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Abstract. In 1997 we presented ten challenges for research on satisfia-
bility testing [1]. In this paper we review recent progress towards each of
these challenges, including our own work on the power of clause learning
and randomized restart policies.

1 Introduction

The past few years have seen enormous progress in the performance of Boolean
satisfiability (SAT) solvers. Despite the worst-case exponential run time of all
known algorithms, SAT solvers are now in routine use for applications such as
hardware verification [2] that involve solving hard structured problems with up to
a million variables [3, 4]. Each year the International Conference on Theory and
Applications of Satisfiability Testing hosts a SAT competition that highlights a
new group of “world’s fastest” SAT solvers, and presents detailed performance
results on a wide range of solvers [5, 6]. In the the 2003 competition, over 30
solvers competed on instances selected from thousands of benchmark problems.

In 1997, we presented ten challenges for research on satisfiability testing [1],
on topics that at the time appeared to be ripe for progress. In this paper we
revisit these challenges, review progess, and offer some suggestions for future
research.

A full review of the literature related to the original challenges, let alone
satisfiability testing as a whole, is beyond the scope of this paper. We do highlight
several of the main recent developments, but the discussion below is biased
towards topics from our own research program in recent years. We welcome
pointers to any key papers we may have missed. We plan to keep this document
up-to-date with regular revisions posted on the SAT Challenge web page [7].

2 Challenging SAT Instances

Empirical evaluation of sat solvers on benchmark problems (such as those from
[8]) has been a effective driving force for progress on both fundamental algo-



rithms and theoretical understanding of the nature of satisfiability. The first two
challenges were specific open SAT problems, one random and the other highly
structured.

CHALLENGE 1: Prove that a hard 700 variable random 3-SAT formula
is unsatisfiable.

When we formulated in this challenge in 1997, complete SAT procedures
based on DPLL [9] could handle around 300 to 400 variable hard random 3-
SAT problems. Progress in recent years had slowed and it was not clear DPLL
could be much improved upon for random 3-SAT. In particular, the there was
the possibility that the best DPLL methods were obtaining search trees that
were close to minimal in terms of the number of backtrack points [10]. Dubois
and Dequen [11], however, showed that there was still room for improvement.
They introduced a new branching heuristic that exploits so-called “backbone”
variables in a SAT problem. A backbone variable of a formula is a variable that
is assigned the same truth value in all assignments that satisfy the maximum
number of clauses. (For satisfiable formulas, these are simply the satisfying as-
signments of the formula.) The notion of a backbone variable came out of work
on k-SAT using tools from statistical physics, which has provided significant in-
sights into the solution structure of random instances. In particular, it can be
shown that a relatively large set of backbone variables suddenly emerges when
one passes though the phase transition point for k-SAT (k ≥ 3) [12]. Using a
backbone-guided search heuristic, Dubois and Dequen can solve a 700 variable
unsatisfiable, hard random 3-SAT instance in around 25 days of CPU time,
thereby approaching practical feasibility.

In the context of this challenge, it should be noted that significant progress
has been made in the last decade in terms of our general understanding of the
properties of random 3-SAT problems and the associated phase transition phe-
nomenon. A full review of this area would require a separate paper. (See e.g. [13–
22].) Many of the developments in the area have been obtained by using tools
from statistical physics. This work has recently culminated in a new algorithm
for solving satisfiable k-SAT instances near the phase transition point [23]. The
method is called survey propagation and involves, in a sense, a sophisticated
probabilistic analysis of the problem instance under consideration. An efficient
implementation enables the solution of hard random 3-SAT phase transition
instances of up to a million variables in about 2 hours of CPU time. For compar-
sion, the previously most effective procedure for random 3-SAT, WalkSAT [24],
can handle instances with around 100,000 variables within this timeframe. The
exact scaling properties of survey propagation — and WalksSAT for that matter
— are still unknown.

In conclusion, even though we have seen many exciting new results in terms
of solving hard random instances, the gap between our ability to handle satis-
fiable and unsatisfiable instances has actually grown. An interesting question is
whether a procedure dramatically different from DPLL can be found for handling
unsatisfiable instances.



CHALLENGE 2: Develop an algorithm that finds a model for the DIMACS
32-bit parity problem.

The second challenge problem derives from the problem of learning a parity
function from examples. This problem is NP-complete and it is argued in [25]
that any particular instance is likely to be hard to solve (although average-
case NP-completeness has not been formally shown). However, this challenge
was solved in 1998 by preprocessing the formula to detect chains of literals
that are equivalent considering binary clauses alone, and then applying DPLL
after simplification [26].3 Later [27] showed similar performance by performance
equivalency detection at every node in the search tree.

Parity problems are particularly hard for local search methods because such
algorithms tend to become trapped at a near-solution such that a small subset
of clauses is never satisfied simultaneously. Clause re-weighting schemes [28, 29]
try to smooth out the search space by giving higher weight to clauses that are
often unsatisfied. A clause weighting scheme based on Langrange multipliers [30]
was able to solve the 16-bit versions of the parity learning problems.

3 Challenges for Systematic Search

At the time of our original challenge paper nearly all the best systematic methods
for propositional reasoning on clausal formulas were based on creating a reso-
lution proof tree.4 This includes the depth-first search Davis-Putnam-Loveland-
Logemann procedure (DPLL) [33, 34], where the proof tree can be recovered
from the trace of the algorithm’s execution, but is not explicitly represented in
a data structure (the algorithm only maintains a single branch of the proof tree
in memory at any one time). Most work on systematic search concentrates on
heuristics for variable-ordering and value selection, all in order to the reduce size
of the tree.

However, there are known fundamental limitations on the size of the shortest
resolution proofs that can be obtained in this manner, even with ideal branching
strategies. The study of proof complexity [35] compares inference systems in
terms of the sizes of the shortest proofs they sanction. For example, two proof
systems are linearly related if there is a linear function f(n) such that for any
proof of length n in one system there is a proof of length at most f(n) in
the other system. A family of formulas C provides an exponential separation
between systems S1 and S2 if the shortest proofs of formulas in C in system S1

are exponentially smaller than the corresponding shortest proofs in S2.
A basic result in proof complexity is that general resolution is exponentially

stronger than the DPLL procedure [36, 37]. This is because the trace of DPLL
running on an unsatisfiable formula can be converted to a tree-like resolution
3 [26] also described a general preprocessor for identifying conjunctions of nested equiv-

alencies subformulas using linear programming.
4 Much work in verification has involved non-clausal representations, in particular

Boolean Decision Diagrams [31, 32]; but the large body of work on BDD’s will not
be further discussed here.



proof of the same size, and tree-like proofs must sometimes be exponentially
larger than the DAG-like proofs generated by general resolution. Furthermore,
it is known that even general resolution requires exponentially long proofs for
for certain “intuitively easy” problems [38–40]. The classic example are “pigeon
hole” problems that represent the fact that n pigeons cannot fit in n− 1 holes.
Shorter proofs do exist in more powerful proof systems. Examples of proof sys-
tems more powerful than resolution include extended resolution, which allows
one to introduce new defined variables, and resolution with symmetry-detection,
which uses symmetries to eliminate parts of the tree without search. Assuming
NP 6= co −NP , even the most powerful propositional proof systems would re-
quire exponential long proofs worst case — nonetheless, such systems provably
dominate resolution in terms of minimum proof size.

Early attempts to mechanize proof systems more powerful than tree-like res-
olution gave no computational savings, because it is harder to find the small
proof tree in the new system than to simply crank out a large resolution proof.
In essence, the overhead in dealing with the more powerful rules of inference
consumes all the potential savings. Our third challenge was to present a prac-
tical proof system more powerful than resolution. In reviewing progress in this
area we first consider systems more powerful than tree-like (DPLL) resolution,
and next ones more powerful than general resolution.

3.1 Beyond DPLL

CHALLENGE 3A: Demonstrate that a propositional proof system more pow-
erful than tree-like resolution can be made practical for satisfiability testing.

Two new satisfiability testing algorithms were introduced in 1997, the same
year as our challenge paper: rel-sat [41] and SATO [42]. Both were versions of
DPLL augmented with “conflict clause learning”, a technique that grew out of
research in AI on explanation-based approaches to speed-up learning [43–45].
The idea in clause learning is that at each backtrack point the system derives
a reason for the inconsistency in the form of a new clause added to the original
formula. Rel-sat and SATO were suprisingly powerful, and even able to solve
open problems in finite mathematics. Clause learning was further developed for
the solvers GRASP [46], Chaff [47, 48] and BerkMin [49], and is currently a key
technique in backtracking SAT solvers for applications such as verification.

Marquis-Silva [50] observed that clause learning can be viewed as adding re-
solvents to a tree-like proof, and Zhang [48] showed how different clause learning
schemes could be categorized according to way clauses were derived from cuts in
a data structure called a conflict graph. The conflict graph records the pattern
of unit propagations that have been performed at any point in the execution of
the algorithm. Each node in the graph is a literal that is currently assumed to
be true. The leaves are branch literals and the inner nodes are literals derived
by unit propagation. A conflict literal is one that appears both negatively and
positively in the graph.

Consider the implication graph at a stage where there is a conflict and fix a
conflict graph contained in that implication graph. Pick any cut in the conflict
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Fig. 1. A conflict graph depicting various learning schemes.

graph that has all decision variables on one side, called the reason side, and false
as well as at least one conflict literal on the other side, called the conflict side.
All nodes on the reason side that have at least one edge going to the conflict side
form a cause of the conflict. The negations of the corresponding literals forms
the conflict clause associated with this cut: that is, a clause that is implied by
the original formula. Figure 1 illustrates different possible cuts through a conflict
graph, corresponding to different clause learning algorithms.

Although the empirical power of clause learning had been clear for several
years, Beame et al. [51] provided the first proof of an exponential separation be-
tween clause learning and ordinary DPPL. The result was, in fact, even stronger:
they showed that there are formulas with short clause learning proofs that re-
quire exponentially large regular resolution proofs. Regular resolution proofs are
DAGS, as in general resolution, but are restricted so that no variable is resolved
upon more than once in any path from the root to a leaf. It is easy to see
that all tree-like proofs are regular but not vice-versa. They further showed that
combining clause learning with restarts [52, 53] (where learned clauses are saved
between restarts) is equivalent to general resolution. However, the questions of
whether clause learning is strictly stronger than regular resolution — that is,
whether or not there are also formulas with short regular proofs but long clause
proofs – and whether clause learning without restarts is equivalent to general
resolution are open.

Making clause learning work well in practice requires efficient strategies for
mananging the large number of learned clauses. The first technique developed for
this management problem was relevance-bounded learning [41, 42]. The idea is
to discard a learned clause once it is unlikely to be useful later on in the proof. A
simple but effective strategy is to throw out clauses of length greater than some
fixed k when the search backtracks above the point at which any of the literals in
the clause are assigned a value [41]. A second important management technique,
called “watched literals”, was most fully exploited in Chaff [47]. Watched literals
is actually a generic technique for reducing the time needed to tell which clauses
have been shortened to length one during the DPPL’s unit propagation step.
Two literals are arbitrarily chosen in each clause to be “watched”. When a



literal is set, rather than scanning through all clauses containing the negation of
the literal, the algorithm only scans clauses contained watched negations of the
literal. It is easy to see that this technique still finds all unit clauses, because such
a clause is guaranteed to be scanned once it becomes a binary clause. Watched
literals allows modern solvers to handle millions of learned clauses with small
time overhead (although space can then become problematic).

Clause learning strategies and variable branching strategies have tradition-
ally been studied separately. However, [54] shows that there is great promise
in developing branching strategies that explicitly take into account the order
in which clauses are learned. They considered a class of formulas known as
pebbling formulas [36, 55–57], which can be thought of as representing prece-
dence graphs in dependent task systems and scheduling scenarios. Such formu-
las require exponential-sized proofs for tree-like resolution, but have polynomial
clause-learning proofs. However, it remains difficult to find such proofs. [54] pre-
processes the formula to extract a domain-specific branching sequence — that
is, a branching order that can be formally shown to yield small clause learning
proofs for formulas encoding pebbling graphs. While ordinary DPLL (with a
good branching order) scales to problems with about 60 variables on the peb-
bling formulas, and clause learning alone scales to 4,000 variables, clause learning
with the domain specific ordering handles over 2,000,000 variables. To make this
work of practical use we need to develop domain-specific strategies for other
common structures that arise in applications such as verification or planning,
and automated or semi-automated techniques for recognizing the structures.

3.2 Beyond General Resolution

CHALLENGE 3B: Demonstrate that a propositional proof system more pow-
erful than general resolution can be made practical for satisfiability testing.

Currently the most practical extension of general resolution is symmetry de-
tection. The pigeon hole problem is intuitively easy because we immediately see
that different pigeons and holes are indistinguishable, so we do not need to ac-
tually consider all possible matchings — without loss of generality, attempting
to find a particular (say, lexigraphically ordered) matching suffices. [58] showed
how to determine if there existed a renaming (permutation) ψ of the variables
in a formula that resulted in the same set of clauses, which justified a new rule
of inference: from any clause (a∨ b∨ ...), infer (ψ(a)∨ψ(b)∨ ...). [59] introduced
a different way of using symmetries, by strengthening the formula through the
addition of clauses that ruled out all but one of the symmetric cases. The draw-
back of this approach appeared to be the large (quadratic) number of symmetry
breaking clauses needed; but [60] showed that a linear sized set of symmetry-
breaking predicates was logically equivalent, and led to dramatic speedup on
certain structured benchmark problems. Symmetry detection is not, however, a
cure-all; [61] showed that any formula that was exponential for resolution could
be transformed into one that was still exponential for resolution plus symmetry
detection, by adding new literals and clauses that “hid” the symmetry.



As we have noted clause learning alone does not exceed the power of general
resolution. However, if instead of cacheing conflicts, one modifies DPLL so that
the entire residual formula at each node in the search tree is cached, then the
proof complexity of the resulting system can exceed resolution [62] (if the test
for a cached formula includes subsumption checking). Furthermore, [63] argues
that formula caching is the fastest practical algorithm for counting the number
of solutions of formula.

CHALLENGE 4: Demonstrate that integer programming can be made prac-
tical for satisfiability testing.

Over the years, there has been a significant amount of work on the close
connection between 0/1 integer programming and SAT (e.g., [64, 65]). A key
question is whether techniques developed for integer programming can be of use
in SAT solvers. So far, it has been difficult to obtain a concrete computational
advantage of integer programming methods on practical SAT instances. The
recent work by Warners and van Maaren provides two promising examples of
where integer programming and related techniques may have an impact. First,
as discussed above, linear programming can be used in a two-phase algorithm for
the 32-bit parity formulas [26]. Secondly, by using a semi-definite programming
formulation, pigeon hole formulas can be solved efficiently [66]. The challenge
remains to incorporate these approaches in more general, practical SAT solvers.

In recent years, we have also seen an interesting development in the opposite
direction: use SAT techniques in the design of more efficient solvers for 0/1
integer programming problems. More specifically, one considers pseudo-Boolean
encodings, which use Boolean variables and linear inequalities over such variables
with integer coefficients. Most interestingly, some of the best solvers for pseudo-
Boolean problems are extensions of the best SAT solvers [67–69].

4 Challenges for Stochastic Search

CHALLENGE 5: Design a practical stochastic local search procedure for prov-
ing unsatisfiability.

Given the success of local search style procedures on satisfiable problem in-
stances, it would be interesting to use a local search strategy for finding “proof
objects”, i.e., objects that demonstrate the unsatisfiability of an instance. This
challenge remains wide open. A key issue is the need to find smaller proof objects.
Work on strong backdoor sets, which are small sets of variables that, together
with a polytime propagation method, can demonstrate unsatisfiability may lead
to some new opportunities in this area [70].

CHALLENGE 6: Improve stochastic local search on structured problems
by efficiently handling variable dependencies.

DPLL procedures handle variable dependency quite effectively through unit
propagation. Local search methods, such as Walksat, handle dependencies through
a random walk process, which may require on the order of N2 flips to travel a
dependency chain of N variables [71]. Given the large number of dependent vari-
ables in structured instances, the local search methods therefore are often less



effective than local search style methods. Note that this is not always the case.
For example, in runs on verification benchmarks, Velev [3] showed how the per-
formance of DLM [72] and Walksat [24, 73] is comparable to many of the best
DPLL style methods. A series of papers, such as [74–79] among others, has also
led to a much improved understanding of local search methods for SAT.

Hirsch [80] introduces a local search procedure, UnitWalk, where variable
dependencies are propagated explicitly as part of the search process. The prop-
agation strategy is closed related to the one studied in [81]. UnitWalk is quite
effective on certain classes of structured problems but there is still room for im-
provement. Comparisons with WalkSat shows that neither strategy dominates.
This led to QingTing [82], which is a local search solver that dynamically switches
between a UnitWalk and a Walksat strategy, depending on the underlying struc-
ture of of the problem.

In a different approach to handling dependencies, in [71], redundant clauses
are added to the SAT problem instances in a preprocessing phase. The redundant
clauses capture long range dependencies between variables. It can be shown, both
theoretically and empirically, that such redundant clauses speed up a local search
style solver.

Although the challenge problem was formulated specifically in the context
of local search methods, techniques for discovering and exploiting various forms
of variable dependencies have also been shown to be effective for DPLL style
procedures. See, for example, [83–85].

5 Randomized Systematic Search

CHALLENGE 7: Demonstrate the succesful combination of stochastic search
and systematic search techniques, by the creation of a new algorithm that out-
performs the best previous examples of both approaches.

[86, 87] present hybrid approaches, integrating a local search and a DPLL
solver. This work provides a promising step towards hybrid solvers, but it remains
a challenge to have such solvers outperform non-hybrids on a wide range of
benchmark problems.

We implicitly assumed in this challenge, as was common at the time, that
stochastic search refers to some form of local search. Systematic, complete meth-
ods, such as DPLL, were generally deterministic. A major recent change during
the last five years came out of the insight that adding randomization to a com-
plete search method, combined with a restart strategy, can provide a significant
computational advance [52]. (Note that explicit randomization is not required.
For example, clauses learning between restarts of a DPLL solver, such as used in
Chaff, also forces explorations of different parts of the search space on different
restarts.)

Randomization and restarts take advantage of the large variations that have
been observed between different runs of backtrack search procedures on a given
problem instance. In fact, it has been shown that randomized DPLL run time
distributions are often — but not always — “heavy-tailed” [88–91]. This means



that one observes a mixtures of run times on dramatically different scales. By
using rapid restarts, one can take advantage of the occasionally short, success-
ful run [52]. In a recent paper [70], it was shown that such short runs can be
explained by the existence of a small set of backdoor variables in the problem in-
stance. Once backdoor variables are assigned a value, the polytime propagation
and simplication mechanism of the solver under considaration sets the remaining
variables without further backtracking. (In case of a unsatisfiable instances, the
propagation mechanisms discovers an inconsistancy after propagation.) Practical
problem instances can have surprisingly small sets of backdoor variables. We have
observed structured instances with tens of thousands of variables with backdoor
sets of around a dozen variables. Randomization and restarts, in conjunction
with the variable selection heuristics, help the solver discover the backdoor sets.
Work on backdoor variables and clause learning, as discussed above, is providing
us with a better understanding as to why structured SAT instances with up to a
million variables, from, e.g., verification applications, can be solved with current
state-of-the-art solvers.

An important related issue is how to decide on a good restart policy. Luby
et al. [92] described restart policies for general randomized algorithms for two
scenarios where runtime itself is the only observable: (i) when each run is a
random sample from a known distribution, one can calculate a fixed optimal
cutoff; (ii) when there is no knowledge of the distribution, a universal schedule
mixing short and longer cutoffs comes within a log factor of the minimal run
time.

Horvitz et al. [93] showed that it is possible to do better than Luby’s fixed op-
timal policy by making observations of a variety of features related to the nature
and progress of problem solving during an early portion of the run (referred to as
the observation horizon) and learning, and then using, a Bayesian model to pre-
dict the length of each run. Examples of features of a running SAT solver (satz)
included the minimum, maximum, final, and average values of (1) The number of
backtracks; (2) The number of unit propagations; (3) Domain-specific measures
of the current subproblem (for example, for a coloring problem, the number of
nodes that have been colored), as well as the derivatives of such values. Under
the assumption that each run is an independent random sample of one runtime
distribution (RTD), [94] used observations to discriminate the potentially short
runs from the long ones and then adopted different restart cutoffs for the two
types of runs.

Ruan et al. [95] considered the case where there are k known distributions,
and each run is a sample from one of the distributions—but the solver is not
told which distribution. The paper showed how offline dynamic programming
can be used to generate the optimal restart policy, and how the policy can be
coupled with real-time observations to control restarting. In recent work the
same authors [96] generalize this to the case where the k distributions are not
specified in advance: instead, the solver first infers how a problem ensemble can
be decomposed into a set of sub-ensembles such that each sub-ensemble clusters
instances with similar runtime distributions.



The following example from [96] illustrates this approach where instances are
clustered by their median runtime. Suppose that the RTD of each instance is a
scaled Pareto distribution controlled by a parameter b:

P (t) =
{
b/t2 if t ≥ b
0 if t < b

This is a canonical example of a heavy-tailed distribution. Furthermore, suppose
that b is an integer that is uniformly distributed in the range [11, 100] across the
problem distribution. The median run time of any particular instance is 2b, so we
expect that median run times of the sampled instances would fall uniformly in
the range [22, 200]. A binary clustering by the median run times of the samples
should give one cluster where the instance medians are in the range [22, 110]
(equivalently, b ∈ [11, 55]) and another cluster where the instance medians are in
the range [111, 200] (equivalently, b ∈ [56, 100]). Each cluster, or sub-ensemble,
yields an ensemble run time distribution. The ensemble distribution RTD is the
normalized sum of the RTD’s of the instances it contains.
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Fig. 2. The sub-ensemble run-time distributions for the example of a family of scaled
Pareto distributions.

Fig. 2 shows the sub-ensemble RTD’s for this example. The ensemble RTD’s
are not simple scaled Pareto distributions, because there is a non-zero probability
density to the left of the maximum points. One can show (analytically or by
computer simulation) that the optimal cutoffs for the two clusters are at 98 and
244 respectively. The dynamic programming procedure mentioned above can
then be used to calculate a complete policy—in the case of the example where
there are no run-time feature observations, this is a sequence of cutoff values to
try on any given instance until solution is reached. In this example, the series of
changing cutoff values are 201, 222, 234, 239, 242, 244, 244, . . .

On experiments with hard quasigroup completion problems and SAT encod-
ings of planning problems the approach showed a speedup ranging from 57% to
72% over Luby’s universal policy. Interestingly, the policy of using fixed cutoff



that is optimal under the (false) assumption that all instances in the ensem-
ble are equally difficult fails catastrophically, because some instances are never
solved.

6 Challenges for Problem Encodings

CHALLENGE 8: Characterize the computational properties of different en-
codings of a real-world problem domain, and/or give general principles that hold
over a range of domains.

There has been a good amount of work on comparing different SAT encod-
ings. For example, [97, 98] consider different translations of constraint satisfac-
tion problems (CSP) into SAT. A central issue in this work is what kinds of
encodings preserve local CSP consistency checking in the SAT encoding, where
local processing consists mainly of unit-propagation. By exploiting some key
ideas from CSPs, such as m-loosenes [99], one can in fact optimize the SAT
encodings [100]. Examples of other work in the area are on encoding plan-
ning problems [101, 102] and quasi-group completion problems (a multi-coloring
task) [103].

This work shows clearly that encodings have a significant impact on the
practical solvability of the underlying problems. Some general lessons have been
obtained, but there is still a need for more unifying, domain-independent prin-
ciples.

CHALLENGE 9: Find encodings of real-world domains which are robust
in the sense that “near models” are actually “near solutions”.

In our work on planning [104], we noticed that assignments that satisfy all
but a few of the clauses encoding our planning problems often represented action
sequences that were very different from valid plans. This means that there can
be a significant practical mismatch between a solver that tries to maximize the
number of satisfied clauses (which is the standard approach is SAT solvers) and
the search for valid plans. In particular, maximizing the number of satisfied
clauses does not lead to nearly valid plans. It would seem that it should be
possible to design better SAT encodings. This challenge remains open. For some
related work, dealing with the robustness of encodings in general, see [105].

CHALLENGE 10: Develop a generator for problem instances that have
computational properties that are more similar to real-world instances.

The final challenge is in response to the concern that the random k-SAT for-
mulas that dominated benchmarks in 1997 might begin to drive research in the
wrong direction [106]. [107] introduced a generation model based on the quasi-
group (or Latin square) completion problem (QCP). The task is to determine if a
partially colored square can be completed so that no color is repeated in any row
or any column. QCP is an NP-complete problem, and random instances exhibit
a peak in problem hardness in the area of the phase transition in the percentage
of satisfiable instances generated as the ratio of the number of uncolored cells
to the total number of cells is varied. The structure implicit in a QCP problem



is similar to that found in real-world domains, such as scheduling, bandwidth
assignment, and experimental design.

In order to measure the performance of incomplete solvers, it is necessary
to have benchmark instances that are known to be satisfiable. This requirement
is problematic in domains where incomplete methods can solve larger instances
than complete methods: it is not possible to use a complete method to filter out
the unsatisfiable instances. [103] described a generation model for quasigroup
completion problems that are always guaranteed to be satisfiable. Another in-
teresting approach for generating satisfiable instances is based on a translation
of problems from cryptography [108].

Structured problem generators have also been created by linking a random
generator for some particular domain to a SAT translator. For example, the
Blackbox planning system [109] can be used to convert STRIPS planning prob-
lems into CNF formulas. The Blackbox distribution included a simple generator
for random logistics planning problems, making it easy to generate random SAT
problems that have the underlying structure of a planning problem.

Many SAT benchmarks today are encodings of bounded-model checking ver-
ification problems [2, 110]. While hundreds of specific problems are available, it
would be useful to be able to randomly generate similar problems by the thou-
sands for testing purposes: we hope to encourage the creation of such a tool.

7 Conclusion

The challenges from our original paper provide a useful framework for discussing
some of the exciting progress in satisfiability testing in recent years. We expect
further developments on extensions to DPLL and randomized systematic search
to continue. Much remains to be done, however, towards the challenges on prob-
lem encodings, local search for proofs of unsatisfiability, and hybrid methods.
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