut premises is an Axiom. In this case the other
premise is identical to the conclusion, and the application of Cut can be pruned.

Case 2 Permutation conversions. In these cases, the active formula in the left or right premise of
Cut is not the Cut formula. One shows that the logical rule introducing the main connective
of the active formula and the Cut rule can be permuted, pushing the Cut inference upwards,
with a decrease in degree because a connective is now introduced lower in the proof. (Ex-
plicit structural rules for the structured antecedent representation assimilate to this case:
the Cut rule is permuted upwards over the structural rule.)

Case 3 Principal Cuts. The active formula in the left and right premise of Cut make up the Cut for-
mulaA. Here one reduces the degree by splitting the Cut formula up into its two immediate
subformulae, and applying Cuts on these.

Example 2.15 Case 2. The active formula in the left Cut premise is A′/A′′. The Cut rule is moved
upwards, permuting with the [/L] logical inference.

∆′′ ⇒ A′′ ∆, A′, ∆′ ⇒ A

∆, A′/A′′, ∆′′, ∆′ ⇒ A
/L

Γ, A,Γ′ ⇒ B

Γ, ∆, A′/A′′, ∆′′, ∆′, Γ′ ⇒ B
Cut

;

∆′′ ⇒ A′′
∆, A′, ∆′ ⇒ A Γ, A,Γ′ ⇒ B

Γ, ∆, A′, ∆′, Γ′ ⇒ B
Cut

Γ, ∆, A′/A′′, ∆′′, ∆′, Γ′ ⇒ B
/L

Example 2.16 Case 3. Principal Cut on A′/A′′. The Cut inference is replaced by two Cuts, on the
subformulae A′ andA′′.

∆, A′′ ⇒ A′

∆ ⇒ A′/A′′ /R
∆′ ⇒ A′′ Γ, A′, Γ′ ⇒ B

Γ, A′/A′′, ∆′, Γ′ ⇒ B
/L

Γ, ∆, ∆′, Γ′ ⇒ B
Cut

;

∆′ ⇒ A′′
∆, A′′ ⇒ A′ Γ, A′, Γ′ ⇒ B

Γ, ∆, A′′, Γ′ ⇒ B
Cut

Γ, ∆, ∆′, Γ′ ⇒ B
Cut

DECIDABILITY, SUBFORMULA PROPERTY. In the case of NL, L, NLP, LP, the Cut Elimination theorem
immediately gives a decision procedure for theoremhood. One searches for a cut-free proof in a
backward chaining manner, working from conclusion to premises. Every logical rule of inference
removes a connective, breaking the selected active formula up into its immediate subformulae.
The number of connectives of the goal sequent is finite. Exhaustive traversal of the finite cut-free
search space will either produce a proof (a derivation tree the leaves of which are all instances of
the Axiom schema), or it will fail to do so.

The important point about Cut Elimination and decidability is not so much to avoid the Cut rule
altogether, but to restrict the attention to ‘safe’ cuts — instances of the Cut rule that do not affect
the finiteness of the search space. The astute reader will have noticed that the left rules for the
implications A\B (B/A) are in fact compiled Cut inferences on the basis of the subtypes A, B
and Modus Ponens. These compiled Cuts are innocent: they preserve the complexity-decreasing
property of the inference rules which guarantees decidability. The compilation of [\L] can be
found below.

∆⇒ B
B ⇒ B A⇒ A
B,B\A⇒ A

\L

∆, B\A⇒ A
[Cut]

Γ, A,Γ′ ⇒ C

Γ,∆, B\A,Γ′ ⇒ C
[Cut]

;

∆⇒ B Γ, A,Γ′ ⇒ C

Γ,∆, B\A,Γ′ ⇒ C
\L

(10)

NATURAL DEDUCTION. As a final item on the list of presentation formats for categorial derivations,
Def 2.17 gives the official definition of the Natural Deduction format used in §1. This style of
presentation has Elimination rules and Introduction rules for the logical connectives: the Cut rule
is not a part of the Natural Deduction format.
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For the equivalence of the sequent and natural deduction styles the reader can turn to [Girard e.a. 89],
where one finds explicit mappings relating the two presentations. The mapping from Gentzen
proofs to natural deductions is many-to-one — there may be a number of Gentzen derivations for
one and the same natural deduction. In this sense, natural deduction captures the ‘essence’ of a
proof better than a Gentzen derivation, which allows irrelevant permutation alternatives in deriv-
ing a theorem. We will be in a better position to assess this spurious type of non-determinism of
the sequent calculus after discussing the Curry-Howard interpretation of categorial deductions,
which gives a precise answer to the question as to which derivations are ‘essentially the same’. See
Def 3.5 and §?? for discussion.

Definition 2.17 Natural deduction. Sequent-style presentation. Notation: Γ ` A for a deduction
of the formula A from a configuration of undischarged assumptions Γ. Elimination/Introduction
rules for NL. Structural rules as in (8).

A ` A

[/I]
(Γ, B) ` A
Γ ` A/B

Γ ` A/B ∆ ` B
(Γ,∆) ` A [/E]

[\I] (B,Γ) ` A
Γ ` B\A

Γ ` B ∆ ` B\A
(Γ,∆) ` A [\E]

[•I] Γ ` A ∆ ` B
(Γ,∆) ` A •B

∆ ` A •B Γ[(A,B)] ` C
Γ[∆] ` C [•E]

2.3 Discussion: options for resource management

In the previous sections, we have introduced the technical apparatus that is needed for a proper
appreciation of the logics NL, L, NLP, LP. Let us turn now to the linguistic motivation for the differ-
ent resource management regimes these logics represent. In order to compare the strengths and
weaknesses of these individual systems, Prop 2.18 gives a useful inventory of characteristic theo-
rems and derived rules of inference for the logics in question. We leave their proof to the reader,
who can test his or her understanding of the axiomatic and Gentzen presentations in deriving
them.

Proposition 2.18 Characteristic theorems and derived inference rules for NL (1–6); L (7-11), plus
(1–6); NLP (12–14), plus (1–6); LP (15), plus (1–14).

1. Application: A/B •B → A, B •B\A→ A
2. Co-application: A→ (A •B)/B, A→ B\(B •A)
3. Monotonicity •: if A→ B and C → D, then A • C → B •D
4. Isotonicity ·/C, C\·: if A→ B, then A/C → B/C and C\A→ C\B
5. Antitonicity C/·, ·\C: if A→ B, then C/B → C/A andB\C → A\C
6. Lifting: A→ B/(A\B), A→ (B/A)\B
7. Geach (main functor): A/B → (A/C)/(B/C), B\A→ (C\B)\(C\A)
8. Geach (secondary functor): B/C → (A/B)\(A/C), C\B → (C\A)/(B\A)
9. Composition: A/B •B/C → A/C, C\B •B\A→ C\A

10. Restructuring: (A\B)/C ←→ A\(B/C)
11. (De)Currying: A/(B • C)←→ (A/C)/B, (A •B)\C ←→ B\(A\C)
12. Permutation: if A→ B\C thenB → A\C
13. Exchange: A/B ←→ B\A
14. Preposing/Postposing: A→ B/(B/A), A→ (A\B)\B
15. Mixed Composition: A/B • C\B → C\A, B/C •B\A→ A/C
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Items (1) to (6) are valid in the most discriminating logic NL. As shown in [Došen 89], the combina-
tion of (1)–(5) provides an alternative way of characterizing (•,/) and (•,\) as residuated pairs, i.e.
one can replace the RES inferences of Def 2.2 by (1)–(5). The reader with a background in category
theory recognizes the adjointness (1–2) and functoriality (3–5) laws. Lifting is the closest one can
get to (2) in ‘product-free’ type languages, i.e. type languages where the role of the product opera-
tor (generally left implicit) is restricted to glue together purely implicational types on the left-hand
side of the arrow. Items (7) to (11) mark the transition to L: their derivation involves the structural
postulate of associativity for •. Rule (12) is characteristic for systems with a commutative •, NLP
and LP. From (12) one immediately derives the collapse of the implications / and \, (13). As a
result of this collapse, one gets variants of the earlier theorems obtained by substituting subtypes
of the form A/B by B\A or vice versa. Examples are (14), an NLP variant of Lifting, or (15), an LP
variant of Composition.

THE PURE LOGIC OF RESIDUATION. Let us look first at the most discriminating logic in the land-
scape, NL. In the absence of structural postulates for •, grammatical inference is fully sensitive to
both the horizontal and the vertical dimensions of linguistic structure: linear ordering and hier-
archical grouping. As in classical Ajdukiewicz style categorial grammar, Application is the basic
reduction law for this system. But the capacity for hypothetical reasoning already greatly increases
the inferential strength of NL in comparison with the pure application fragment. The principles of
Argument Lowering (e.g. (s/(np\s))\s→ np\s) and Value Raising (e.g. np/n→ (s/(np\s))/n), in-
troduced as primitive postulates in [Partee & Rooth 83], turn out to be generally valid type change
schemata, derivable from the combination of Lifting and the Isotonicity/Antitonicity laws for
the implications. These type-changing laws play an important role in the semantic investiga-
tion of categorial type systems, as we will see in §3. On a more general level, it is pointed out in
[Lambek 88] that Lifting is a closure operation, as it obeys the defining principles (11). (We write
AB for eitherB/(A\B) or (B/A)\B.)

A→ AB (AB)B → AB fromA→ C, infer AB → CB (11)

ASSOCIATIVITY AND FLEXIBLE CONSTITUENCY. An essential limitation of the pure residuation logic
is its rigid concept of constituency — a property which NL shares with conventional phrase struc-
ture grammars. The revival of interest in categorial grammar was inspired in the first place by a
more flexible notion of constituent structure, depending on L theorems such as the Geach laws,
Functional Composition, or its recursive generalization. These Geach and Composition principles
are formulated as implicational laws, but with the interpretation of the type-logical connectives
we have been assuming, the implicational laws and the product versions of the structural postu-
lates are interderivable.

Example 2.19 Deriving (one half of) Associativity from (one directional instantiation of) Geach.
(We write b for the left-division variant of principle (7) in Prop 2.18, and use X as an abbreviation
forA • ((A\(A •B)) • ((A •B)\((A •B) • C))).)

b : A\B → (C\A)\(C\B)

γ−1(b) : C\A • A\B → C\B
(†) γ−1(γ−1(b)) : C • (C\A • A\B) → B

A → A

(2) : B → A\(A • B) (2) : C → (A • B)\((A • B) • C)

(3) : B • C → (A\(A • B)) • ((A • B)\((A • B) • C))

(3) : A • (B • C) → X (†) : X → (A • B) • C

A • (B • C) → (A • B) • C

Associative resource management makes the grammar logic insensitive to hierarchical constituent
structure: derivability of a sequent Γ⇒ A is preserved under arbitrary rebracketings of the an-
tecedent assumptions Γ, a property which is referred to as the structural completeness of L ([Buszkowski 88]).
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The free availability of restructuring makes it possible to give alternative constituent analyses for
expressions that would count as structurally unambiguous under rigid constituency assumptions,
such as embodied by NL.

Example 2.20 Restructuring: subject-(verb-object) versus (subject-verb)-object analysis. Deriva-
tion in CCG tree format, in terms of the combinators Lifting, Composition, and Application. One
can see the CCG trees as concise representations of combinator proofs in the sense of Def 2.9, given
as compositions of ‘primitive’ CCG arrows.

Mary

np

cooked

(np\s)/np

the beans

np

np\s
app

s
app

Mary

np

s/(np\s)
lift

cooked

(np\s)/np

s/np

comp
the beans

np

s
app

Coordination phenomena provide crucial motivation for associative resource management and
the non-standard constituent analyses that come with it, cf. [Steedman 85, Dowty 88, Zwarts 86]
for the original argumentation. On the assumption that coordination joins expressions of like cat-
egory, theories of rigid constituency run into problems with cases of so-called non-constituent
coordination, such as the Right Node Raising example below. With an associative theory of gram-
matical composition, non-constituent coordination can be reduced to standard coordination of
phrases of like type. As will become clear in §3, the interpretation produced for the s/np instantia-
tion of the coordination type is the appropriate one for a theory of generalized conjoinability such
as [Keenan & Faltz 85, Partee & Rooth 83].

Example 2.21 Conjunction of non-constituents. Natural Deduction format. See §?? for the type
schema for ‘and’.

Kazimierz

np

loves

((np\s)/np) np

(np\s)
/E

s
\E

(s/np)
/I

and

∀X.(X\X)/X

(((s/np)\(s/np))/(s/np))
∀E

Ferdinand

np

hates

((np\s)/np) np

(np\s)
/E

s
\E

(s/np)
/I

((s/np)\(s/np))
/E

(s/np)
\E

Gottlob

np

s
/E

Other types of argumentation for flexible constituency have been based on processing consider-
ations (an associative regime can produce an incremental left-to-right analysis of a sentence cf.
[Ades & Steedman 82]), or intonational structure (distinct prosodic phrasing realizing alternative
information packaging for the same truth conditional content, cf. [Steedman 91]).

Unfortunately, the strength of L is at the same time its weakness. Associative resource manage-
ment globally destroys discrimination for constituency, not just where one would like to see a
relaxation of structure sensitivity. Standard constituent analyses provide the proper basis for the
characterization of domains of locality: in an associative setting, the constituent information is
lost. As examples of the resulting overgeneration one can cite violations of the Coordinate Struc-
ture Constraint such as (12). The type assignment (n\n)/(s/np) to the relative pronoun requires
‘Gottlob admired Kazimierz and Jim detested’ to be of type s/np. With an instantiation (s\s)/s
for the conjunction, and an associative regime of composition, there is nothing that can stop the
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derivation of (12), as pointed out in [Steedman 93], where this type of example is traced back to
[Lambek 61].

*(the mathematician) whom Gottlob admired Kazimierz and Jim detested (12)

DISCONTINUOUS DEPENDENCIES AND RESTRICTED COMMUTATIVITY. The discussion above shows
that L is too strong in that it fully ignores constituent information. But at the same time, the
order sensitivity of this logic makes it too weak to handle discontinuous dependencies. A case
in point are the crossed dependencies of the Dutch verb cluster. In the example below, the verb
raising trigger ‘wil’ has to combine with the infinitival ‘voeren’ before the latter (a transitive verb)
combines with its direct object.

Example 2.22 Dutch verb clusters via Mixed Composition. (We write iv for infinitival verb phrases,
vp for tensed ones.)

(dat Marie) de nijlpaarden (np) wil (vp/iv) voeren (np\iv)
‘(that Mary) the hippos wants feed’ (= that M. wants to feed the hippos)
vp/iv, np\iv⇒ np\vp (Mixed Composition)
A/B → (C\A)/(C\B) (Mixed Geach, schematically)

In order to form the cluster ‘wil voeren’ in such a way that it ‘inherits’ the arguments of the embed-
ded infinitive, composition laws (or their Geach generalizations) have been proposed ([Steedman 84,
Moortgat 88]) that would combine functors with conflicting directionality requirements, so-called
Mixed Composition. Clearly, with these laws, one goes beyond the inferential capacity of L. As the
reader can check with the aid of Ex 2.19, the product counterpart of the mixed Geach transition of
Ex 2.22 isA • (B • C)→ B • (A • C), which together with Associativity introduces a contextualized
form of Commutativity. The permutation side effects of Mixed Composition cause a damaging
loss of control over the grammatical resources. Not surprisingly, then, the introduction of such
combination schemata went hand in hand with the formulation of extralogical control principles.
A more attractive alternative will be presented in Ex 4.4.

CONCLUSION. Let us summarize this discussion. The individual simple Lambek systems each
have their merits and their limitations when it comes to grammatical analysis. As a grammar
writer, one would like to exploit the inferential capacities of a combination of different systems.
Importing theorems from a system with more relaxed resource management into a logic with a
higher degree of structural discrimination is not a viable strategy: it globally affects sensitivity
for the relevant structural parameter of the more discriminating logic. In §4.1 we will develop
a logical framework supporting a truly ‘mixed’ style of categorial inference. Structural collapse
is avoided by moving to a multimodal architecture which is better adapted to deal with the fine-
structure of grammatical composition. But first we discuss an aspect of grammatical inference
which is of crucial importance for the categorial architecture but which has been ignored so far:
the syntax-semantics interface.

3 The syntax-semantics interface: proofs and readings

Categorial type logics offer a highly transparent view on the relation between form and mean-
ing: semantic interpretation can be read off directly from the proof which establishes the well-
formedness (derivability) of an expression. The principle of compositionality (see Chapters One
and Seven) is realized in a particularly stringent, purely deductive form, leaving no room for rule-
to-rule stipulated meaning assignment.

In §1 we noticed that the categorial program ultimately has its ancestry in Russell’s theory of types.
In the original ‘Polish’ version of the program, categorial types were viewed simultaneously in the
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syntactic and in the semantic dimension. This unified perspective was lost in subsequent work:
Lambek developed categorial calculi as theories of syntactic types, and Curry advocated the appli-
cation of his semantic types of functionality in natural language analysis — a development which
led up to Montague’s use of type theory. The divergence can be traced back to [Jakobson 61], where
[Curry 61] in fact criticizes [Lambek 61] for introducing the structural dimension of grammatical
composition in his category concept. These divergent lines of research were brought together
again in [van Benthem 83], who established the connection between Lambek’s categorial frame-
work and the Curry-Howard ‘formulas-as-types’ program.

In the logical setting, the Curry-Howard program takes the form of an isomorphism between (Nat-
ural Deduction) proofs in the Positive Intuitionistic Propositional Logic and terms of the λ calcu-
lus. In the categorial application, one is interested in the Curry-Howard mapping as a correspon-
dence rather than an isomorphism, in the sense that derivations for the various categorial logics
are all associated with LP term recipes. The system LP, in this sense, plays the role of a general
semantic composition language which abstracts away from syntactic fine-structure. As we have
seen in §2, the form dimension of grammatical composition can be profitably studied in the con-
text of the frame semantics for the type formulae: on that level, the structural postulates regulating
sub-LP resource management naturally find their interpretation in terms of frame constraints.

The emphasis in this section is on the limited semantic expressivity of the categorial languages.
With respect to the original intuitionistic terms, the LP fragment obeys linearity constraints re-
flecting the resource sensitivity of the categorial logic; moving on to more discriminating systems,
the set of derivable readings further decreases. The price one pays for obtaining more fine-grained
syntactic discrimination may be the loss of readings one would like to retain from a purely se-
mantic point of view. This tension has played an important role in the development of the field.
To regain lost readings one can enrich the logical vocabulary, and introduce more delicate type
constructors compatible with both the structural and the semantic aspects of grammatical com-
position. And one can exploit the division of labour between lexical and derivational semantics.
We discuss this theme in §3.2. In §3.1 we first introduce the necessary technical material, basing
the exposition on [van Benthem 91,95, Wansing 92b, Hendriks 93]. Our treatment of term assign-
ment focuses on the Gentzen presentation of the categorial calculi. For a parallel treatment in
terms of Natural Deduction, the reader can turn to Chapter Twelve.

3.1 Term assignment for categorial deductions

We start our discussion of semantic term assignment with the system at the top of the categorial
hierarchy — the system LP. Instead of sequents A1, . . . , An ⇒ B we now consider annotated se-
quents x1 : A1, . . . , xn : An ⇒ t : B where the type formulae are decorated with terms — distinct
xi for the assumptions and a term t constructed out of these xi, in ways to be made precise below,
for the goal. On the intuitive level, a derivation for an annotated sequent will represent the com-
putation of a denotation recipe t of type B with input parameters xi of type Ai. Let us specify the
syntax and semantics of the language of type formulae and term labels, and define the systematic
association of the term labeling with the unfolding of a sequent derivation.

In the case of LP, we are considering a type language with formulae F ::= A | F → F | F ◦ F
(the two implications collapse in the presence of Permutation). The choice of primitive types A
will depend on the application. A common choice would be e (the type of individual objects) and
t (the type of truth values). In §3.2, we will encounter more elaborate inventories for the ‘dynamic’
approach to natural language semantics. For semantic interpretation of the type language, we
consider frames F = {DA}A∈F based on some non-empty set E, the domain of discourse. Such
frames consist of a family of semantic domains, one for each typeA ∈ F , such that

DA◦B = DA ×DB (Cartesian product) DA→B = DDA

B (Function space) (13)

For the primitive types we can fixDe = E and Dt = {0, 1} (the set of truth values).
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We need a representation language to refer to the objects in our semantic structures. The language
of the typed lambda calculus (with its familiar interpretation with respect to standard models) will
serve this purpose.

Definition 3.1 Syntax of typed lambda terms. Let VA be the set of variables of type A. The set Λ of
typed λ terms is {T A}A∈F , where for allA,B ∈ F :

T A ::= VA | T B→A(T B) | (T A◦B)0 | (T B◦A)1

T A→B ::= λVAT B T A◦B ::= 〈T A, T B〉

We now have all the ingredients for presenting term assignment to LP sequent proofs. We proceed
in two stages: first we present the algorithm for decorating LP derivations with intuitionistic term
labeling. For Intuitionistic Logic, there is a perfect correspondence between (Natural Deduction)
proofs and Λ terms. But not every intuitionistic theorem is LP derivable. In the second stage, then,
we identify a sublanguage Λ(LP) of terms which effectively correspond to the resource-sensitive
LP derivations.

Definition 3.2 Term assignment for LP. Notation: x, y, z for variables, t, u, v for arbitrary terms;
u[t/x] for the substitution of term t for variable x in term u. In sequents x1 : A1, . . . , xn : An ⇒ t : B,
the antecedent xi are distinct. For the implication→, the rule of use corresponds to functional ap-
plication, the rule of proof to functional abstraction (λ binding). For ◦, the rule of proof corresponds
to pairing, the rule of use to projection. The Cut rule corresponds to substitution.

x : A⇒ x : A (Ax)
Γ⇒ t : A x : A,∆⇒ u : B

Γ,∆⇒ u[t/x] : B
(Cut)

Γ, x : A, y : B,∆⇒ t : C
Γ, y : B, x : A,∆⇒ t : C

(P )

∆⇒ t : A Γ, x : B ⇒ u : C
Γ,∆, y : A→ B ⇒ u[y(t)/x] : C

(→ L)
Γ, x : A⇒ t : B

Γ⇒ λx.t : A→ B
(→ R)

Γ⇒ t : A ∆⇒ u : B
Γ,∆⇒ 〈t, u〉 : A ◦B (◦R)

Γ, x : A, y : B ⇒ t : C
Γ, z : A ◦B ⇒ t[(z)0/x, (z)1/y] : C

(◦L)

Unlike intuitionistic resource management, where the structural rules of Contraction and Weak-
ening are freely available, the LP regime requires every resource in a proof to be used exactly once.
For the implicational fragment, Prop 3.4 indicates how the resource sensitivity of LP translates
into the syntactic properties of its proof terms, as specified in Def 3.3.2

Definition 3.3 Let Λ(LP) be the largest Γ ⊆ Λ such that

(i) each subterm of t ∈ Γ contains a free variable
(ii) no subterm of t ∈ Γ contains more than one free occurrence of the same variable

(iii) each occurrence of the λ abstractor in t ∈ Γ binds a variable within its scope

2For the product, one needs an auxiliary notion specifying what it means for the variables associated with the use of ◦
to be used ‘exactly once’, cf. [Roorda 91]. In Linear Logic, alternative term assignment for the product is available in terms
of a construct which directly captures the resource sensitivity of the proof regime: let s be x ◦ y in t. See [Troelstra 92].
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Proposition 3.4 [van Benthem 87, Buszkowski 87, Wansing 92b]. Correspondence between LP proofs
and Λ(LP) terms. Given an LP derivation of a sequent σ = A1, . . . , An ⇒ B one can find a construc-
tion tB ∈ Λ(LP) of σ, and conversely (where a term tB ∈ Λ(LP) is called a construction of a sequent
A1, . . . , An ⇒ B iff t has exactly the free variable occurrences xA1

1 , . . . , xAn
n .)

IDENTIFYING PROOFS. So far we have been concerned with individual terms, not with relations
of equivalence and reducibility between terms. Given the standard interpretation of the Λ term
language, the equations (E1) to (E4) of Def 3.5 represent semantic equivalences of certain terms.
Read from left (redex) to right (contractum), these equivalences can be seen as valid term reduc-
tions. From the Gentzen proof-theoretic perspective, it is natural to look for the operations on
proofs that correspond to these term reductions.

Definition 3.5 Term equations and their proof-theoretic reflexes ([Lambek 93a, Wansing 92b]). (E1)
and (E3) correspond to β reduction, (E2) and (E4) to η reduction for function and product types,
respectively.

(E1) (λxA.tB)u = t[u/x] principal Cut on A→ B
(E2) λxA.(tx)B = t non-atomic axiomA→ B
(E3) (〈tA, uB〉)0 = t (〈t, u〉)1 = u principal Cut on A ◦B
(E4) 〈(tA◦B)0, (tA◦B)1〉〉 = t non-atomic axiomA ◦B

The terms for cut-free proofs are in β-normal form: the principal Cut Elimination step replaces a
redex by its contractum. Proofs restricted to atomic Axioms yield η-expanded terms. Such proofs
can always be simplified by substituting complex Axioms for their unfoldings, yielding η-normal
proof terms. The search space for Cut-free proofs is finite. Exhaustive Cut-free search produces
the finite number of LP readings, thus providing a proof-theoretic perspective on the Finite Read-
ing Property for LP established in [van Benthem 83].

Example 3.6 Principal cut: β-conversion. Input:

Γ, x : B ⇒ t : A
Γ⇒ λx.t : A/B

[R/]
∆′ ⇒ u : B ∆, z : A,∆′′ ⇒ v : C
∆, y : A/B,∆′,∆′′ ⇒ v[y(u)/z] : C

[L/]

∆,Γ,∆′,∆′′ ⇒ v[y(u)/z][λx.t/y] : C
[Cut]

Output:

∆′ ⇒ u : B Γ, x : B ⇒ t : A
Γ,∆′ ⇒ t[u/x] : A

[Cut]
∆, z : A,∆′′ ⇒ v : C

∆,Γ,∆′,∆′′ ⇒ v[t[u/x]/z] : C
[Cut]

Example 3.7 Complex axioms: η-conversion.

x : B ⇒ x : B y : A⇒ y : A
v : A/B, x : B ⇒ y[v(x)/y] : A

[L/]

v : A/B ⇒ λx.y[v(x)/y] : A/B
[R/]

; v : A/B ⇒ v : A/B
[Ax]

TERM ASSIGNMENT FOR SYNTACTICALLY MORE DISCRIMINATING SYSTEMS. In moving to the syn-
tactically more discriminating inhabitants of the categorial landscape, we have two options for
setting up the term assignment. The primary interest of the working linguist is not so much in
the two-way correspondence between terms and proofs, but rather in the one-way computation
of a meaning recipe as an automatic spin-off of proof search. From this perspective, one can
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be perfectly happy with LP term decoration also for the logics with a more developed structure-
sensitivity. One relies here on a healthy division of labour between the syntactic and semantic di-
mensions of the linguistic resources. The role of the uniform Λ(LP) term labeling is to capture the
composition of signs qua semantic objects. Linguistic composition in the form dimension is cap-
tured in the term structure over antecedent assumptions (or, alternatively, in terms of a structural
term labeling discipline for type formulae as discussed in Def ??). As the common denominator of
the various calculi in the categorial hierarchy, LP can play the role of a general-purpose language
of semantic composition. (In LFG, LP functions in a similar way as the semantic ‘glue’ language,
cf. [Dalrymple e.a. 95].)

In order to accommodate the dualism between syntactic and semantic types, we define a mapping
t : F 7→ F ′ from syntactic to semantic types, which interprets complex types modulo directional-
ity.

t(A/B) = t(B\A) = t(B)→ t(A), t(A •B) = t(A) ◦ t(B) (14)

The primitive type inventory is a second source of divergence: categorizing signs in their syntactic
and semantic dimensions may lead to different choices of atomic types. (For example, both com-
mon nouns (n) and verb phrases (np\s) may be mapped to the semantic type e→ t of properties.)

Definition 3.8 Term assignment for ‘sublinear’ calculi NL, L, NLP using Λ(LP) as the language of
semantic composition. Structural rules, if any, are neutral with respect to term assignment: they
manipulate formulae with their associated term labels.

[Ax]
x : A⇒ x : A

∆⇒ u : A Γ[x : A]⇒ t : C
Γ[∆]⇒ t[u/x] : C

[Cut]

[/R]
(Γ, x : B)⇒ t : A
Γ⇒ λx.t : A/B

∆⇒ t : B Γ[x : A]⇒ u : C
Γ[(y : A/B,∆)]⇒ u[y(t))/x] : C

[/L]

[\R]
(x : B,Γ)⇒ t : A
Γ⇒ λx.t : B\A

∆⇒ t : B Γ[x : A]⇒ u : C
Γ[(∆, y : B\A)]⇒ u[y(t)/x] : C

[\L]

[•L]
Γ[(x : A, y : B)]⇒ t : C

Γ[z : A •B]⇒ t[(z)0/x, (z)1/y] : C
Γ⇒ t : A ∆⇒ u : B
(Γ,∆)⇒ 〈t, u〉 : A •B [•R]

The alternative for the dualistic view is to equip the various inhabitants of the categorial landscape
with more structured semantic term languages which directly reflect the syntactic resource man-
agement regime of the logics in question. In [Buszkowski 87, Wansing 92b, Hepple 94] one finds
a term language which distinguishes left- and right oriented forms of abstraction λl, λr and ap-
plication. These allow for a refinement of the term restrictions characterizing the Λ(L) fragment
and the two-way correspondence between term constructions and proofs: in the case of L the left
(right) abstractors bind the leftmost (rightmost) free variable in their scope. In a similar vein, one
could look for a structural characterization of the non-associativity of NL.

As long as the interpretation of the types is given in terms of function spaces and Cartesian prod-
ucts, the distinctions between left/right abstraction/application remain purely syntactic. For a
more ambitious programme, see [Abrusci 96], who proposes a refinement of the notion ‘meaning
of proofs’ in the context of a generalization of the coherence semantics for Linear Logic. One con-
siders bimodules on coherent spaces and refines the class of linear functions into left-linear and
right-linear functions. Interpreting A on the coherent space X and B on the coherent space Y ,
DA\B (resp. DB/A) is the coherent space of all the left-linear (resp. right-linear) functions from X
to Y .
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NATURAL DEDUCTION. For the display of sample derivations in the following section, we will con-
tinue to use the handy natural deduction format, which is presented below in its term-annotated
form.

Definition 3.9 Term assignment: (sequent-style) Natural Deduction. Notation: Γ ` t : A for a de-
duction of the formula A decorated with term t from a structured configuration of undischarged
term-decorated assumptions Γ.

x : A ` x : A

[/I]
(Γ, x : B) ` t : A
Γ ` λx.t : A/B

Γ ` t : A/B ∆ ` u : B
(Γ,∆) ` t(u) : A [/E]

[\I] (x : B,Γ) ` t : A
Γ ` λx.t : B\A

Γ ` u : B ∆ ` t : B\A
(Γ,∆) ` t(u) : A

[\E]

[•I] Γ ` t : A ∆ ` u : B
(Γ,∆) ` 〈t, u〉 : A •B

∆ ` u : A •B Γ[(x : A, y : B)] ` t : C
Γ[∆] ` t[(u)0/x, (u)1/y] : C

[•E]

3.2 Natural language interpretation: the deductive view

For an assessment of categorial type logics in the context of Montague’s Universal Grammar pro-
gram, it is instructive to compare the type-logical deductive view on the composition of linguistic
meaning with the standard Montagovian rule-to-rule philosophy as discussed in Chapter One.
The rule-to-rule view on the syntax-semantics interface characterizes syntax in terms of a collec-
tion of syntactic rules (or rule schemata); for every syntactic rule, there is a corresponding seman-
tic rule, specifying how the meaning of the whole is put together in terms of the meaning of the
parts and the way they are put together. Apart from the homomorphism requirement for the syn-
tactic and semantic algebras, compositionality, in its rule-to-rule implementation, does not im-
pose any principled restrictions on exactly what operations in the semantic algebra one wants to
line up with the syntactic algebra: the correlation between syntactic and semantic rules/operations
can be entirely stipulative.

The type logical approach, as we have seen in §2 eliminates ‘syntax’ as a component of primitive
rules. Instead of syntactic rules, one finds theorems — deductive consequences derived from the
interpretation of the type-constructors. In the absence of syntactic rules, there can be no rule-
to-rule stipulated assignment of meaning to derivations: rather, every theorem has to derive its
meaning from its proof, again purely in terms of the semantic action of the type-constructors
under the Curry-Howard correspondence.

Example 3.10 Argument lowering ([Partee & Rooth 83]): the lexical type assignment for the verb
‘needs’, (np\s)/((s/np)\s), can be lowered to (np\s)/np. As discussed in §2, the principle is generally
valid in the pure residuation logic NL.

needs
needs : (np\s)/((s/np)\s)

x1 : s/np x0 : np

x1(x0) : s
/E

λx1.x1(x0) : (s/np)\s \I

needs(λx1.x1(x0)) : np\s /E

λx0.needs(λx1.x1(x0)) : (np\s)/np /I
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DERIVATIONAL AMBIGUITY: PROOFS AND READINGS. The rule-to-rule implementation of composi-
tionality requires there to be a unique meaning assignment for every syntactic rule. If one would
like to associate different semantic effects with what looks like one and the same syntactic rule,
one has to introduce diacritics in the syntax in order to keep the homomorphism requirement
intact. In contrast, for the type-logical approach meaning resides in the proof, not in the type-
change theorem that labels the conclusion of a proof. Different ways of proving one and the same
goal sequent may, or may not, result in different readings.

Example 3.11 As an example of derivational ambiguity, we consider the type-shifting principle
known as Argument Raising ([Partee & Rooth 83]). The derivations below represent two seman-
tically distinct L proofs of the theorem (np\s)/np⇒ ((s/(np\s))\s)/((s/np)\s), turning a simple
first-order transitive verb into a third-order functor taking second-order generalized quantifier type
arguments, encoding the subject wide scope reading (†) and object wide scope (‡) reading, respec-
tively.

(†)

x3 : s/(np\s)

x0 : np

tv

tv : (np\s)/np x1 : np

tv(x1) : np\s /E

tv(x1)(x0) : s
\E

λx1.tv(x1)(x0) : s/np
/I

x2 : (s/np)\s
x2(λx1.tv(x1)(x0)) : s

\E

λx0.x2(λx1.tv(x1)(x0)) : np\s \I

x3(λx0.x2(λx1.tv(x1)(x0))) : s
/E

λx3.x3(λx0.x2(λx1.tv(x1)(x0))) : (s/(np\s))\s \I

λx2λx3.x3(λx0.x2(λx1.tv(x1)(x0))) : ((s/(np\s))\s)/((s/np)\s) /I

(‡)
x2 : s/(np\s)

x0 : np

tv

tv : (np\s)/np x1 : np

tv(x1) : np\s /E

tv(x1)(x0) : s
\E

λx0.tv(x1)(x0) : np\s \I

x2(λx0.tv(x1)(x0)) : s
/E

λx1.x2(λx0.tv(x1)(x0)) : s/np
/I

x3 : (s/np)\s
x3(λx1.x2(λx0.tv(x1)(x0))) : s

\E

λx2.x3(λx1.x2(λx0.tv(x1)(x0))) : (s/(np\s))\s \I

λx3λx2.x3(λx1.x2(λx0.tv(x1)(x0))) : ((s/(np\s))\s)/((s/np)\s) /I

LEXICAL VERSUS DERIVATIONAL SEMANTICS. The derivational semantics of a sequent Γ⇒ t : A
gives a meaning recipe t in terms of free variables xi for the antecedent assumptions Ai in Γ,
the ‘parameters’ of the recipe. In the actual computation of the meaning of a natural language
expression, we substitute the lexical meanings of the words constituting the expression for these
variables. For the logically more exciting part of the vocabulary, this will involve the substitution of
a compound λ term representing the lexical meaning for a parameter in the proof term. The strict
division of labour between the role assigned to derivational and lexical semantics realizes a fully
modular implementation of compositionality, which has a number of pleasant consequences: on
the level of individual lexical items, lexical semantics can overcome the expressive limitations of
the resource-conscious derivational component; on a more global level, one can interface the
neutral derivational semantics with one’s favourite semantic theory via an appropriate category-
to-type mapping and lexical meaning assignment. We illustrate these two aspects in turn.
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NON-LINEAR MEANING RECIPES. We saw that the resource-sensitive LP terms have the property
that every assumption is used exactly once: the lambda operator binds exactly one variable oc-
currence. Natural language semantics, in a variety of constructions, requires the identification of
variables. Assigning multiple-bind terms to the relevant classes of lexical items one can realize
variable-sharing while maintaining the resource-sensitivity of derivational semantics.

Example 3.12 ‘Everyone loves himself ’. Proof term and substitution of lexical recipes. (Notice that
reductions after lexical substitution can destructively affect the proof term, in the sense that the
original proof term becomes irrecoverable after the ‘lexical’ β conversions.)

himself((np\s)/np)\(np\s) := λxλy.x(y)(y) everyones/(np\s) := λx∀y(person(y)⇒ x(y))

everyone

everyone : s/(np\s)

x0 : np

x1 : np

loves

loves : (np\s)/np x2 : np

loves(x2) : np\s /E

loves(x2)(x1) : s
\E

λx1.loves(x2)(x1) : np\s \I

λx2λx1.loves(x2)(x1) : (np\s)/np
/I

himself

himself : ((np\s)/np)\(np\s)
himself(λx2λx1.loves(x2)(x1)) : np\s \E

himself(λx2λx1.loves(x2)(x1))(x0) : s
\E

λx0.himself(λx2λx1.loves(x2)(x1))(x0) : np\s \I

everyone(λx0.himself(λx2λx1.loves(x2)(x1))(x0)) : s
/E

everyone(λx0.himself(λx2λx1.loves(x2)(x1))(x0))→β ∀y.person(y)⇒ love(y)(y)

DERIVATIONAL SEMANTICS: PORTABILITY. The proof terms associated with categorial derivations
relate structural composition in a systematic way to the composition of meaning. The derivational
semantics is fully neutral with respect to the particular ‘theory of natural language semantics’ one
wants to plug in: an attractive design property of the type-logical architecture when it comes to
portability. An illustration can be found in [Muskens xx], who proposes a type-logical emulation
of Discourse Representation Theory (cf. Chapter Three) driven by a categorial proof engine.

To obtain the combination, one starts from an appropriate primitive type inventory for dynamic
semantics: e and t as before, plus s (program states) and d (‘pigeon-holes’ for discourse referents).
The category to type map is set up in such a way that the syntactic categories get an interpretation
in the appropriate semantic domains: t(s) = t(txt) = s → s → t, t(np) = d, t(n) = d → (s → (s →
t)). Lexical recipes for a tiny corner of the DRT lexicon are given in (15).

an (s/(np\s))/n λPλQ.[un | ];P (un);Q(un)
man,woman n λv.[ | MAN v], λv.[ | WOMAN v]
loves, hates (np\s)/np λvλw.[ | v LOVES w], λvλw.[ | v HATES w]
hen, shen s/(np\s) λP.P (un)
himn,hern (s/np)\s λP.P (un)
. s\(txt/s), txt\(txt/s) λpλq.p; q

(15)

The reader will be able to verify in Ex 3.13 that the little discourse (a) is associated with proof term
(b) which reduces to the discourse representation structure (c), using some notational sugaring,
detailed below as far as relevant.
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Example 3.13 Type-driven composition of DRS’s ([Muskens xx]). Notational abbreviations:

φ;ψ = λiλj∃k.φik ∧ ψik (dynamic discourse composition)
[ u1 . . . un | γ1, . . . , γn] = λiλj.i [u1 . . . un] j ∧ γ1(j) ∧ . . . ∧ γn(j) (box with conditions γi)
[~u | ~γ] ; [~u′ | ~γ′]; [~u ~u′ | ~γ ~γ′] (merging boxes, provided the ~u′ do not occur in any of the ~γ)

(a) A1man loves a2 woman. She2 hates him1

(b) ·(a(man)(λx.a(woman)(λy.loves(y)(x))))(she(λv.him(λw.hates(w)(v))))
(c) [u1, u2 | MAN u1,WOMAN u2, u1 LOVES u2, u2 HATES u1]

Discussion: quantifier scope ambiguities

We close this section with a discussion of scope ambiguities involving generalized quantifier ex-
pressions: these phenomena nicely illustrate the tension between the composition of form and
meaning, and the different strategies for resolving these tensions.

Consider generalized quantifier expressions like ‘someone’, ‘everybody’. From the perspective of
LP, we can study their semantic contribution via a standard Fregean type assignment (e→ t)→ t,
with lexical recipes λx.∃y[x(y)], λx.∀y[x(y)]. The LP notion of derivability, of course, is too crude
to offer a unified deductive account of semantics in conjunction with syntax. Suppose we want
to refine the LP type (e → t) → t to take syntactic fine-structure into account. Within L, one can
find two directional realizations compatible with the fact that generalized quantifiers occupy the
positions of ordinary (proper noun) noun phrases: s/(np\s) and (s/np)\s. But imposing order
sensitivity in the type-assignment already causes the loss of scope readings one wants to preserve.
Compare ‘peripheral’ versus ‘medial’ occurrences of generalized quantifiers. Given a ‘direct ob-
ject’ assignment (s/np)\s to ‘someone’, both the (a) and (a’) readings are L-derivable. Given a
‘subject’ assignment s/(np\s) the (b) reading is not derivable: in L one only derives the narrow
scope reading (b’).

(a) Suzy thinks Mary loves someone ; someone(λx.thinks(loves(x)(m))(s))
(a′) ; thinks(someone(λx.loves(x)(m)))(s)
(b) Suzy thinks someone loves Mary ; someone(λx.thinks(loves(m)(x))(s))
(b′) ; thinks(someone(λx.loves(m)(x)))(s)

(16)

The diagnosis of the problem is easy in the light of §2: the (b) reading would require the general-
ized quantifier expression to enter into structural composition with a discontinuous configuration
of resources: such syntactic behaviour is beyond the expressivity of the (N)L connectives:

Suzy thinks someone loves Mary

We compare two strategies to resolve this problem: (i) in the rule-based approach, one postu-
lates type-change axiom schemata to regain the lost readings, (ii) in the deductive approach: one
enriches the vocabulary of connectives with logical constants such that these axiom schemata be-
come derivable theorems. Flexible Montague Grammar ([Hendriks 93]), and the closely related
polymorphic approach of [Emms 93b] (to be taken up in §??) are representatives of (i). The de-
ductive alternative has been developed in [Moortgat 91, Morrill 95a, Carpenter 96].

FLEXIBLE MONTAGUE GRAMMAR. Hendriks’ proposal is formulated as a flexible version of Mon-
tague Grammar (FMG). For an assessment in the Montagovian context we refer to Chapter One.
Our objective here is to give a type-logical reconstruction of the essential ideas. Syntactically, FMG
is restricted to combine phrases by means of function application rule schemata. In order to ac-
commodate quantificational scope ambiguities, the category-to-type mapping is relaxed to a re-
lation rather than a function: a given syntactic type is associated with a set of semantic types. The
semantic types are not unrelated: from a generator type an infinite number of semantic types (and
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the associated meaning recipes) are derived via the type-shifting rule schemata of Value Raising
(VR), Argument Lowering (AL), and Argument Raising (AR).

Let us identify the pure application syntax of FMG as NL, and try to pinpoint exactly where the
type-shifting schemata give a surplus inferential capacity. As we have seen in §2, Value Raising and
Argument Lowering are universally valid already in the pure residuation logic NL: they reflect the
monotonicity properties of the implicational type constructors. Argument Raising, as a semantic
type-shifting rule, is schematically characterized in (17) (where ~A→ B abbreviatesA1 → . . . An →
B, and similiarly for ~x).

(AR) ~A→ B → ~C → D → ~A→ ((B → D)→ D)→ ~C → D
t → λ~x ~Aλw(B→D)→Dλ~y ~C .w(λzB .t(~x)(z)(~y)

(17)

Directional realizations of this schema are not generally valid. We saw two special cases in our Ex-
ample 3.11: these happened to be derivable, in the associative setting of L, for generalized quanti-
fiers occupying peripheral positions in their scopal domain. But what we would like to have in full
generality is the possibility of having a generalized quantifier phrase at any np position, exerting
its binding force at any s level of embedding.

As an illustration for the FMG type-shifting approach, take the sentence ‘Kazimierz thinks some-
one left’. In (18) we list the necessary steps producing the wide scope reading for ‘someone’. We
give both the semantic shifts — abbreviating A → B as (AB) — and their directional counter-
part. The (AR) transition for ‘left’, with the generalized quantifier variable x1 in head position, is
the critical one that cannot be obtained as a pure NL proof term. Combining the words (in their
shifted types) by means of functional application produces the desired reading.

thinks (np\s)/s ⇒ (np\s)/((s/s)\s)
(t(et)) ⇒AR ((tt)t)(et)
thinks ⇒ λx2λx0.x2(λx1.thinks(x1)(x0))

left np\s ⇒ np\((s/s)\s)
(et) ⇒V R (e((tt)t)
left ⇒ λx1λx0.x0(left(x1)) (= left’)

np\((s/s)\s) ⇒ (s/(np\s))\((s/s)\s)
(e((tt)t) ⇒AR ((et)t)((tt)t)
left’ ⇒ λx2λx0.x2(λx1.x0(left(x1)))

(18)

A CONNECTIVE FOR BINDING. The deductive alternative is to investigate the theoretical space pro-
vided by the Lambek landscape in order to identify within this space a logical constant which
renders the critical AR cases (the cases beyond the reach of (N)L) derivable.

Definition 3.14 In situ binding q(A,B,C) ([Moortgat 91]). Use of a formula q(A,B,C) binds a vari-
able x of typeA, where the resourceA is substituted for (takes the place of) q(A,B,C) in the binding
domainB. Using q(A,B,C) turns the binding domainB into C. In the generalized quantifier case
we have typing q(np, s, s) where it happens thatB = C = s. For the semantic term decoration of the
rule of use [qL], assume t(q(A,B,C)) = (t(A)→ t(B))→ t(C).

∆[x : A]⇒ t : B Γ[y : C]⇒ u : D
Γ[∆[z : q(A,B,C)]]⇒ u[z(λx.t)/y] : D

(qL)

Example 3.15 Direct cut-free proof search for ‘Kazimierz thinks someone left’, with wide scope ‘some-
one’. (Compare: the FMG strategy of (18).)

np⇒ np s⇒ s

np, np\s⇒ s
(\L)

np⇒ np s⇒ s

np, np\s⇒ s
(\L)

np, (np\s)/s, x : np , np\s⇒ u : s
(/L)

y : s ⇒ y : s

np, (np\s)/s, someone:q(np, s, s) , np\s⇒ y[someone(λx.u)/y] : s
(qL)

25



u = thinks(left(x))(k), y[someone(λx.u)/y] = someone(λx.thinks(left(x))(k))

Carpenter [Carpenter 94, Carpenter 96] offers an in-depth discussion of the empirical range of the
binding connective as compared with competing approaches to quantification, and an extension
with a treatment of plurals. Notice finally the different ‘heuristic’ qualities of the connective-based
and the rule-based type-shifting alternatives. The type-shifting approach is specifically designed
to handle the semantics of quantificational phenomena and obtain minimal type assignment. The
deductive approach introduces a connective, i.e. a fully general operation on types that cannot
have a construction-specific limited range of application. Support for the generality of a connec-
tive for in situ binding can be found in the analyses of Pied-Piping ([Morrill 95a]), or more . . . than
comparative subdeletion ([Hendriks 95]).

We close this discussion with some open questions. With the [qL] inference, we have given a
rule of use — what about the rule of proof for the in situ binder? Also, the q connective was pre-
sented as a primitive connective, whereas the term assignment z(λx.t) shows the interaction of
two implications— could we decompose the q connective into more elementary logical constants?
In the context of the simple type logics we are discussing here, these questions must remain unan-
swered. In section §4.1, multimodal type logics will be introduced which provide the tools to tackle
these issues in a principled way.

4 Grammatical composition: multimodal systems

In the present section we generalize the multiplicative vocabulary in a number of directions. The
generalizations do not affect the overall model-theoretic or proof-theoretic properties of the cat-
egorial architecture in any essential sense. But they increase the linguistic sophistication in such
a way that the limitations of the simple systems discussed in §2.3 are overcome.

In §4.1, simple type logics are put together into a mixed, multimodal system where distinct no-
tions of grammatical composition coexist and communicate. The multimodal style of reasoning
was developed in the work of Oehrle, Morrill, Hepple and the author, cf. [Moortgat & Morrill 91,
Moortgat & Oehrle 93, Moortgat & Oehrle 94, Hepple 94]. This development reintroduces in the
type-logical discussion the theme of the ‘multidimensionality’ of grammatical composition that
had been dealt with on a more philosophical level in earlier work such as [Oehrle 88, Bach 84].
Another antecedent is [Dowty 91], who distinguishes composition modes with different degrees
of coherence.

In §4.2, the binary vocabulary is extended with a language of unary multiplicatives. The unary
connectives play the role of control devices, with respect to both the static aspects of linguis-
tic structure, and the dynamic aspects of putting this structure together. Unary operations en-
tered the type-logical discussion in [Morrill 90a], who provides an analysis of semantic domains
of intensionality in terms of a 2 operator. The unary vocabulary soon found a variety of appli-
cations, including the syntactic domain modalities of [Hepple 90], the ‘structural modalities’ of
[Barry e.a. 91], and the ‘bracket’ operators of [Morrill 95a]. Our treatment below systematizes and
refines these earlier proposals.

As indicated in §1, the developments to be discussed here represent the categorial digestion of a
number of themes in the field of Linear Logic and related substructural systems, and of Gabbay’s
general program for combining logics. The collection Substructural Logics [Došen & Schröder-Heister 93]
and [Gabbay 94] offer useful background reading for these lines of research.

4.1 Mixed inference: the modes of composition

In §2 the type-forming connectives /, •, \were interpreted in terms of a single notion of linguistic
composition. In moving to a multimodal architecture the objective is to combine the virtues of
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the individual logics we have discussed so far, and to exploit new forms of grammatical inference
arising from their communication. In merging different logics into a mixed system, we have to
take care that their individual resource management properties are left intact. This can be done
by relativizing linguistic composition to specific resource management modes. But also, we want
the inferential capacity of the combined logic to be more than the sum of the parts. The extra
expressivity comes from interaction postulates that hold when different modes are in construction
with one another. The interaction postulates can apply in full generality, or can themselves be
intrinsically controlled by exploiting mode distinctions, or by composition of modes.

On the syntactic level, the category formulae for the multimodal language are defined inductively
on the basis of a set of category atomsA and a set of indices I. We refer to the i ∈ I as composition
modes, or modes for short.

F ::= A | F/iF | F •i F | F\iF (19)

The interpretation for the mixed language is a straightforward generalisation of the semantics for
the simple systems. Rather than interpret the multiplicatives in terms of one privileged notion of
linguistic composition, we put together different forms of linguistic composition and interpret in
multimodal frames 〈W, {R3

i }i∈I〉. The valuation v respects the structure of the complex formulae
in the familiar way, interpreting each of the modes i ∈ I in terms of its own composition relation
Ri. The basic residuation laws (20) are relativized with respect to the composition modes.

Definition 4.1 Interpretation in multimodal frames 〈W, {R3
i }i∈I〉.

v(A •i B) = {x |∃y∃z[Rixyz & y ∈ v(A) & z ∈ v(B)]}
v(C/iB) = {y |∀x∀z[(Rixyz & z ∈ v(B))⇒ x ∈ v(C)]}
v(A\iC) = {z |∀x∀y[(Rixyz & y ∈ v(A))⇒ x ∈ v(C)]}

A→ C/iB iff A •i B → C iff B → A\iC (20)

In sequent presentation, each residuated family of multiplicatives {/i, •i, \i} has a matching struc-
tural connective (·, ·)i. Logical rules insist that use and proof of connectives respect the resource
management modes. The explicit construction of the antecedent database in terms of structural
connectives derives directly from Belnap’s [Belnap 82] work on Display Logic, where it serves the
same purpose as it does here, viz. to combine logics with different resource management regimes.
In [Kracht 93, Wansing 92a] one finds recent applications in the context of modal logic. More re-
cently, the same idea has been introduced in Linear Logic in [Girard 93].

Definition 4.2 Multimodal Gentzen calculus: logical rules. Structure terms S ::= F | (S,S)i.

[R/i]
(Γ, B)i ⇒ A
Γ⇒ A/iB

Γ⇒ B ∆[A]⇒ C
∆[(A/iB,Γ)i]⇒ C

[L/i]

[R\i]
(B,Γ)i ⇒ A
Γ⇒ B\iA

Γ⇒ B ∆[A]⇒ C
∆[(Γ, B\iA)i]⇒ C

[L\i]

[L•i]
Γ[(A,B)i]⇒ C
Γ[A •i B]⇒ C

Γ⇒ A ∆⇒ B
(Γ,∆)i ⇒ A •i B

[R•i]

Notice that the mode specification can keep apart distinct forms of grammatical composition
even if they have the same resource management properties. The dependency calculus of [Moortgat & Morrill 91]
provides an example. By splitting up the product • in a left-headed •l and a right-headed •r,
these authors introduce a dimension of dependency structure next to the dimensions of prece-
dence and dominance. The dependency products could both be non-associative operators; still,
with the mode specification we would be able to distinguish left-headed structures from right-
headed ones. Linguistic motivation for the dependency dimension can be found in [Barry 91,
Barry & Pickering 90].
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In addition to the residuation inferences (the fixed ‘logical’ component for all modes), we can now
have mode-specific structural options. For a commutative mode c, for example, we would have
the structural postulates (structural rules, in the Gentzen style) below, together with the match-
ing frame constraint for the composition relation interpreting •c: (∀x, y, z ∈ W ) Rcxyz ⇒ Rcxzy.
(Where there is an established notation, such as⊗ in this case, we will often use the familiar sym-
bol instead of the ‘official’ •c notation. Also, we will sometimes abuse notation in using the product
symbols themselves as mode indices in the Gentzen term language.)

A •c B ←→ B •c A
Γ[(∆2,∆1)c]⇒ A
Γ[(∆1,∆2)c]⇒ A

[P] (21)

It is straightforward to extend the completeness results of §2 to the multimodal architecture, cf
[Kurtonina 95] for discussion. Semantic annotation of the multimodal derivations with λ term
meaning recipes is implemented in exactly the same way as for the unimodal systems.

MULTIMODAL COMMUNICATION. What we have done so far is simply put together the individual
systems discussed before in isolation. This is enough to gain combined access to the inferential
capacities of the component logics, and one avoids the unpleasant collapse into the least dis-
criminating logic that results from putting together theorems from different simple logics without
taking into account the mode distinctions, cf. our discussion in §2. But as things are, the borders
between the constituting logics in our multimodal setting are still hermetically closed. Commu-
nication between composition relations Ri and Rj can be established in two ways.

Inclusion postulates. Postulates A •i B → A •j B, with corresponding frame conditions (∀xyz ∈
W )Rixyz ⇒ Rjxyz, impose a ‘specificity’ order on composition modes i,j.

Interaction postulates. Postulates ‘mixing’ distinct modes i, j allow for the statement of distribu-
tivity principles regulating the communication between composition modes Ri, Rj . One
obtains constrained multimodal forms of the resource management postulates of §2.

INCLUSION PRINCIPLES. One can develop different perspectives on inclusion principles depend-
ing on the interpretation one has in mind for the ordering of the composition relations Ri, Rj in-
volved. A natural candidate would be an ordering in terms of the information they provide about
the structure of the linguistic resources. From this perspective, the non-commutative product •
would count as more informative than the commutative product ⊗, since the former but not the
latter is sensitive to the linear order of the resources. In terms of frame conditions, one imposes
the constraint R•xyz ⇒ R⊗xyz, corresponding to the postulate A •B → A⊗B. This perspective
is taken in general terms in [Moortgat & Oehrle 93], where two products •i and •j are related by an
inclusion principleA •i B → A •j B if the latter has greater freedom of resource management than
the former. The opposite view is taken in [Hepple 95], where one finds a systematic reversal of the
derivability arrows in the inclusion principles, e.g. A⊗B → A •B. In [Kurtonina 95] it is shown
that from the frame semantics point of view the two perspectives can be equally well accommo-
dated: they reflect the choice for a ‘conjunctive’ versus ‘disjunctive’ reading of the commutative
product.

INTERACTION PRINCIPLES. Among the multimodal interaction principles, we distinguish cases of
weak and strong distributivity. The weak distributivity principles do not affect the multiplicity of
the linguistic resources. They allow for the realization of mixed associativity or commutativity laws
as the multimodal counterparts of the unimodal versions discussed above. Interaction principles
of the strong distributivity type duplicate resources, thus giving access to mode-restricted forms
of Contraction.

WEAK DISTRIBUTIVITY. Consider first interaction of the weak distributivity type. Def 4.3 states
principles of mixed associativity and commutativity. Instead of the global associativity and com-
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mutativity options characterizing L, NLP, LP, these principles realize constrained forms of asso-
ciativity/commutativity, restricted to the situation where modes i and j are in construction. (Sym-
metric duals can be added with the i mode distributing from the right, and one can split up the
two-directional inferences in their one-directional components, if so required.)

Definition 4.3 Mixed Associativity (MA), Mixed Commutativity (MP). Structural postulates, frame
constraints, Gentzen rules.

MP : A •i (B •j C)←→ B •j (A •i C) ∃t(Riuxt&Rjtyz)⇔ ∃t′(Rjuyt
′ & Rit

′xz)
MA : A •i (B •j C)←→ (A •i B) •j C ∃t(Riuxt&Rjtyz)⇔ ∃t′(Rjut

′z &Rit
′xy)

Γ[(∆2, (∆1,∆3)i)j ]⇒ A

Γ[(∆1, (∆2,∆3)j)i]⇒ A
[MP]

Γ[((∆1,∆2)i,∆3)j ]⇒ A

Γ[(∆1, (∆2,∆3)j)i]⇒ A
[MA]

For linguistic application of these general postulates, we turn to discontinuous dependencies. In
the work of authors such as [Bach 84, Pollard 84, Jacobson 87], it has been argued that the dis-
continuous mode of combination (‘wrapping’) should be treated as a grammatical operation sui
generis, rather than simulated in terms of the regular ‘concatenation’ mode. In the type-logical
setting one can adopt this emancipated position with respect to wrapping operations, and formu-
late the logic of discontinuity in terms of multimodal interaction principles. Consider the Dutch
Verb Raising construction. In Ex 2.22 we saw that a unimodal ‘Mixed Composition’ law causes per-
mutation disturbances in an otherwise order-sensitive grammar logic. With the aid of the MP/MA
interaction principles, one obtains the multimodal version of Ex 4.4.

Example 4.4 Mixed Composition/Geach as a multimodal theorem ([Moortgat & Oehrle 94]). The
MP interaction principle relates the head adjunction mode •h, which provides typing for the verb-
raising triggers, and the dependency mode •r, which characterizes the head-final basic clausal
structure of Dutch. (Compare (vp/hiv, np\riv)h ⇒ np\rvpwith Ex 2.22.)

C ⇒ C B ⇒ B
(C,C\rB)r ⇒ B

\rL
A⇒ A

(A/hB, (C,C\rB)r)h ⇒ A
/hL

(C, (A/hB,C\rB)h)r ⇒ A
MP

(A/hB,C\rB)h ⇒ C\rA
\rR

A/hB ⇒ (C\rA)/h(C\rB)
/hR

Notice that the order sensitivity of the individual modes •r and •h is respected: the valid forms
of mixed composition form a subset of the composition laws derivable within unimodal LP. The
principles of Directional Consistency and Directional Inheritance, introduced as theoretical prim-
itives in the rule-based setting of CCG, can be seen here to follow automatically from the indi-
vidual resource management properties of the modes involved and the distributivity principle
governing their communication. Ex 4.4 shows that it is possible to derive head adjunction. In
order to force the formation of the verb cluster, the type language has to be further refined. See
[Moortgat & Oehrle 94] for discussion, and §4.2 for the required logical vocabulary.

For a second illustration, we take up the discussion of in situ binding of §3. It is shown in [Morrill 94a]
that the connective q(A,B,C) can be defined in a multimodal system with three communicating
modes: a (associative regime), n (non-associative regime), and w (wrapping). The crucial interac-
tion principle is given in (22). The deconstruction of Ex 4.5 partially answers the question raised
in §3: for a default associative regime, it shows how one can define an in situ binding operator as
(s/wnp)\ws. Associativity here is essential for obtaining access to arbitrary infixation points for
the wrapping expression.
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(WN) : (A •a B) •a C ←→ (A •n C) •w B
Γ[((∆1,∆3)n,∆2)w]⇒ A

Γ[((∆1,∆2)a,∆3)a]⇒ A
[WN] (22)

Example 4.5 Multimodal deconstruction of q(A,B,C) as (B/wA)\wC. On the left the [q L] rule of
Def 3.14. On the right the ‘partial execution’ compilation in terms of interaction principle (22).

∆[x : A]⇒ t : B Γ[y : C]⇒ u : D
Γ[∆[z : q(A,B,C)]]⇒ u[z(λx.t)/y] : D

(qL)

(∆, (A,∆′)a)a ⇒ B

((∆,∆′)n, A)w ⇒ B
WN

(∆,∆′)n ⇒ B/wA
/wR Γ[C]⇒ D

Γ[((∆,∆′)n, (B/wA)\wC)w ]⇒ D
\wL

Γ[((∆, (B/wA)\wC)a,∆′)a]⇒ D
WN

Γ[((∆, q(A,B,C))a,∆′)a]⇒ D
(def)

INTERACTION PRINCIPLES: STRONG DISTRIBUTIVITY. As remarked above, the weak distributivity
principles MP, MA keep us within the family of resource neutral logics: they do not affect the
multiplicity of the resources in a configuration. Strong distributivity principles are not resource
neutral: they duplicate resources. As an example, consider the interaction principle of Mixed
Contraction in Def 4.6, which strongly distributes mode j over mode i thus copying a C datum.
Rather than introducing global Contraction, this interaction principle allows for a constrained
form of copying, restricted to the case where modes i and j are in construction.

Definition 4.6 Restricted Contraction. Structural postulate, Gentzen rule, frame constraint.

MC : (A •i B) •j C → (A •j C) •i (B •j C)
Γ[((∆1,∆3)j , (∆2,∆3)j)i]⇒ A

Γ[((∆1,∆2)i,∆3)j ]⇒ A
MC

(Ritxy &Rjutz)⇒ ∃t′∃t′′(Rjt
′xz &Rjt

′′yz &Riut
′t′′)

It has been argued that grammatical inference requires restricted access to Contraction for the
analysis of the so-called parasitic gap constructions in (23) below. In this construction, one would
like the abstractor associated with the wh element to bind multiple occurrences of the same vari-
able, for the interpretation of the structural positions indicated by the underscores. Such multi-
ple binding is beyond the scope of occurrence-sensitive logics we have considered so far. In the
framework of CCG, parasitic gaps are handled by means of the combinator S which is introduced
as a primitive for this purpose, cf. [Szabolcsi 87, Steedman 87].

S: A/C, (A\B)/C ⇒ B/C Which books did John (file without reading ) (23)

In a multimodal framework, a mode-restricted form of the S combinator can be derived from
the strong distributivity principle discussed above. In the Gentzen proof below, we give the rele-
vant instance for the derivation of the example sentence (instantiate A/jC as vp/jnp for file, and
(A\iB)/jC as (vp\ivp)/jnp for without reading). Mode j here would be the default mode by which
the transitive verbs file and read consume their direct objects; the combination of the vp adjunct
without reading with the vp it modifies is given in terms of mode i, the ‘parasitic’ mode which
licenses the secondary gap depending on the primary one, the argument of file.

Example 4.7 Deriving the combinator S as a multimodal theorem.

&c
((A/jC,C)j , (A\iB)/jC,C)j)i ⇒ B

((A/jC, (A\iB)/jC)i, C)j ⇒ B
MC

(A/jC, (A\iB)/jC)i ⇒ B/jC
/jR
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4.2 Grammatical composition: unary operations

The language of binary multiplicative connectives is designed to talk about forms of linguistic
composition where two resources are put together. It is not difficult to see how one could general-
ize the type language to n-ary multiplicatives, and interpret families of n-ary residuated connec-
tives with respect to a composition relation of arity n+1, in the setting of frame semantics. Writing
f•(A1, . . . , An) for an n-ary product and f i

→(A1, . . . , An) for the i-th place residual, the basic resid-
uation laws take the form shown in (24). For arities 2 ≤ n, an n-ary product connective would be
interpreted with respect to a form of grammatical composition relating n ‘component’ resources
to their ‘fusion’. Such generalizations have been studied in a logical setting in [Dunn 93], and in
the context of categorial grammar logics in [Buszkowski 84, Moortgat & Oehrle 93].

f•(A1, . . . , An)→ B iff Ai → f i→(A1, . . . , Ai−1, B,Ai+1, . . . , An) (24)

In this section we present the logic of unary residuated operations in the categorial type lan-
guage. The need for unary complementation of the familiar binary vocabulary has long been
felt: for arguments see [Bach 88], or [Schmerling 83], who relates the discussion to the ‘item-and-
arrangement’ versus ‘item-and-process’ views on structuring linguistic resources. As remarked
above, unary connectives were introduced in the type-logical discussion around 1990 in [Morrill 90a],
and subsequent work of a number of Edinburgh researchers. A representative collection of papers
can be found in [Barry & Morrill 90].

Our aim in this section is to systematize this area of research by developing a general framework
that will naturally accommodate the various proposals for unary operators while at the same time
providing more fine-grained notions of resource control. We extend the language of binary mul-
tiplicatives with a pair of unary residual operators ♦, 2. Parallel to our treatment of the binary
multiplicatives §2, we start from the most discriminating system, i.e. the pure logic of residuation
for ♦, 2. By gradually adding structural postulates, we obtain versions of these unary operators
with a coarser resource management regime. We develop the model-theoretic and proof-theoretic
technicalities in §4.2.1, drawing heavily on [Moortgat 95]. In §4.2.2, we discuss the linguistic moti-
vation for the various resource management options. Finally, in §4.2.3, we present a general theory
of structural control in terms of embedding theorems connecting resource management regimes.

4.2.1 Unary connectives: logic and structure

Consider first the pure logic of residuation for a pair of unary type-forming operators ♦,2.

Definition 4.8 Unary multiplicative connectives: the pure logic of residuation. Interpretation clauses.
Residuation laws. Note that the interpretation of ♦ and 2 ‘moves’ in opposite directions along the
R2 accessibility relation. (The downarrow on the universal operator is there to highlight this fact.)

v(♦A) = {x | ∃y(Rxy ∧ y ∈ v(A)}
v(2A) = {x | ∀y(Ryx ⇒ y ∈ v(A)}

♦A→ B iff A→ 2B

COMPLETENESS. The completeness result of Prop 2.3 for the binary multiplicative language ex-
tends unproblematically to the language enriched with ♦,2. We interpret now with respect to
mixed frames, where a binary and a ternary composition relation live together, and consider mod-
elsM = 〈W,R2, R3, v〉. In the formula-based canonical model construction of Def 2.4, one defines
R2(A,B) iff ` A→ ♦B. The Truth Lemma has to be checked for the new compound formulae♦A,
2A. The direction that requires a little thinking is dealt with below.

(♦) AssumeA ∈ v(♦B). We have to show ` A→ ♦B. A ∈ v(♦B) implies ∃A′ such thatR2AA′ and
A′ ∈ v(B). By induction hypothesis, ` A′ → B. By Isotonicity for ♦ (cf. (26) below) this implies
` ♦A′ → ♦B. We have ` A→ ♦A′ by (DefR2) in the canonical frame. By Transitivity, ` A→ ♦B.
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(2) AssumeA ∈ v(2B). We have to show ` A→ 2B. A ∈ v(2B) implies that ∀A′ such that R2A′A
we have A′ ∈ v(B). Let A′ be ♦A. R2A′A holds in the canonical frame since ` ♦A→ ♦A. By
induction hypothesis we have ` A′ → B, i.e. ` ♦A→ B. By Residuation this gives ` A→ 2B.

q

C/B
A
y

A
A
A
A
Aq

R3xyz

A\C
B
z

�
�
�
�
�

q

x

A •B
C

q

A y 2
↓B

q

R2xy

3A x B

A→ C/B iff A •B → C ♦A→ B iff A→ 2B
A •B → C iff B → A\C

Figure 1: Kripke graphs: binary and unary multiplicatives

Figure 1 may clarify the relation between the unary and the binary residuated pairs of connectives.
Notice that if one were interpreting R2 as temporal priority,♦ and 2would be interpreted as past
possibility and future necessity, respectively. But in the grammatical application, R2 just like R3

is to be interpreted in terms of structural composition. Where a ternary configuration (xyz) ∈ R3

abstractly represents putting together the components y and z into a structured configuration x
in the manner indicated by R3, a binary configuration (xy) ∈ R2 can be seen as the construction
of the sign x out of a single structural component y in terms of the building instructions referred
to by R2. (An ‘additive’ alternative to the ‘multiplicative’ view on unary operators presented here,
will be presented in Def ??).

In our discussion of the binary vocabulary in §2, we pointed out that one can characterize /, •, \
as a residuated family either in terms of the basic law RES of Def 2.2, or in terms of the (Co-
)Application and Monotonicity laws of Prop 2.18. Similarly, for the unary connectives, we have
the equivalent Lambek-style and Došen-style axiomatizations of Def 4.9.

Definition 4.9 Unary connectives: alternative combinator presentations. (†) Lambek-style in terms
of Residuation. (‡) Došen-style in terms of compositions♦2, 2♦, and Isotonicity.

(†)
f : ♦A→ B

µ(f) : A→ 2B
g : A→ 2B

µ−1(g) : ♦A→ B

(‡) unit2 : ♦2A→ A
co-unit2 : A→ 2♦A

f : A→ B

(f)� : ♦A→ ♦B
f : A→ B

(f)2 : 2A→ 2B

We take the Lambek-style presentation as our starting point here, and show for the extended sys-
tem how from the residuation inferences µ, µ−1 we obtain the alternative axiomatization in terms
of Isotonicity and the inequalities for the compositions♦2 and2♦ (Term decoration for the right
column left to the reader.)

12A : 2A→ 2A
µ−1(12A) : ♦2A→ A

♦A→ ♦A
A→ 2♦A (25)

f : A→ B

1♦B : ♦B → ♦B
µ(1♦B) : B → 2♦B

µ(1♦B) ◦ f : A→ 2♦B
µ−1(µ(1♦B) ◦ f) : ♦A→ ♦B

2A→ 2A
♦2A→ A A→ B

♦2A→ B

2A→ 2B

(26)
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GENTZEN CALCULUS. Following the agenda set out in §2 for the binary connectives, we introduce
Gentzen sequent rules for the connectives♦,2. Corresponding to the formula language F of (27)
we have a language of Gentzen terms S for structured configurations of formulae. Gentzeniza-
tion for the extended type language requires an n-ary structural operator for every family of n-ary
logical operators: binary (·, ·) for the family /, •, \, and unary (·)� for the family ♦,2.

F ::= A | F/F | F • F | F\F | ♦F | 2F S ::= F | (S,S) | (S)� (27)

Definition 4.10 Unary connectives: Gentzen rules. Belnap-style antecedent punctuation, with unary
structural connective (·)� matching the unary logical connective♦.

Γ⇒ A
(Γ)� ⇒ ♦A ♦R

Γ[(A)�]⇒ B

Γ[♦A]⇒ B
♦L

(Γ)� ⇒ A

Γ⇒ 2A 2R
Γ[A]⇒ B

Γ[(2A)�]⇒ B
2L

As shown in [Moortgat 95], the Gentzen presentation is equivalent to the axiomatization of Def
4.9, and it allows Cut Elimination with its pleasant corollaries: decidability and the subformula
property.

UNARY CONNECTIVES: STRUCTURAL POSTULATES. Completeness for the pure logic of residuation
for the unary family ♦,2 does not depend on semantic restrictions on the R2 composition rela-
tion. In addition to the fixed ‘logical’ part of the ♦,2 connectives, we can consider various struc-
tural resource management options for the unary family ♦,2 and its binary accessibility relation
R2, and for the mixed R2, R3 system.

The structural postulates in Def 4.11 constrain R2 to be transitive (4), or reflexive (T ). Communi-
cation between R2 and R3 can be established via the ‘percolation’ principles K(1, 2). The strong
distributivity postulateK distributes unary ♦ over both components of a binary •. The more con-
strained weak distributivity postulatesK1,K2 make♦ select the left or right subtype of a product.
The combination of the options KT 4 gives an S4 modality with the logical rules of use and proof
of the Linear Logic exponential ‘!’.

Observe that the postulates have the required Weak Sahlqvist form for the extended completeness
result of Prop 2.7. In [Moortgat 95], the Cut Elimination result for the pure residuation logic of
Def 4.10 is extended to cover the structural options of Def 4.11. In a multimodal setting, one
can further enhance the linguistic expressivity by combining different composition modes R2

j for
〈j〉, [j]↓ in one logic. The multimodal generalization is completely standard.

Definition 4.11 Unary connectives: resource management options. Structural postulates, frame
constraints, Gentzen rules. (For 2 duals of these postulates: replace♦ by2 and reverse the arrow.)

4 : ♦♦A→ ♦A (Rxy & Ryz)⇒ Rxz
T : A→ ♦A Rxx

K1 : ♦(A •B)→ ♦A •B (Rwx& Rxyz)⇒ ∃y′(Ry′y &Rwy′z)
K2 : ♦(A •B)→ A • ♦B (Rwx& Rxyz)⇒ ∃z′(Rz′z & Rwyz′)
K : ♦(A •B)→ ♦A • ♦B (Rwx& Rxyz)⇒ ∃y′∃z′(Ry′y &Rz′z &Rwy′z′)

Γ[(∆)�]⇒ A

Γ[((∆)�)�]⇒ A
4

Γ[(∆)�]⇒ A

Γ[∆]⇒ A
T
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Γ[((∆1)�,∆2)]⇒ A

Γ[((∆1,∆2))�]⇒ A
K1

Γ[((∆1)�, (∆2)�)]⇒ A

Γ[((∆1,∆2))�]⇒ A
K

Γ[(∆1, (∆2)�)]⇒ A

Γ[((∆1,∆2))�]⇒ A
K2

S4: COMPILATION OF STRUCTURAL RULES. We saw in Def 2.13 that in the presence of Associativity
for •, we have a sugared Gentzen presentation where the structural rule is compiled away, and
the binary sequent punctuation (·, ·) omitted. Analogously, for 2 with the combination KT 4 (i.e.
S4), we have a sugared version of the Gentzen rules, where the KT 4 structural rules are compiled
away, so that the unary (·)� punctuation can be omitted. In the sugared version, we recognize the
rules of use and proof for the domain modalities of [Morrill 90a, Hepple 90].

Definition 4.12 Sugared presentation of KT 4 modalities: compiling out the (·)� structural punc-
tuation. We write 2Γ, (2)�Γ, (22)�Γ for a term Γ of which the (pre)terminal subterms are all of the
form 2A, (2A)�, (22A)�, respectively. The 4(Cut) step is a series of replacements (read bottom-up)
of terminal 2A by22A via Cuts depending on 4.

Γ[A]⇒ B

Γ[(2A)�]⇒ B
2L

Γ[2A]⇒ B
T

;

Γ[A]⇒ B

Γ[2A]⇒ B
2L(S4)

2Γ⇒ A
(22)�Γ⇒ A

2L

(2)�Γ⇒ A
4(Cut)

(2Γ)� ⇒ A
K

2Γ⇒ 2A 2R
;

2Γ⇒ A
2Γ⇒ 2A 2R(S4)

SITUATING UNARY OPERATORS. The above analysis of the unary vocabulary in its logical and struc-
tural components provides us with a tool to evaluate existing proposals for unary operators. In
doing so, we follow the methodological ‘minimality’ principle adopted above in the discussion of
the binary vocabulary, i.e. we try to pinpoint exactly which assumptions about the composition
relation are necessary to achieve a certain grammatical effect.

At one end of the spectrum, the proposals that come closest to the pure logic of residuation for
♦,2 are the ‘bracket’ operators of [Morrill 95a, Morrill 94a]. On the semantic level, the bracket
operators are given an algebraic interpretation which, in the context of frame semantics, would
amount to a functionality requirement for the accessibility relationR2. The linguistic applications
of the bracket operators as markers of locality domains can be recast straightforwardly in terms of
the more discriminating pure residuation logic for ♦,2 for which a sound and complete logic is
available, imposing no functionality constraints on R2.

At the other end of the spectrum, we find the domain modalities of [Morrill 90a, Hepple 90], uni-
versal 2 operators which assume the full set of postulates KT 4 i.e. S4. Adding modally controlled
structural rules, we obtain the structural modalities of [Barry e.a. 91, Morrill 94a]. Like the expo-
nentials of Linear Logic, the structural modalities license controlled access to resource manage-
ment options that are not freely available. As we will see in §??, the S4 logical rules are incomplete
with respect to the intended subalgebra semantics for these connectives. Again, we can scrutinize
the S4 assumptions, and see whether a more delicate resource management regime can achieve
the same effects.

In the framework presented here, where we consider a residuated pair of modalities ♦,2 rather
than a single modal operator 2, we can simulate the T and 4 postulates proof-theoretically, with-
out making Reflexivity or Transitivity assumptions about the R2 composition relation. With the
translation of Def 4.13 the images of the T and 4 postulates for 2 become valid type transitions in
the pure residuation system for ♦,2, as the reader can check. For modally controlled structural
rules, Def 4.14 gives restricted versions of the global rules keyed to♦ contexts; for communication
between the unary and binary multiplicatives, one can rely on theK distributivity principles.
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Definition 4.13 Simulating T and 4 via compilation (2A)] = ♦2(A)].

T : 2A→ A ; ♦2A→ A
4 : 2A→ 22A ; ♦2A→ ♦2♦2A

Definition 4.14 Modally restricted structural options: Commutativity (P�), Associativity (A�). Struc-
tural postulates, Gentzen rules. The side condition (†) requires one of the Ai (∆i) to be of the form
♦A ((∆)�).

(P�) : ♦A •B → B • ♦A (A�) : (A1 •A2) •A3 ←→ A1 • (A2 •A3)(†)

Γ[((∆2)�,∆1)]⇒ A

Γ[(∆1, (∆2)�)]⇒ A
(P�) (†)

Γ[((∆1,∆2),∆3)]⇒ A

Γ[(∆1, (∆2,∆3))]⇒ A
(A�)

TERM ASSIGNMENT: UNARY CONNECTIVES. To close this section, we present the term assignment
for the unary connectives in an abstract format, with constructor/destructor operations in the
term language matching rules of use and proof.

Definition 4.15 Syntax of typed lambda terms: clauses for♦,2. Destructors ∪· and ∨·, correspond-
ing to rules of use for ♦ and 2. Constructors ∩· and ∧·, for rules of proof. Compare Def 3.1 for the
binary vocabulary.

MA ::= . . . | ∪(M♦A) | ∨(M2A) M♦A ::= ∩(MA) M2A ::= ∧(MA)

Definition 4.16 Term assignment. The ♦,2 cases.

Γ⇒ t : A
(Γ)� ⇒ ∩t : ♦A ♦R

Γ[(y : A)�]⇒ t : B
Γ[x : ♦A]⇒ t[∪x/y] : B

♦L

(Γ)� ⇒ t : A
Γ⇒ ∧t : 2A 2R

Γ[y : A]⇒ t : B
Γ[(x : 2A)�]⇒ t[∨x/y] : B 2L

Definition 4.17 Term equations and their Gentzen proof-theoretic reflexes. Compare the binary
case in Def 3.5.

∪(∩t) = t ; principal cut on♦A
∩(∪t) = t ; non-atomic axiom♦A

∨(∧t) = t ; principal cut on2A
∧(∨t) = t ; non-atomic axiom2A

Concrete realizations of the abstract term assignment schema will depend on the application.
For an example, we refer to the type-logical implementation of Montague-style intensional se-
mantics driven from an S4 universal modality in [Morrill 90a]. Let us write the ‘intensionality’
type-forming operator as 2. We interpret formulas 2A as functions from indices to the denotata
of formulas A. Term assignment for the rules of use and proof for 2 can then be given in terms of
Montague’s ‘cup’ and ‘cap’ operations, respectively. Cf. Chapter One.

2Γ⇒ t : A
2Γ⇒ ˆt : 2A 2R

Γ, x : A,Γ′ ⇒ t : B
Γ, y : 2A,Γ′ ⇒ t[ˇy/x] : B

2L (28)

For another application, we refer to the work on information packaging in [Hendriks 94], where
the term assignment for ♦ realizes the prosodic and pragmatic structuring of the text in terms of
stress and given/new distinctions.
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4.2.2 Applications: imposing constraints, structural relaxation

One can develop two perspectives on controlling resource management, depending on the direc-
tion of communication. On the one hand, one would like to have control devices to license limited
access to a more liberal resource management regime from within a system with a higher sense of
structural discrimination. On the other hand, one would like to impose constraints on resource
management in systems where such constraints are lacking by default.

LICENSING STRUCTURAL RELAXATION. For the licensing type of communication, consider type as-
signment r/(s/np) to relative pronouns like that in the sentences below.

(the book) that Kazimierz wrote
(the book) that Kazimierz wrote yesterday

L ` r/(s/np), np, (np\s)/np⇒ r
L 6` r/(s/np), np, (np\s)/np, s\s⇒ r

NL 6` (r/(s/np), (np, (np\s)/np))⇒ r

(29)

Suppose first we are dealing with the associative regime of L. The first example is derivable, the
second is not because the hypothetical np assumption in the subderivation ‘Kazimierz wrote yes-
terday np’ is not in the required position adjacent to the verb ‘wrote’. We can refine the assignment
to the relative pronoun to r/(s/!cnp), where !cnp is a noun phrase resource which has access to Per-
mutation in virtue of its modal decoration. Similarly, if we change the default regime to NL, the
first example already fails on the assignment r/(s/np) with the indicated constituent bracketing:
although the hypothetical np in the subcomputation ‘((Kazimierz wrote) np)’ finds itself in the
right position with respect to linear order requirements, it cannot satisfy the direct object role for
‘wrote’ being outside the clausal boundaries. A refined assignment r/(s/!anp) here could license
the marked !anp a controlled access to the structural rule of Associativity which is absent in the NL
default regime.

As remarked above, cases like these have been handled in terms of S4-style structural modalities
in [Barry & Morrill 90, Morrill 94a]. In (30), we illustrate the deconstruction of ! as ♦2 with the
derivation of controlled rebracketing within NL.

&c
(np, (tv, np))⇒ s

(np, (tv, (2anp)�))⇒ s
2L

((np, tv), (2anp)�)⇒ s
A�

((np, tv),♦a2anp)⇒ s
♦L

(np, tv)⇒ s/♦a2anp
/R

(30)

IMPOSING STRUCTURAL CONSTRAINTS. For the other direction of communication, we return to the
violations of the Coordinate Structure Constraint, discussed in §2 in connection with the over-
generation of L. Consider the relative clauses of Ex 4.18. With the instantiation X = s/np for the
polymorphic conjunction particle, we can derive the (a) example. But, given Associativity and an
instantiation X = s, nothing blocks the derivation of the ungrammatical (b) example.

Example 4.18 Lexical projection of island constraints ([Morrill 95a, Morrill 94a]).

a. (the logician) whom Gottlob admired and Kazimierz detested
L ` r/(s/np), np, tv, (X\X)/X, np, tv⇒ r (X = s/np)

L♦ ` r/(s/np), (np, tv, (X\2X)/X, np, tv)� ⇒ r
b. *(the logician) whom Gottlob admired Jim and Kazimierz detested

L ` r/(s/np), np, tv, np, (X\X)/X, np, tv⇒ r (X = s)
L♦ 6` r/(s/np), (np, tv, np, (X\2X)/X, np, tv)� ⇒ r
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In [Morrill 95a, Morrill 94a] it is shown that the coordinate structure domain can be lexically pro-
jected from a modal refinement of the assignment to ‘and’: (X\2X)/X . (We recast the analysis
in terms of the pure residuation logic for ♦,2.) The refined assignment allows the conjunction to
combine with the left and right conjuncts in the associative mode. The resulting coordinate struc-
ture is of type 2X . To eliminate the 2 connective, we have to close off the coordinate structure
with ♦ (or the corresponding structural operator (·)� in the Gentzen presentation) — recall the
basic reduction ♦2X → X. The Accross-the-Board case of extraction (4.18a) works out fine, the
island violation (4.18b) fails because the hypothetical gap np assumption finds itself outside the
scope of the (·)� operator.

In [Versmissen 96], this use of modal decoration is generalized into a type-logical formulation of
the theory of word-order domains of [Reape 89]. The control operators♦,2provide a fully general
vocabulary for projection and erasure of domains of locality, according to the following scheme
distinguishing the antecedent (resource) versus succedent (goal) effects of♦,2 decoration.

RESOURCE GOAL

♦ domain-erasure domain-projection
2 domain-projection domain-erasure

(31)

MODALITIES AS DOMAINS OF LOCALITY. In [Morrill 90a], locality domains, in the sense of semantic
intensionality, are characterized in terms of a uniform S42 decoration for the resources that make
up a domain, cf. (28). [Hepple 90], dropping the semantic component of this proposal, uses the 2
decoration to capture syntactic boundary effects. These applications are instructive because they
crucially rely on the rule of proof for the S4 universal modality: as we have seen in Def 4.12, this
rule insists that all assumptions on which a 2A formula depends are themselves2 decorated.

Consider the constraint of clause-boundedness that governs the use of the English reflexive pro-
nouns. In Ex 3.12 we discussed an L type-assignment ((np\s)/np)\(np\s) for ‘himself’ with mean-
ing recipe λxλy.x(y)(y). Within L, (a), (b) and (c) are all derivable: this system, because of the
global availability of associativity, cannot discriminate between a lexical or complex clause-internal
expression of type ((np\s)/np) and a complex expression of that type which has been composed
across clausal boundaries.

a. David admires himself L ` (np\s)/np⇒ (np\s)/np
b. David cares for himself L ` (np\s)/pp, pp/np⇒ (np\s)/np
c. *David thinks Emmy admires himself L ` (np\s)/s, np, (np\s)/np⇒ (np\s)/np

(32)

Within L+2, appropriate modalization provides lexical control to make (a) and (b) derivable while
ruling out (c). In moving from L to L+2 lexical type assignments, one prefixes the original L lexical
assignments with a 2 operator, and further decorates with a 2 every argument subtype B that
constitutes a locality domain. The effect of such modalization for the lexical resources of (32c) is
shown in Ex 4.19.

Example 4.19 Blocking locality violations via S4 2 decoration ([Morrill 90a, Hepple 90]). The as-
signment to the verb ‘think’ marks its clausal complement as a locality domain. The derivation
for the non-local reading (32c) fails, because the hypothetical direct object np assumption is not
decorated with 2, blocking application of the [2R] inference, which requires all the antecedent as-
sumptions on which it depends to be modally marked.
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FAIL

2np,2((np\s)/np), np⇒ 2s
&c

np, np\s⇒ s

np, (np\s)/2s,2np,2((np\s)/np), np⇒ s
/L

np,2((np\s)/2s),2np,2((np\s)/np), np⇒ s
2L

2((np\s)/2s),2np,2((np\s)/np)⇒ (np\s)/np /R, \R

&c
np, np\s⇒ s

2np, np\s⇒ s
2L

2np,2((np\s)/2s),2np,2((np\s)/np), ((np\s)/np)\(np\s)⇒ s
\L

2np,2((np\s)/2s),2np,2((np\s)/np),2((np\s)/np)\(np\s)⇒ s
2L

2np,2((np\s)/2s),2np,2((np\s)/np),2((np\s)/np)\(np\s)⇒ 2s 2R

*David thinks Emmy loves himself

A more elaborate account of syntactic island constraints is offered in [Hepple 90, Hepple 92] in
terms of a polymodal system with domain modalities {2j}j∈J . The domain modalities have an
order defined on them, which allows for the characterization of syntactic boundaries of differ-
ent strength. Island constraints are lexically controlled through the interplay of type-assignment
to complement taking functors and ‘extractable’ elements. Take a relative pronoun with type
2((n\n)/(s/2inp)) and a verb subcategorizing for a clausal complement, 2((np\s)/2js). The rel-
ative pronoun will be extractable from the 2js embedded clause provided2i � 2j .

We have presented the analysis of locality domains in terms of the original S4 decoration of [Hepple 90].
Decomposing the S4 account into its structural components, we see that the checking of uniform
antecedent 2marking is taken care of by the K distributivity principle of Def 4.11. In fact, with a
slightly adapted modalization strategy which decorates the assignment to ‘think’ as 2(np\s)/2s,
one can recast the above analysis in terms of K and the ♦,2 residuation logic, as the reader can
check. The same combination of RES♦,2 +K lies at the basis of an analysis of French clitic pro-
nouns in [Kraak 95], and of the type-logical account of Linear Precedence constraints in [Versmissen 96].

4.2.3 Resource control: faithful embeddings

In §4.2.2 we have presented analyses of a number of linguistic phenomena which rely on modally
decorated type-assignments to obtain structural relaxation, or to impose structural constraints.
These applications suggest a more fundamental logical question: Can one provide a general the-
ory of resource control in terms of the unary vocabulary? The embedding theorems of [Kurtonina & Moortgat 95]
answer this question in the affirmative: they show that the ♦,2 connectives provide a theory of
systematic communication between the type logics of Fig 2. Below, we discuss the strategies for
modal decoration realizing the embeddings, and reflect on general logical and linguistic aspects
of this approach.

Figure 2 displays the resource logics one obtains in terms of the structural parameters of prece-
dence (word-order), dominance (constituent structure) and dependency. The systems occupying
the upper plane of Figure 2 were the subject of §2. As we have seen in our discussion of Def 4.2
each of these systems has a dependency variant, where the product is split up into a left-headed
•l and a right-headed •r version.

Consider a pair of logics L0,L1 where L0 is a ‘southern’ neighbour of L1. Let us write L♦ for the
system L extended with the unary operators ♦,2with their minimal residuation logic. For the 12
edges of the cube of Fig 2, one can define embedding translations (·)[ : F(L0) 7→ F(L1♦) which
impose the structural discrimination of L0 in L1 with its more liberal resource management, and
(·)] : F(L1) 7→ F(L0♦) which license relaxation of structure sensitivity in L0 in such a way that
one fully recovers the flexibility of the the coarser L1. The embedding translations decorate crit-
ical subformulae in the target logic with the operators ♦,2. The translations are defined on the
product • of the source logic: their action on the implicational formulas is fully determined by the
residuation laws. For the ·[ type of embedding, the modal decoration has the effect of blocking
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Figure 2: Resource-sensitive logics: precedence, dominance, dependency

a structural rule that would be applicable otherwise. For the ·] direction, the modal decoration
gives access to a controlled version of a structural rule which is unavailable in its ‘global’ (non-
decorated) version.

We illustrate the two-way structural control with the pair NL and L. Let us subscript the connec-
tives in NL with 0 and those of L with 1. The embedding translations ·[ and ·] are given in Def 4.20.
For the two directions of communication, the same decoration schema can be used.

Definition 4.20 Embedding translations ·[ : F(NL) 7→ F(L♦), and ·] : F(L) 7→ F(NL♦).

p[ = p
(A •0 B)[ = ♦(A[ •1 B[)

(A/0B)[ = 2A[/1B
[

(B\0A)[ = B[\12A[

p] = p
(A •1 B)] = ♦(A] •0 B])

(A/1B)] = 2A]/0B
]

(B\1A)] = B]\02A]

The L system has an associative resource management which is insensitive to constituent brack-
eting. Extending L with the operators ♦,2 we can recover control over associativity in the sense
of Prop 4.21. A conjecture of embedding on the basis of ·[ can be found in [Morrill 94b].

Proposition 4.21 Dominance structure: recovering control ([Kurtonina & Moortgat 95]).

NL ` A→ B iff L♦ ` A[ → B[

Consider next the other direction of communication: suppose one wants to obtain the structural
flexibility of L within the system NL with its rigid constituent sensitivity. This time, one achieves
the desired embedding result by means of the embedding translation ·] of Def 4.20 together with
a modally controlled version of the structural rule of Associativity, relativized to the critical♦ dec-
oration.

Definition 4.22 Associativity. Global version (A) and its image under (·)], (A�).

L1 : A •1 (B •1 C)←→ (A •1 B) •1 C (A)

L0 : ♦(A •0 ♦(B •0 C))←→ ♦(♦(A •0 B) •0 C) (A�)
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Proposition 4.23 Dominance structure: licensing relaxation ([Kurtonina & Moortgat 95]).

L ` A→ B iff NL♦+A� ` A] → B]

The derivations of Ex 4.24 illustrate the complementary strategies with the Geach rule, the char-
acteristic theorem which differentiates L from NL. On the left, we try to derive the ·[ translation of
the Geach rule in L♦. The resource management regime is associative — still the derivation fails
because of the structural (·)� decoration which makes the C resource inaccessible for the functor
2B/1C. On the right one finds a successful derivation of the ·] translation in NL♦. Although the
resource management regime in this case does not allow free rebracketing, the♦ decoration gives
access to the modal version of the structural rule.

Example 4.24 Imposing structural control versus relaxing structure sensitivity.

FAIL

((((2A/1B,2B/1C)1)�, C)1)� ⇒ A

(((2A/1B,2B/1C)1)�, C)1 ⇒ 2A
2R

((2A/1B,2B/1C)1)� ⇒ 2A/1C
/1R

(2A/1B,2B/1C)1 ⇒ 2(2A/1C)
2R

2A/1B ⇒ 2(2A/1C)/1(2B/1C)
/1R

C ⇒ C

B ⇒ B

(2B)� ⇒ B
2L

((2B/0C, C)0)� ⇒ B
/0L A ⇒ A

(2A)� ⇒ A
2L

((2A/0B, ((2B/0C, C)0)�)0)� ⇒ A
/0L

((((2A/0B,2B/0C)0)�, C)0)� ⇒ A
A�

(((2A/0B,2B/0C)0)�, C)0 ⇒ 2A
2R

((2A/0B,2B/0C)0)� ⇒ 2A/0C
/0R

(2A/0B,2B/0C)0 ⇒ 2(2A/0C)
2R

2A/0B ⇒ 2(2A/0C)/0(2B/0C)
/0R

L♦ 6` (A/0B)[ ⇒ ((A/0C)/0(B/0C))[ NL♦+ (A�) ` (A/1B)] ⇒ ((A/1C)/1(B/1C))]

DISCUSSION. With respect to the theme of resource control it is instructive to contrast Linear Logic
with the grammar logics discussed here. The theory of communication presented above uses the
standard logical technique of embeddings. In Linear Logic, the unary ‘exponentials’ are designed
to recover the expressivity of the structural rules of Contraction and Weakening in a controlled
way. The modalities that achieve the desired embedding are governed by an S4-like regime. The
‘sublinear’ grammar logics exhibit a higher degree of structural organization. These more discrim-
inating logics suggest more delicate instruments for obtaining structural control: as we have seen,
the pure residuation logic for♦,2 does not depend on specific assumptions about the grammati-
cal composition relationR2, but it is expressive enough to obtain full control over grammatical re-
source management.3 A second difference with the Linear Logic approach is the bi-directionality
of the proposed communication: from the grammatical point of view, imposing structural con-
straints and licensing structural relaxation are equally significant forms of resource control.

On the level of actual grammar development, the embedding results provide a solution to the
problem of ‘mode proliferation’ inherent in the multimodal approach of §4.1. The multimodal
style of grammatical reasoning relies heavily on a (potentially unmanageable) inventory of primi-
tive composition modes •i. The control operators♦,2make it possible to reanalyse the various •i
as defined connectives, in terms of a familiar • and modal decoration. The dependency connec-
tives •l,•r, for example, can be introduced as synthetic operators with definitions (♦−) • −, and
−•(♦−), respectively, with♦marking the head component. This perspective suggests a global di-
vision of labour between ‘syntax’ and ‘semantics’, with LP playing the role of the default semantic
composition language, and the pure residuation logic NL the default language of structural com-
position. The intermediate territory can be navigated by means of the modal control operators.

3It is interesting to note that for reasons different from ours, and for different types of models, a number of propos-
als in the field of Linear Logic have argued for a decomposition of the exponentials into more elementary operators (cf.
[Bucalo 94, Girard 95b]).
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5 Reasoning about multiple type assignments

. . .

6 Hybrid architectures

. . .

7 Categorial parsing as deduction

. . .

8 Conclusions, directions for further research

If one compares the present state of the field with the situation as described seven years ago in
the overview chapter of [Moortgat 88], one can describe the changes as dramatic. On the level of
‘empirical coverage’, one has witnessed a strong increase in linguistic sophistication. On the level
of ‘logical foundations’, Lambek’s architecture for a grammar logic has been significantly general-
ized without sacrificing the attractive features of the original design. Below we summarize some
key themes of the type-logical research that may facilitate comparison with related grammatical
frameworks.

• Design of a specific grammar logic, i.e. a logic with a consequence relation attuned to the
resource-sensitivity of grammatical inference — to be contrasted with ‘general purpose’ spec-
ification languages for grammar development, where such resource sensitivity has to be stip-
ulated, e.g. the language of feature logic used inHPSG.

• A unified deductive perspective on the composition of form and meaning in natural language
— to be contrasted with rule-based implementations of the compositionality principle.

• Radical lexicalism. Properties of the macro-grammatical organisation are fully projected
from lexical type declarations.

• Integration of the grammar logic in a wider landscape of reasoning systems, so that the tran-
sition between the formal systems characterizing ‘knowledge of language’ and the systems
of inference underlying more general cognitive/reasoning capacities can be seen as gradual.

The change of emphasis from individual type logics to mixed architectures suggests new lines of
research. The following themes, among others, would seem relevant for future exploration.

• Descriptive studies. Although, according to [Carpenter 96], the current descriptive cover-
age of type logical grammar rivals that of competing grammar formalisms, one can expect a
wide range of further descriptive studies exploiting the expressivity of interactive modes of
structural composition. Contrastive studies could deepen our understanding of the ‘logical’
perspective on parametric variation, characterized in terms of language specific structural
rule packages.

• Formal learnability theory. From a cognitive point of view, the radical lexicalism of the type-
logical approach makes the acquisition problem acute. This requires a theory explaining
how multimodal type assignments (with their resource management properties) could be
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inferred from exposition to raw data. Learnability theory for the extended type logics can
build on results that have been obtained for individual systems (e.g. [Buszkowski & Penn 90,
Kanazawa 92], but will have to remove the unrealistic input conditions for the learning algo-
rithm assumed in these studies.

• Computational complexity. Even at the level of individual systems, our knowledge is par-
tial, see [van Benthem 91,95, Aarts 94, Aarts & Trautwein 95] for discussion and results. The
context-free recognizing power result for L of [Pentus 93], for example, has not yielded a
polynomial complexity result for this system. In the multimodal setting, one would like to
have a systematic theory linking complexity to the algebraic properties of the characterizing
rule packages.

• Connections between categorial type-logics and Linear Logic. In this chapter, we have pre-
sented an interpretation of the categorial formalism in terms of structural composition of
grammatical resources. Recent studies of applications of Linear Logic in linguistic analysis
suggest an interesting alternative interpretation in terms of temporal composition of gram-
matical processes. See [Lecomte & Retoré 95] for an illustration. An integration of these two
complementary perspectives would offer a unified framework for the study of the static as-
pects of linguistic structure and the dynamics of natural language communication.
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[Došen & Schröder-Heister 93], 63–108.

[Emms 93a] Emms, M. (1993), ‘Parsing with polymorphism’. Proceedings of the Sixth Conference
of the European ACL, Utrecht, 120–129.

[Emms 93b] Emms, M. (1993) ‘Some applications of categorial polymorphism’. In M. Moortgat
(ed.) Polymorphic Treatments. Esprit BRA 6852 Dyana-2 Deliverable R1.3.A, 1–52.

[Emms 94a] Emms, M. (1994), ‘Extraction-covering extensions of the Lambek calculus are not
CF’. In P. Dekker & M. Stokhof (eds.) Proceedings of the Ninth Amsterdam Colloquium, ILLC,
Amsterdam, 269–286.

[Emms 94b] Emms, M. (1994), ‘Movement in polymorphic and labelled calculi’. In
[Abrusci e.a. 94], 77–98.

[Emms 94c] Emms, M. (1994), ‘Completeness results for polymorphic Lambek calculus’. In M.
Moortgat (ed.) Lambek Calculus. Multimodal and Polymorphic Extensions. Esprit BRA 6852
Dyana-2 Deliverable R1.1.B, 73–100.

[Emms 95] Emms, M. (1995), ‘An undecidability result for polymorphic Lambek calculus’. In M.
Moortgat (ed.) Logics of Structured Resources. Esprit BRA 6852 Dyana-2 Deliverable R1.1.C, 59–
77.

[Emms & Leiss 93] Emms, M. & H. Leiss (1993) ‘The Cut-Elimination theorem for the second or-
der Lambek calculus’. In H. Leiss (ed.) Categorial Parsing and Normalization. Esprit BRA 6852
Dyana-2 Deliverable R1.1.A, 77–100.

[Gabbay 94] Gabbay, D. (1994), LDS — Labeled Deductive Systems. Report MPI–I–94–223, Max-
Planck-Institut für Informatik, Saarbrücken. (To appear with Oxford University Press.)

45



[Gabbay & Kempson 92] Gabbay, D. & R. Kempson (1992) ‘Natural language content: a truth-
theoretic perspective’. In P. Dekker & M. Stokhof (eds.) Proceedings Eighth Amsterdam Collo-
quium, ILLC, Amsterdam, 173–198.

[Geach 72] Geach, P. (1972), ‘A program for syntax’. In D. Davidson and G. Harman (eds.) Seman-
tics of Natural Language. Reidel, Dordrecht, 483–497. (Also in [Buszkowski e.a. 88]).

[Gentzen 34] Gentzen, G. (1934), ‘Untersuchungen über das logische Schliessen’. Mathematische
Zeitschrift 39, 176–210, 405–431.

[Girard 87] Girard, J.-Y. (1987), ‘Linear logic’. Theoretical Computer Science 50, 1–102.

[Girard 93] Girard, J.-Y. (1993), ‘On the unity of logic’. Annals of Pure and Applied Logic 59, 201–
217.

[Girard 95a] Girard, J.-Y. (1995), ‘Geometry of interaction III: the general case’. In Girard, Lafont
and Regnier (eds.) Advances in Linear Logic. Cambridge, 329–389.

[Girard 95b] Girard, J.-Y., (1995), ‘Light Linear Logic’. Ms LMD, Marseille.

[Girard e.a. 89] Girard, J.-Y., P. Taylor, & Y. Lafont (1989), Proofs and Types. Cambridge Tracts in
Theoretical Computer Science 7, Cambridge.

[Hendriks 93] Hendriks, H. (1993), Studied Flexibility. Categories and Types in Syntax and Seman-
tics. Ph.D. Dissertation, ILLC, Amsterdam.

[Hendriks 94] Hendriks, H. (1994), ‘Information packaging in a categorial perspective’. In E. En-
gdahl (ed.) Integrating information structure into constraint-based and categorial approaches.
Esprit BRA 6852 Dyana-2 Deliverable R1.3.B, 89–116.

[Hendriks 95] Hendriks, P. (1995), Comparatives and Categorial Grammar. Ph.D. Dissertation,
Groningen.

[Hepple 90] Hepple, M. (1990), The Grammar and Processing of Order and Dependency. Ph.D. Dis-
sertation, Edinburgh.

[Hepple 92] Hepple, M. (1992), ‘Command and domain constraints in a categorial theory of bind-
ing’. Proceedings Eighth Amsterdam Colloquium, 253–270.

[Hepple 94] Hepple, M. (1994), ‘Labelled deduction and discontinuous constituency’. In
[Abrusci e.a. 94], 123–150.

[Hepple 95] Hepple, M. (1995), ‘Hybrid Categorial Logics’. Bulletin of the IGPL 3(2,3). Special issue
on Deduction and Language (ed. R. Kempson), 343–355.

[Hinrichs & Nakazawa 94] Hinrichs, E. and T. Nakazawa (1994), ‘Linearizing AUXs in German ver-
bal complexes’. In Nerbonne, Netter and Pollard (eds.) German Grammar in HPSG. CSLI Lecture
Notes, Stanford, pp 11–38.

[Hodas & Miller 94] Hodas, J.S. & D. Miller (1994), ‘Logic programming in a fragment of Intuition-
istic Linear Logic’. Information and Computation 110, 327–365.

[Jacobson 87] Jacobson, P. (1987), ‘Phrase structure, grammatical relations, and discontinuous
constituents’. In G.J. Huck and A.E. Ojeda (eds.) Syntax and Semantics 20: Discontinuous Con-
stituency. Academic Press, New York. 27–69.

[Jakobson 61] Jakobson, R. (ed.) (1961), Structure of Language and Its Mathematical Aspects. Pro-
ceedings of the Twelfth Symposium in Applied Mathematics. Providence, Rhode Island.

46



[Joshi & Kulick 95] Joshi, A. & S. Kulick (1995), ‘Partial proof trees as building blocks for a catego-
rial grammar‘. In [Morrill & Oehrle], 138–149.

[Kanazawa 92] Kanazawa, M. (1992), ‘The Lambek calculus enriched with additional connectives’.
Journal of Logic, Language, and Information 1, 141–171.

[Kanazawa 94] Kanazawa, M. (1994), Learnable Classes of Categorial Grammars. Ph.D. Disserta-
tion. Stanford.

[Kandulski 88] Kandulski, W. (1988) ‘The non-associative Lambek calculus’. In
[Buszkowski e.a. 88], 141–151.

[Keenan & Faltz 85] Keenan, E.L. & L. Faltz (1985) Boolean Semantics for Natural Language. Rei-
del, Dordrecht.

[Kołowska 95] Kołowska-Gawiejnowics, M. (1995), ‘Powerset residuated algebras and generalized
Lambek calculus’. Report 36/1995, Faculty of Mathematics and Computer Science, Adam Mick-
iewicz University, Poznán. To appear in Mathematical Logic Quarterly.

[König 91] König, E. (1991) ‘Parsing as natural deduction’. Proceedings of the 27th Annual Meeting
of the ACL, Vancouver, 272–279.

[König 95] König, E. (1995), ‘LexGram — a practical categorial grammar formalism’. Proceedings
Computational Logic for Natural Language Processing. Edinburgh.

[Kraak 95] Kraak, E. (1995), ‘French object clitics: a multimodal analysis’. In [Morrill & Oehrle],
166–180.

[Kracht 93] Kracht, M. (1993), ‘Power and weakness of the modal Display Calculus’. Ms Freie Uni-
versität Berlin.

[Kurtonina 95] Kurtonina, N. (1995), Frames and Labels. A Modal Analysis of Categorial Inference.
Ph.D. Dissertation, OTS Utrecht, ILLC Amsterdam.

[Kurtonina & Moortgat 95] Kurtonina, N. & M. Moortgat (1995), ‘Structural Control’. In M. Moort-
gat (ed.) Logics of Structured Resources. Esprit BRA 6852 Dyana-2 Deliverable R1.1.C. (To appear
in P. Blackburn & M. de Rijke (eds.) Logic, Structures and Syntax. Reidel, Dordrecht.)

[Lambek 58] Lambek, J. (1958), ‘The Mathematics of Sentence Structure’, American Mathematical
Monthly 65, 154–170.

[Lambek 61] Lambek, J. (1961), ‘On the calculus of syntactic types’. In [Jakobson 61].

[Lambek 68] Lambek, J. (1968), ‘Deductive systems and categories. I’, J. Math. Systems Theory 2,
278–318.

[Lambek 88] Lambek, J. (1988), ‘Categorial and categorical grammar’. In [Oehrle e.a. 88], 297–317.

[Lambek 93a] Lambek, J. (1993), ‘Logic without structural rules. (Another look at Cut Elimina-
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