
© 2010 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.

Case Studies:
Bin Packing &

The Traveling Salesman Problem

David S. Johnson

AT&T Labs – Research

TSP: Part II

To the Students of the
2010 Microsoft School on Data Structures and Algorithms

• Thanks for all your “Get Well” wishes. I am back in the USA now and
almost fully recovered. I am truly sorry I was unable to present my
Friday lectures and my Q&A session. I had been looking forward to
both.

• Given that I missed the Q&A session, feel free to send me email if you
have any questions I might help you with (technical or otherwise). My
email address is dsj@research.att.com.

• I hope these slides (and the Bin Packing slides I am also uploading) are
still of some value, even without the vocal commentary I would have
provided had I been able to give the talks. I still owe you a
bibliography, but you can find many of my own TSP and bin packing
papers at http://www.research.att.com/~dsj/, along with NP-
completeness columns and other goodies.

• Best wishes to you all -- David Johnson, 18 August, 2010.

http://www.research.att.com/~dsj/
http://www.research.att.com/~dsj/
http://www.research.att.com/~dsj/

Special Request
2-Opt Animation: Nearest Neighbor Starting Tour

Bob Tarjan Mike Garey David Johnson

Special Bonus: Picture from Shaggier Times (~1976)

And Now,

Back to the show.

For more on the TSP algorithm performance, see the website for the
DIMACS TSP Challenge:

http://www2.research.att.com/~dsj/chtsp/index.html/

Tour Length Normalized Running Time

Comparison: Smart-Shortcut Christofides versus 2-Opt

http://www2.research.att.com/~dsj/chtsp/index.html/

Held-Karp (or “Subtour”) Bound

• Linear programming relaxation of the following
formulation of the TSP as an integer program:

• Minimize city pairs {c,c’}(x{c,c’}d(c,c’))
• Subject to

– c’C x{c,c’} = 2, for all c  C.

– cS,c’C-S x{c,c’} ≥ 2, for all S  C (subtour constraints)

– x{c,c’}  {0,1} , for all pairs {c,c’}  C.0 ≤ x{c,c’} ≤ 1

Linear programming relaxation

Percent by which Optimal Tour exceeds Held-Karp Bound

Computing the Held-Karp Bound

• Difficulty: Too many “subtour” constraints:

cS,c’C-S x{c,c’} ≥ 2, for all S  C

(There are 2N-2 such S)

• Fortunately, if any such constraint is violated by our current
solution, we can find such a violated constraint in polynomial time:

• Suppose the constraint for S is violated by solution x. Consider
the graph G, where edge {c,c’} has capacity x{c,c’} . For any pair of
vertices (u,v), u  S and v  C-S, the maximum flow from u to v is
less than 2 (and conversely).

• Consequently, an S yielding a violated inequality can be found
using O(N) network flow computations, assuming such an
inequality exists.

Computing the Held-Karp Bound

• Pick a city c. If the desired cut exists, there must be some
other city c’ such that the max flow from c to c’ is less than 2 (a
“small flow”).

• Test all candidates for c’ (N-1 flow computations)

• If no small flows found, no subtour constraint is violated.

• Otherwise, let c* be a c’ with a small flow.

• Initialize S to {c}.

• For each other city c’ in turn, merge c’ with all the cities in S
and test whether the flow from the merged vertex to c*
remains small.

– If yes, add c’ to S.

– Otherwise, add c’ to C-S.

• Once all N-2 candidates for c’ have been tested, output S.

(Total time can be reduced to that for a constant number of flow computations
using more algorithmic ideas.)

Concorde Branch-and-Cut Optimization
[Applegate-Bixby-Chvatal-Cook]
Optimum
1,000 cities in median time 5 minutes at 2.66 Ghz

Lin-Kernighan [Johnson-McGeoch Implementation]
1.4% off optimal
10,000,000 cities in 46 minutes at 2.6 Ghz

Iterated Lin-Kernighan [J-M Implementation]
0.4% off optimal
100,000 cities in 35 minutes at 2.6 Ghz

Optimization: State of the Art

Concorde
• “Branch-and-Cut” approach exploiting linear programming to determine

lower bounds on optimal tour length.

• Based on 30+ years of theoretical developments in the “Mathematical
Programming” community.

• Exploits “chained” (iterated) Lin-Kernighan for its initial upperbounds.

• Eventually finds an optimal tour and proves its optimality (unless it
runs out of time/space).

• Also can compute the Held-Karp lower bound for very large instances.

• Executables and source code can be downloaded from
http://www.tsp.gatech.edu/

Geometric Interpretation

-- Points in RN(N-1)/2 corresponding to a tour.

Hyperplane
perpendicular
to the vector
of edge lengths

Optimal Tour

Optimal Tour is a point on the convex hull of
all tours.

Unfortunately, the LP relaxation of the TSP can be a very
poor approximation to the convex hull of tours.

Facet

To improve it, add more constraints (“cuts”)

One Facet Class: Comb Inequalities

H

T1 T2 T3
Ts-1

Ts

Teeth Ti are disjoint, s is odd,
all regions contain at least one city.

H

T1 T2 T3
Ts-1

Ts

• For Y the handle or a tooth, let x(Y) be the total
value of the edge variables for edges with one
endpoint in Y and one outside, when the function x
corresponds to a tour

• By subtour inequalities, we must have x(Y) ≥ 2 for
each such Y. It also must be even, which is exploited
to prove the comb inequality:

13s)x(Tx(H)
s

1i
i 



Branch & Cut

• Use a heuristic to generate a initial “champion” tour
and provide provide an upper bound U ≥ OPT.

• Let our initial “subproblem” consist of an LP with just
the inequalities of the LP formulation (or some subset
of them).

• Handle subproblems as follows:

• Keep adding violated inequalities (of various sorts) that you can
find, until

– (a) LP Solution value ≥ U. In this case we prune this case and
if no other cases are left, our current tour is optimal.

– (b) Little progress is made in the objective function. In this
case, for some edge {c,c’} with a fractional value, split into
two subproblems, one with x{c,c’} fixed at 1 (must be in the

tour, and one with it fixed at 0 (must not be in the tour).

• If we ever encounter an LP solution that is a tour and has length
L’ < L, set L = L’ and let this new tour be the champion. Prune any
subproblems whose LP solution exceeds or equals L. If at any
point all your children are pruned, prune yourself.

Branch & Cut

Initial LP, U = 100, LB = 90

LB = 92 LB = 93

X{a,b} = 0 X{a,b} = 1

LB = 92 LB = 100 LB = 98 LB = 97

X{a,c} = 0X{c,d} = 0 X{c,d} = 1 X{a,c} = 1

LB = 101 LB = 100

X{e,a} = 0 X{e,a} = 1

New Opt = 97

U = 97

N = 85,900

Current World Record (2006)

Using a parallelized version of the
Concorde code, Helsgaun’s
sophisticated variant on Iterated
Lin-Kernighan, and 2719.5 cpu-days

The optimal tour is 0.09% shorter than the tour DSJ constructed using Iterated Lin-Kernighan
in 1991. In 1986, when computers were much slower, we could only give the Laser Logic people a
Nearest-Neighbor tour, which was 23% worse, but they were quite happy with it…

Running times (in seconds)
for 10,000 Concorde runs
on random 1000-city planar
Euclidean instances (2.66
Ghz Intel Xeon processor
in dual-processor PC,
purchased late 2002).

Range: 7.1 seconds
to 38.3 hours

Concorde Asymptotics
[Hoos and Stϋtzle, 2009 draft]

• Estimated median running time for
planar Euclidean instances.

• Based on
– 1000 samples each for N = 500,600,…,2000

– 100 samples each for N = 2500, 3000,3500,4000,4500

– 2.4 Ghz AMD Opteron 2216 processors with 1MB L2 cache
and 4 GB main memory, running Cluster Rocks Linux v4.2.1.

0.21 · 1.24194 N

Actual median for N = 2000: ~57 minutes, for N = 4,500: ~96 hours

Theoretical Properties of Random
Euclidean Instances

Expected optimal tour length for an N-city
instance approaches CN for some constant
C as N  . [Beardwood, Halton, and Hammersley, 1959]

Key Open Question:

What is the Value of C?

The Early History

• 1959: BHH estimated C  .75, based on hand solutions for a
202-city and a 400-city instance.

• 1977: Stein estimates C  .765, based on extensive simulations
on 100-city instances.

• Methodological Problems:
• Not enough data

• Probably not true optima for the data there is

• Misjudges asymptopia

Stein: C = .765

BHH: C = .75

Figure from [Johnson, McGeoch, Rothberg, 1996]

What is the dependence on N ?

• Expected distance to nearest neighbor proportional
to 1/N, times n cities yields (N)

• O(N) cities close to the boundary are missing some
neighbors, for an added contribution proportional to
(N)(1/N), or (1)

• A constant number of cities are close to two
boundaries (at the corners of the square), which may
add an additional (1/N)

• This yields target function

OPT/N = C + /N + /N

Asymptotic Upper Bound Estimates
(Heuristic-Based Results Fitted to OPT/N =

C + /N)

• 1989: Ong & Huang estimate C ≤ .74, based on runs of
3-Opt.

• 1994: Fiechter estimates C ≤ .73, based on runs of
“parallel tabu search”

• 1994: Lee & Choi estimate C ≤ .721, based on runs of
“multicanonical annealing”

• Still inaccurate, but converging?

• Needed: A new idea.

• Join left boundary of the unit square to the
right boundary, top to the bottom.

New Idea (1995): Suppress the variance

added by the “Boundary Effect” by using

Toroidal Instances



Toroidal Unit Ball

Toroidal Distance
Computations

Toroidal Instance Advantages

• No boundary effects.

• Same asymptotic constant for E[OPT/N] as
for planar instances [Jaillet, 1992] (although
it is still only asymptotic).

• Lower empirical variance for fixed N.

Toroidal Approaches

1996: Percus & Martin estimate

C  .7120 ± .0002.

1996: Johnson, McGeoch, and Rothberg estimate

C  .7124 ± .0002.

2004: Jacobsen, Read, and Saleur estimate

C  .7119.

Each coped with the difficulty of computing optima in a
different way.

Percus-Martin
(Go Small)

• Toroidal Instances with N ≤ 100:

– 250,000 samples, N = 12,13,14,15,16,17
(“Optimal” = best of 10 Lin-Kernighan runs)

– 10,000 samples with N = 30
(“Optimal” = best of 5 runs of 10-step-Chained-LK)

– 6,000 samples with N = 100
(“Optimal” = best of 20 runs of 10-step-Chained-LK)

• Fit to OPT/N = (C + a/N + b/N2)/(1+1/(8N))

(Normalization by the expected distance to the kth nearest neighbor)

Jacobsen-Read-Saleur
(Go Narrow)

• Cities go uniformly on a 1 x 100,000 cylinder – that is,
only join the top and bottom of the unit square and
stretch the width by a factor of 100,000.

• For W = 1,2,3,4,5,6, set N = 100,000W and generate 10
sample instances.

• Optimize by using dynamic programming, where only
those cities within distance k of the frontier (~kw
cities) can have degree 0 or 1, k = 4,5,6,7,8.

• Estimate true optimal for fixed W as k  .

• Estimate unit square constant as W  .

• With N ≥ 100,000, assume no need for asymptotics in N

Johnson-McGeoch-Rothberg
(Go Held-Karp)

• Observe that

– the Held-Karp (subtour) bound also has an asymptotic
constant, i.e., HK/n  CHK [Goemans, 1995] , and is
easier to compute than the optimal.

– (OPT-HK)/N has a substantially lower variance than
either OPT or HK.

• Estimate

– CHK based on instances from N=100 to 316,228, using
heuristics and Concorde-based error estimates

– (C- CHK) based on instances with N = 100, 316, 1000, using
Concorde for N ≤ 316 and Iterated Lin-Kernighan plus
Concorde-based error estimates for N = 1000.

Modern Approach: Use Concorde

• Can compute true optima and Held-Karp for Toroidal as
well as Euclidean.

• Faster for Toroidal than for Euclidean.

Running times (in seconds)
for 10,000 Concorde runs
on random 1000-city planar
Euclidean instances (2.66
Ghz Intel Xeon processor
in dual-processor PC,
purchased late 2002).

Range: 7.1 seconds
to 38.3 hours

Running times (in seconds)
for 1,000,000 Concorde
runs on random 1000-city
“Toroidal” Euclidean
instances

Range: 2.6 seconds
to 6 hours

Optimal Tour Lengths:
One Million 100-City Instances

-1e+07 -5e+06 0 +5e+06

Optimal Tour Lengths Appear to Be Normally Distributed

With a standard deviation that appears to be independent of N

Optimal Tour Lengths:
One Million 1000-City Instances

-1e+07 -5e+06 0 +5e+06

The New Data
• Solver:

– Latest (2003) version of Concorde with a
few bug fixes and adaptations for new metrics

• Primary Random Number Generator:

– RngStream package of Pierre L’Ecuyer,
described in
• “AN OBJECT-ORIENTED RANDOM-NUMBER PACKAGE

WITH MANY LONG STREAMS AND SUBSTREAMS,”
Pierre L'ecuyer, Richard Simard, E. Jack Chen, W. David
Kelton, Operations Research 50:6 (2002), 1073-1075

Toroidal Instances

Number of Cities
Number of
Instances

OPT HK

N = 3, 4, …, 49, 50 1,000,000 X X

N = 60, 70, 80, 90, 100 1,000,000 X X

N = 200, 300, …, 1,000 1,000,000 X X

N = 110, 120, …, 1,900 10,000 X X

N = 2,000 100,000 X X

N = 2,000, 3,000, …, 10,000 1,000,000 X

N = 100,000 1,000 X

N = 1,000,000 100 X

Euclidean Instances

Number of Cities
Number of
Instances

OPT HK

N = 3, 4, …, 49, 50 1,000,000 X X

N = 60, 70, 80, 90, 100 1,000,000 X X

N = 110, 120, …, 1,000, 2,000 10,000 X X

N = 1,100, 1,200 …, 10,000 10,000 X

N = 20,000, 30,000, …, 100,000 10,000 X

N = 1,000,000 1,000 X

Standard Deviations

N = 100 N = 1,000

99% Confidence Intervals for OPT/N
for Euclidean and Toroidal Instances

99% Confidence Intervals for (OPT-HK)/N
for Euclidean and Toroidal Instances

Gnuplot Least Squares fit for the Percus-Martin
values of N -- OPT/N = (C + a/N + b/N2)/(1+1/(8N))

C = .712234 ± .00017 versus originally claimed C = .7120 ± .0002

Least Squares fit for all data from
[12,100] -- OPT/N = (C + a/N + b/N2)

C = .712333 ± .00006 versus C = .712234 ± .00017

Least Squares fit for all data from
[30,2000] -- OPT/N = (C + a/N + b/N2)

C = .712401 ± .000005 versus C = .712333 ± .00006

What is the right function?

Range of N Function C Confidence

[30,2000] C + a/N + b/N2 .712401 ± .000005

[100,2000] C + a/N + b/N2 .712403 ± .000010

[100,2000] C + a/N .712404 ± .000006

Power Series in 1/N – the Percus-Martin Choice

Justification: Expected distance to the kth nearest
neighbor is provably such a power series.

What is the right function?

Range of N Function C Confidence

[100,2000] C + a/N0.5 .712296 ± .000015

[100,2000] C + a/N0.5 + b/N .712403 ± .000030

[100,2000] C + a/N0.5 + b/N + c/N1.5 .712424 ± .000080

OPT/sqrt(N) = Power Series in 1/sqrt(N))

Justification: This is what we saw in the planar
Euclidean case (although it was caused by boundaries).

What is the right function?

Range of N Function C Confidence

[100,2000] C + a/N0.5 .712296 ± .000015

[100,2000] C + a/N0.5 + b/N1.5 .712366 ± .000022

[100,2000] C + a/N0.5 + b/N1.5 + c/N2.5 .712385 ± .000040

OPT = (1/sqrt(N) · (Power Series in 1/N)

Justification: Why not?

What is the right function?

Range of N Function C Confidence

[30,2000] C + a/N + b/N2 .712401 ± .000005

[100,2000] C + a/N + b/N2 .712403 ± .000010

[100,2000] C + a/N .712404 ± .000006

[100,2000] C + a/N0.5 .712296 ± .000015

[100,2000] C + a/N0.5 + b/N .712403 ± .000030

[100,2000] C + a/N0.5 + b/N + c/N1.5 .712424 ± .000080

[100,2000] C + a/N0.5 + b/N1.5 .712366 ± .000022

[100,2000] C + a/N0.5 + b/N1.5 + c/N2.5 .712385 ± .000040

C + a/n.5 + b/n + c/n1.5

Effect of Data Range on Estimate
[30,2000], [60,2000], [100,2000], [200,2000], [100,1000]

C + a/n + b/n2 + c/n3

C + a/n.5 + b/n.1.5 + c/n2.5

95% Confidence
Intervals

C + a/n.5 + b/n C + a/n.5

C + a/n.5 + b/n.1.5

The Winners?

C + a/n + b/n2 + c/n3

C = .71240 ± .00002C = .71240 ± .000005

Does the HK-based approach
agree?

Question

CHK = .707980 ± .000003

95% confidence interval derived using C + a/N + b/N2 functional
form

C-CHK = .004419 ± .000002

95% confidence interval derived using C + a/N + b/N2 functional
form

HK-Based Estimate

C-CHK = .004419 ± .000002

+ CHK = .707980 ± .000003

C = .712399 ± .000005

Versus (Conservative) Opt-Based Estimate

C = .712400 ± .000020

Combined Estimate?

C = .71240 ± .00001

OPEN PROBLEM:
What function truly describes the data?

Our data suggests OPT/sqrt(N) ≈

.71240 + a/N - b/N2 + O(1/N3),

a = .049 ± .004, b = .3 ± .2

(from fits for ranges [60,2000] and [100,2000])

But what about the range [3,30]?

(95% confidence intervals on data) – f(N),
3 ≤ N ≤ 30

Fit of a + b/N + c/N2 + d/N3 + e/N4 for
[3,30]

95% Confidence Intervals

To date, no good fit of any sort has been found.

Problem

• Combinatorial factors for small N may
make them unfittable:
– Only one possible tour for N = 3 (expected length

of optimal tour can be given in closed form)

– Only 3, 12, 60, 420, … possible tours for N = 4, 5,
6, 7, …, so statistical mechanics phenomena may
not yet have taken hold.

• So let’s throw out data for N < 12

Fit of a + b/N + c/N2 + d/N3 + e/N4 for
[12,2000]

Still Questionable…

99.7% confidence intervals on OPT/n,
10 ≤ n ≤ 30.

Unexplained Phenomenon: Rise and then Fall

Peaks at N = 17

2-Nearest Neighbor Bound (NNB)

Σ(½)(distances to nearest 2 cities)

NNB/(1 + 1/(8n))

Analytically (and ignoring lower order terms),

NNB = (.625) sqrt(N) / (1 + 1/(8N))

Random One-Tree Bound: Pick a
random city c, construct a minimum
spanning tree on the remaining cities
and add the edges joining c to its two
nearest neighbors.

Random Minimum One-Tree

2-Nearest Neighbor Bound

Optimal 2-Matching (cover by cycles with at least 3 edges)

Random Minimum One-Tree

2-Nearest Neighbor Bound

Optimal 2-Matching (cover by cycles with at least 3 edges)

Optimal

Optimal 2-Matching (cover by cycles with at least 3 edges)

Optimal

Subtour (Held-Karp)

“Explaining”
The Expected Optimal Tour Length

• The fraction of optimal tour edges that go to kth nearest
neighbor seems to be going to a constant ak for each k.

Fraction of Optimal Tour Edges

1st Neighbor (44.6%)

2nd Neighbor (26.0%)

3rd Neighbor (13.6%)

4th Neighbor (7.1%)

5th Neighbor (3.9%)

6th Neighbor (2.1%)

7th Neighbor (1.2%)

8th Neighbor (0.66%)

9th Neighbor (0.37%)

10th Neighbor (0.21%)

11th Neighbor (0.12%)

19th Neighbor (.00014%)

20th Neighbor (.00008%)

“Explaining”
The Expected Optimal Tour Length

• The fraction of optimal tour edges that go to kth nearest
neighbor seems to be going to a constant ak for each k.

• If dk is the expected distance to your kth nearest
neighbor, we then get (asymptotically)

OPTN ≈ ∑k(Nak)dk
• Or

OPTN/sqrt(N) ≈ ∑kak(dksqrt(N))

• dksqrt(N) also appears to go to a constant for each k

(√N)·(Average distance to kth Nearest Neighbor)

4th Neighbor
5th Neighbor

8th Neighbor

11th Neighbor

14th Neighbor

17th Neighbor

20th Neighbor

3rd Neighbor

2nd Neighbor

1st Neighbor

6th Neighbor

Hole in the Reasoning

Tour edges to kth nearest neighbors are

likely to be shorter than the average

distance to a kth nearest neighbor

Kth Nearest Neighbors
(Average length in optimal tour)/(Average length overall)

1st Neighbor

2nd Neighbor

3rd Neighbor

4th Neighbor

12th Neighbor

13th Neighbor

Suggests Balancing Phenomena

• Decrease in overall average distance to
kth nearest neighbor, approaching dk

from above

• Increase for each k in

(average length of tour edges to kth nearest neighbors)

(average distance to kth nearest neighbors overall)

• So how do these balance out?...

(√N)·(Average Length of kth Nearest Neighbor
Edges in Optimal Tour)

4th Neighbor

5th Neighbor

8th Neighbor

11th Neighbor

14th Neighbor

17th Neighbor

3rd Neighbor

2nd Neighbor

1st Neighbor

6th Neighbor

More Anomalies: Standard Deviations

• [Cerf et al., 1997] conjectured that the
standard deviation of OPT is asymptotic
to a constant.

• Our data appears to confirm this.

• But what about the WAY it converges?

Standard Deviation for OPT
(Fit to a + b/N)

Asymptotic Std Dev = .1883 ± .0004

Standard Deviations for OPT,
3 ≤ N ≤ 100

Anomaly in [7,17] ?

Optimal versus Held-Karp

Optimal

Held-Karp

Standard Deviation Comparisons

2-Nearest Neighbors

Fractional Matching

2-Matching

One-Tree

OPT

Held-Karp

Stop!

