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To the Students of the
2010 Microsoft School on Data Structures and Algorithms

• Thanks for all your “Get Well” wishes.  I am back in the USA now and 
almost fully recovered.  I am truly sorry I was unable to present my 
Friday lectures and my Q&A session.  I had been looking forward to 
both.

• Given that I missed the Q&A session, feel free to send me email if you 
have any questions I might help you with (technical or otherwise).  My 
email address is dsj@research.att.com.

• I hope these slides (and the Bin Packing slides I am also uploading) are 
still of some value, even without the vocal commentary I would have 
provided had I been able to give the talks.   I still owe you a 
bibliography, but you can find many of my own TSP and bin packing 
papers at http://www.research.att.com/~dsj/, along with NP-
completeness columns and other goodies.

• Best wishes to you all  -- David Johnson, 18 August, 2010.

http://www.research.att.com/~dsj/
http://www.research.att.com/~dsj/
http://www.research.att.com/~dsj/


Special Request
2-Opt Animation: Nearest Neighbor Starting Tour



Bob Tarjan Mike Garey David Johnson

Special Bonus:  Picture from Shaggier Times (~1976)



And Now,

Back to the show.



For more on the TSP algorithm performance, see the website for the 
DIMACS TSP Challenge:

http://www2.research.att.com/~dsj/chtsp/index.html/

Tour Length                                  Normalized Running Time

Comparison:  Smart-Shortcut Christofides versus 2-Opt

http://www2.research.att.com/~dsj/chtsp/index.html/






Held-Karp (or “Subtour”) Bound

• Linear programming relaxation of the following 
formulation of the TSP as an integer program:

• Minimize   city pairs {c,c’}(x{c,c’}d(c,c’))
• Subject to

– c’C x{c,c’} = 2, for all c  C.

– cS,c’C-S x{c,c’} ≥ 2, for all S  C (subtour constraints)

– x{c,c’}  {0,1} , for all pairs {c,c’}  C.0 ≤ x{c,c’} ≤ 1 

Linear programming relaxation



Percent by which Optimal Tour exceeds Held-Karp Bound



Computing the Held-Karp Bound

• Difficulty:  Too many “subtour” constraints:

cS,c’C-S x{c,c’} ≥ 2, for all S  C 

(There are 2N-2 such S)

• Fortunately, if any such constraint is violated by our current 
solution, we can find such a violated constraint in polynomial time:

• Suppose the constraint for S is violated by solution x.  Consider 
the graph G, where edge {c,c’} has capacity x{c,c’} .  For any pair of 
vertices (u,v), u  S and v  C-S, the maximum flow from u to v is 
less than 2 (and conversely).

• Consequently, an S yielding a violated inequality can be found 
using O(N) network flow computations, assuming such an 
inequality exists.



Computing the Held-Karp Bound

• Pick a city c.   If the desired cut exists, there must be some 
other city c’ such that the max flow from c to c’ is less than 2 (a 
“small flow”).

• Test all candidates for c’ (N-1 flow computations)

• If no small flows found, no subtour constraint is violated.

• Otherwise, let c* be a c’ with a small flow.

• Initialize S to {c}.

• For each other city c’ in turn, merge c’ with all the cities in S
and test whether the flow from the merged vertex to c*
remains small.

– If yes, add c’ to S.

– Otherwise, add c’ to C-S.

• Once all N-2 candidates for c’ have been tested, output S.

(Total time can be reduced to that for a constant number of flow computations 
using more algorithmic ideas.)





Concorde Branch-and-Cut Optimization 
[Applegate-Bixby-Chvatal-Cook]
Optimum
1,000 cities in median time 5 minutes at 2.66 Ghz

Lin-Kernighan [Johnson-McGeoch Implementation]
1.4% off optimal
10,000,000 cities in 46 minutes at 2.6 Ghz

Iterated Lin-Kernighan [J-M Implementation] 
0.4% off optimal
100,000 cities in 35 minutes at 2.6 Ghz

Optimization: State of the Art



Concorde
• “Branch-and-Cut” approach exploiting linear programming to determine 

lower bounds on optimal tour length.

• Based on 30+ years of theoretical developments in the “Mathematical 
Programming” community.

• Exploits “chained” (iterated) Lin-Kernighan for its initial upperbounds.

• Eventually finds an optimal tour and proves its optimality (unless it 
runs out of time/space).

• Also can compute the Held-Karp lower bound for very large instances.

• Executables and source code can be downloaded from 
http://www.tsp.gatech.edu/



Geometric Interpretation

-- Points in RN(N-1)/2 corresponding to a tour.

Hyperplane
perpendicular 
to the vector 
of edge lengths

Optimal Tour



Optimal Tour is a point on the convex hull of 
all tours.

Unfortunately, the LP relaxation of the TSP can be a very 
poor approximation to the convex hull of tours.

Facet

To improve it, add more constraints (“cuts”)



One Facet Class: Comb Inequalities

H

T1 T2 T3
Ts-1

Ts

Teeth Ti are disjoint, s is odd,
all regions contain at least one city.



H

T1 T2 T3
Ts-1

Ts

• For Y the handle or a tooth, let x(Y) be the total 
value of the edge variables for edges with one 
endpoint in Y and one outside, when the function x
corresponds to a tour

• By subtour inequalities, we must have x(Y) ≥ 2 for 
each such Y.  It also must be even, which is exploited 
to prove the comb inequality:

13s)x(Tx(H)
s

1i
i 





Branch & Cut

• Use a heuristic to generate a initial “champion” tour 
and provide provide an upper bound U ≥ OPT. 

• Let our initial “subproblem” consist of an LP with just 
the inequalities of the LP formulation (or some subset 
of them).

• Handle subproblems as follows:



• Keep adding violated inequalities (of various sorts) that you can 
find, until

– (a)  LP Solution value ≥ U.  In this case we prune this case and 
if no other cases are left, our current tour is optimal.

– (b)  Little progress is made in the objective function.  In this 
case, for some edge {c,c’} with a fractional value, split into 
two subproblems, one with x{c,c’} fixed at 1 (must be in the 

tour, and one with it fixed at 0 (must not be in the tour).

• If we ever encounter an LP solution that is a tour and has length 
L’ < L, set L = L’ and let this new tour be the champion.  Prune any 
subproblems whose LP solution exceeds or equals L.  If at any 
point all your children are pruned, prune yourself.

Branch & Cut



Initial LP, U = 100, LB = 90

LB = 92 LB = 93

X{a,b} = 0 X{a,b} = 1

LB = 92 LB = 100 LB = 98 LB = 97

X{a,c} = 0X{c,d} = 0 X{c,d} = 1 X{a,c} = 1

LB = 101 LB = 100

X{e,a} = 0 X{e,a} = 1

New Opt = 97

U = 97





N = 85,900

Current World Record (2006)

Using a parallelized version of the 
Concorde code, Helsgaun’s 
sophisticated variant on Iterated 
Lin-Kernighan, and 2719.5 cpu-days

The optimal tour is 0.09% shorter than the tour DSJ constructed using Iterated Lin-Kernighan 
in 1991.  In 1986, when computers were much slower, we could only give the Laser Logic people a 
Nearest-Neighbor tour, which was 23% worse, but they were quite happy with it…



Running times (in seconds) 
for 10,000 Concorde runs 
on random 1000-city planar 
Euclidean instances (2.66 
Ghz Intel Xeon processor 
in dual-processor PC, 
purchased late 2002).

Range: 7.1 seconds 
to 38.3 hours



Concorde Asymptotics
[Hoos and Stϋtzle, 2009 draft]

• Estimated median running time for 
planar Euclidean instances.

• Based on
– 1000 samples each for N = 500,600,…,2000

– 100 samples each for N = 2500, 3000,3500,4000,4500

– 2.4 Ghz AMD Opteron 2216 processors with 1MB L2 cache 
and 4 GB main memory, running Cluster Rocks Linux v4.2.1.

0.21 · 1.24194 N

Actual median for N = 2000: ~57 minutes,  for N = 4,500: ~96 hours



Theoretical Properties of Random 
Euclidean Instances

Expected optimal tour length for an N-city 
instance approaches CN for some constant 
C as N  .   [Beardwood, Halton, and Hammersley, 1959]

Key Open Question:

What is the Value of C?



The Early History

• 1959:  BHH estimated C  .75,  based on hand solutions for a 
202-city and a 400-city instance.

• 1977:  Stein estimates C  .765, based on extensive simulations 
on 100-city instances.

• Methodological Problems:
• Not enough data

• Probably not true optima for the data there is

• Misjudges asymptopia



Stein: C = .765

BHH: C = .75

Figure from [Johnson, McGeoch, Rothberg, 1996]



What is the dependence on N ?

• Expected distance to nearest neighbor proportional 
to 1/N, times n cities yields (N)

• O(N) cities close to the boundary are missing some 
neighbors, for an added contribution proportional to 
(N)(1/N), or (1)

• A constant number of cities are close to two 
boundaries (at the corners of the square), which may 
add an additional (1/N ) 

• This yields target function

OPT/N = C + /N + /N



Asymptotic Upper Bound Estimates 
(Heuristic-Based Results Fitted to OPT/N = 

C + /N)

• 1989: Ong & Huang estimate C ≤ .74,  based on runs of 
3-Opt.

• 1994: Fiechter estimates C ≤ .73, based on runs of 
“parallel tabu search”

• 1994: Lee & Choi estimate C ≤ .721, based on runs of 
“multicanonical annealing”

• Still inaccurate, but converging?

• Needed: A new idea.  



• Join left boundary of the unit square to the 
right boundary, top to the bottom.

New Idea (1995):  Suppress the variance 

added by the “Boundary Effect” by using

Toroidal Instances





Toroidal Unit Ball



Toroidal Distance 
Computations



Toroidal Instance Advantages

• No boundary effects.

• Same asymptotic constant for E[OPT/N] as 
for planar instances [Jaillet, 1992] (although 
it is still only asymptotic).

• Lower empirical variance for fixed N.



Toroidal Approaches

1996: Percus & Martin estimate

C  .7120 ± .0002.

1996: Johnson, McGeoch, and Rothberg estimate

C  .7124 ± .0002.

2004: Jacobsen, Read, and Saleur estimate

C  .7119.

Each coped with the difficulty of computing optima in a 
different way.



Percus-Martin
(Go Small)

• Toroidal Instances with N ≤ 100:

– 250,000 samples, N = 12,13,14,15,16,17 
(“Optimal” = best of 10 Lin-Kernighan runs)

– 10,000 samples with N = 30              
(“Optimal” = best of 5 runs of 10-step-Chained-LK)

– 6,000 samples with N = 100                   
(“Optimal” = best of 20 runs of 10-step-Chained-LK)

• Fit to OPT/N = (C + a/N + b/N2)/(1+1/(8N))

(Normalization by the expected distance to the kth nearest neighbor)



Jacobsen-Read-Saleur
(Go Narrow)

• Cities go uniformly on a 1 x 100,000 cylinder – that is, 
only join the top and bottom of the unit square and 
stretch the width by a factor of 100,000.

• For W = 1,2,3,4,5,6,  set N = 100,000W and generate 10 
sample instances.

• Optimize by using dynamic programming, where only 
those cities within distance k of the frontier (~kw 
cities) can have degree 0 or 1, k = 4,5,6,7,8.

• Estimate true optimal for fixed W as k  .

• Estimate unit square constant as W  .

• With N ≥ 100,000, assume no need for asymptotics in N



Johnson-McGeoch-Rothberg
(Go Held-Karp)

• Observe that

– the Held-Karp (subtour) bound also has an asymptotic 
constant, i.e., HK/n  CHK [Goemans, 1995] , and is 
easier to compute than the optimal.

– (OPT-HK)/N has a substantially lower variance than 
either OPT or HK.

• Estimate

– CHK based on instances from N=100 to 316,228, using 
heuristics and Concorde-based error estimates

– (C- CHK) based on instances with N = 100, 316, 1000, using 
Concorde for N ≤ 316 and Iterated Lin-Kernighan plus 
Concorde-based error estimates for N = 1000.



Modern Approach: Use Concorde

• Can compute true optima and Held-Karp for Toroidal as 
well as Euclidean.

• Faster for Toroidal than for Euclidean.



Running times (in seconds) 
for 10,000 Concorde runs 
on random 1000-city planar 
Euclidean instances (2.66 
Ghz Intel Xeon processor 
in dual-processor PC, 
purchased late 2002).

Range: 7.1 seconds 
to 38.3 hours



Running times (in seconds) 
for 1,000,000 Concorde
runs on random 1000-city 
“Toroidal” Euclidean 
instances

Range: 2.6 seconds 
to 6 hours



Optimal Tour Lengths:
One Million 100-City Instances

-1e+07          -5e+06               0                +5e+06

Optimal Tour Lengths Appear to Be Normally Distributed



With a standard deviation that appears to be independent of N

Optimal Tour Lengths:
One Million 1000-City Instances

-1e+07          -5e+06               0                +5e+06



The New Data
• Solver:

– Latest (2003) version of Concorde with a 
few bug fixes and adaptations for new metrics

• Primary Random Number Generator:

– RngStream package of Pierre L’Ecuyer, 
described in
• “AN OBJECT-ORIENTED RANDOM-NUMBER PACKAGE 

WITH MANY LONG STREAMS AND SUBSTREAMS,” 
Pierre L'ecuyer, Richard Simard, E. Jack Chen, W. David 
Kelton, Operations Research 50:6 (2002), 1073-1075



Toroidal Instances

Number of Cities
Number of 
Instances

OPT HK

N = 3, 4, …, 49, 50 1,000,000 X X

N = 60, 70, 80, 90, 100 1,000,000 X X

N = 200, 300, …, 1,000 1,000,000 X X

N = 110, 120, …, 1,900 10,000 X X

N = 2,000 100,000 X X

N = 2,000, 3,000, …, 10,000 1,000,000 X

N = 100,000 1,000 X

N = 1,000,000 100 X



Euclidean Instances

Number of Cities
Number of 
Instances

OPT HK

N = 3, 4, …, 49, 50 1,000,000 X X

N = 60, 70, 80, 90, 100 1,000,000 X X

N = 110, 120, …, 1,000, 2,000 10,000 X X

N = 1,100, 1,200 …, 10,000 10,000 X

N = 20,000, 30,000, …, 100,000 10,000 X

N = 1,000,000 1,000 X



Standard Deviations

N = 100                           N = 1,000



99% Confidence Intervals for OPT/N
for Euclidean and Toroidal Instances



99% Confidence Intervals for (OPT-HK)/N
for Euclidean and Toroidal Instances



Gnuplot Least Squares fit for the Percus-Martin 
values of N  -- OPT/N = (C + a/N + b/N2)/(1+1/(8N))

C = .712234 ± .00017   versus originally claimed  C = .7120 ± .0002



Least Squares fit for all data from 
[12,100]  -- OPT/N = (C + a/N + b/N2)

C = .712333 ± .00006   versus  C = .712234 ± .00017 



Least Squares fit for all data from 
[30,2000]  -- OPT/N = (C + a/N + b/N2)

C = .712401 ± .000005   versus  C = .712333 ± .00006 



What is the right function?

Range of N Function C Confidence

[30,2000] C + a/N + b/N2 .712401 ± .000005 

[100,2000] C + a/N + b/N2 .712403 ± .000010 

[100,2000] C + a/N .712404 ± .000006 

Power Series in 1/N – the Percus-Martin Choice

Justification:  Expected distance to the kth nearest 
neighbor is provably such a power series.



What is the right function?

Range of N Function C Confidence

[100,2000] C + a/N0.5 .712296 ± .000015 

[100,2000] C + a/N0.5 + b/N .712403 ± .000030 

[100,2000] C + a/N0.5 + b/N + c/N1.5 .712424 ± .000080 

OPT/sqrt(N) = Power Series in 1/sqrt(N))

Justification:  This is what we saw in the planar 
Euclidean case (although it was caused by boundaries).



What is the right function?

Range of N Function C Confidence

[100,2000] C + a/N0.5 .712296 ± .000015 

[100,2000] C + a/N0.5 +  b/N1.5 .712366 ± .000022 

[100,2000] C + a/N0.5 +  b/N1.5  + c/N2.5 .712385 ± .000040 

OPT = (1/sqrt(N) · (Power Series in 1/N)

Justification:  Why not?



What is the right function?

Range of N Function C Confidence

[30,2000] C + a/N + b/N2 .712401 ± .000005 

[100,2000] C + a/N + b/N2 .712403 ± .000010 

[100,2000] C + a/N .712404 ± .000006 

[100,2000] C + a/N0.5 .712296 ± .000015 

[100,2000] C + a/N0.5 + b/N .712403 ± .000030 

[100,2000] C + a/N0.5 + b/N + c/N1.5 .712424 ± .000080 

[100,2000] C + a/N0.5 +  b/N1.5 .712366 ± .000022 

[100,2000] C + a/N0.5 +  b/N1.5  + c/N2.5 .712385 ± .000040 



C  +  a/n.5 +   b/n   +   c/n1.5

Effect of Data Range on Estimate
[30,2000], [60,2000], [100,2000], [200,2000], [100,1000]

C  +  a/n    +   b/n2 +   c/n3

C  +  a/n.5 +  b/n.1.5 + c/n2.5

95% Confidence 
Intervals

C  +  a/n.5 +   b/n C  +  a/n.5

C  +  a/n.5 +  b/n.1.5



The Winners?

C  +  a/n            +             b/n2 +             c/n3

C = .71240 ± .00002C = .71240 ± .000005



Does the HK-based approach 
agree?

Question



CHK = .707980 ± .000003

95% confidence interval derived using C + a/N + b/N2 functional 
form 



C-CHK = .004419 ± .000002

95% confidence interval derived using C + a/N + b/N2 functional 
form 



HK-Based Estimate

C-CHK = .004419 ± .000002

+  CHK = .707980 ± .000003

C = .712399 ± .000005

Versus (Conservative) Opt-Based Estimate

C = .712400 ± .000020

Combined Estimate?

C = .71240  ± .00001



OPEN PROBLEM:
What function truly describes the data?

Our data suggests  OPT/sqrt(N) ≈      

.71240 + a/N - b/N2 + O(1/N3),                               

a = .049 ± .004,        b = .3 ± .2

(from fits for ranges [60,2000] and [100,2000]) 

But what about the range [3,30]?      



(95% confidence intervals on data) – f(N), 
3 ≤ N ≤ 30



Fit of a + b/N + c/N2 + d/N3 + e/N4 for 
[3,30]

95% Confidence Intervals

To date, no good fit of any sort has been found.



Problem

• Combinatorial factors for small N may 
make them unfittable:
– Only one possible tour for N = 3 (expected length 

of optimal tour can be given in closed form)

– Only 3, 12, 60, 420, … possible tours for N = 4, 5, 
6, 7, …, so statistical mechanics phenomena may 
not yet have taken hold.

• So let’s throw out data for N < 12



Fit of a + b/N + c/N2 + d/N3 + e/N4 for 
[12,2000]

Still Questionable…



99.7% confidence intervals on OPT/n, 
10 ≤ n ≤ 30.

Unexplained Phenomenon:  Rise and then Fall

Peaks at N = 17



2-Nearest Neighbor Bound (NNB)

Σ(½)(distances to nearest 2 cities)

NNB/(1 + 1/(8n))

Analytically (and ignoring lower order terms),

NNB  =  (.625) sqrt(N) / (1 + 1/(8N))



Random One-Tree Bound:  Pick a 
random city c, construct a minimum 
spanning tree on the remaining cities 
and add the edges joining c to its two 
nearest neighbors.



Random Minimum One-Tree

2-Nearest Neighbor Bound



Optimal 2-Matching (cover by cycles with at least 3 edges)

Random Minimum One-Tree

2-Nearest Neighbor Bound



Optimal 2-Matching (cover by cycles with at least 3 edges)

Optimal



Optimal 2-Matching (cover by cycles with at least 3 edges)

Optimal

Subtour (Held-Karp)



“Explaining”
The Expected Optimal Tour Length

• The fraction of optimal tour edges that go to kth nearest 
neighbor seems to be going to a constant ak for each k.



Fraction of Optimal Tour Edges

1st Neighbor (44.6%)

2nd Neighbor (26.0%)

3rd Neighbor (13.6%)

4th Neighbor (7.1%)

5th Neighbor (3.9%)

6th Neighbor (2.1%)

7th Neighbor (1.2%)

8th Neighbor (0.66%)

9th Neighbor (0.37%)

10th Neighbor (0.21%)

11th Neighbor (0.12%)

19th Neighbor (.00014%)

20th Neighbor (.00008%)



“Explaining”
The Expected Optimal Tour Length

• The fraction of optimal tour edges that go to kth nearest 
neighbor seems to be going to a constant ak for each k.

• If dk is the expected distance to your kth nearest 
neighbor, we then get (asymptotically)

OPTN ≈  ∑k(Nak)dk
• Or

OPTN/sqrt(N) ≈  ∑kak(dksqrt(N))

• dksqrt(N) also appears to go to a constant for each k



(√N)·(Average distance to kth Nearest Neighbor)

4th Neighbor
5th Neighbor

8th Neighbor

11th Neighbor

14th Neighbor

17th Neighbor

20th Neighbor

3rd Neighbor

2nd Neighbor

1st Neighbor

6th Neighbor



Hole in the Reasoning

Tour edges to kth nearest neighbors are 

likely to be shorter than the average

distance to a kth nearest neighbor



Kth Nearest Neighbors
(Average length in optimal tour)/(Average length overall)

1st Neighbor

2nd Neighbor

3rd Neighbor

4th Neighbor

12th Neighbor

13th Neighbor



Suggests Balancing Phenomena

• Decrease in overall average distance to 
kth nearest neighbor, approaching dk

from above

• Increase for each k in

(average length of tour edges to kth nearest neighbors)
_______________________________________________________________________________

(average distance to kth nearest neighbors overall)

• So how do these balance out?...



(√N)·(Average Length of kth Nearest Neighbor 
Edges in Optimal Tour)

4th Neighbor

5th Neighbor

8th Neighbor

11th Neighbor

14th Neighbor

17th Neighbor

3rd Neighbor

2nd Neighbor

1st Neighbor

6th Neighbor



More Anomalies: Standard Deviations

• [Cerf et al., 1997] conjectured that the 
standard deviation of OPT is asymptotic 
to a constant. 

• Our data appears to confirm this.

• But what about the WAY it converges?



Standard Deviation for OPT
(Fit to a + b/N)

Asymptotic Std Dev = .1883 ± .0004



Standard Deviations for OPT, 
3 ≤ N ≤ 100

Anomaly in [7,17] ?



Optimal versus Held-Karp

Optimal

Held-Karp



Standard Deviation Comparisons

2-Nearest Neighbors

Fractional Matching

2-Matching

One-Tree

OPT

Held-Karp



Stop!


