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To the Students of the
2010 Microsoft School on Data Structures and Algorithms

Thanks for all your "Get Well" wishes. I am back in the USA now and
almost fully recovered. T am truly sorry I was unable to present my

Friday lectures and my Q&A session. I had been looking forward to
both.

Given that I missed the Q&A session, feel free to send me email if you
have any questions I might help you with (technical or otherwise). My
email address is dsj@research.att.com.

I hope these slides (and the Bin Packing slides T am also uploading) are
still of some value, even without the vocal commentary I would have
provided had I been able to give the talks. I still owe youa
bibliography, but you can find many of my own TSP and bin packing
papers at http://www.research.att.com/~dsj/, along with NP-
completeness columns and other goodies.

Best wishes to you all -- David Johnson, 18 August, 2010.



http://www.research.att.com/~dsj/
http://www.research.att.com/~dsj/
http://www.research.att.com/~dsj/

Special Request
2-Opt Animation: Nearest Neighbor Starting Tour




Special Bonus: Picture from Shaggier Times (~1976)

Bob Tarjan ' Mike Garey . David Johnson




And Now,

Back to the show.



For more on the TSP algorithm performance, see the website for the

DIMACS TSP Challenge:

http://www2.research.att.com/~dsj/chtsp/index.html/
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pla7397

| Percent over HK ‘ Normalized Seconds ‘ Implementation

| -0.5406 | 6.500 | AppHK-R-10F

| 0.5170 | 12.180 | AppHK-R-20F

| -0.3037 | 55150 | AppHK-R-20S

| < 0.0000 HK-bounds
| 0.0000 55.420 HK-ABCC

| 0.5806 | | Optval

| 0.5806 | 0272.040 | Helsgaun-N

| 0.5807 | 17197.710 | MLLKH-N

| 0.5861 | 1897.390 | ILK-NYYY-10N

| 0.5861 | 0163.720 | MLLKH-.5N

| 0.5000 | 1567.990 | Helsgaun-.1N

| 0.6016 | 1887.170 | ILK-NYYY-N-b10
| 0.6077 | 193.480 | ILK-NYYY-N

| 0.6078 | 1796.190 | MLLKH-.05N

| < 06116 | 8064.000 | ILK-JM-10N >
| 0.6305 | 3515.080 | ILK-IM-N-b10

| 0.7565 | 303.830 | ILK-JM-N

| 0.7606 | 120100 | ILK-TM-3N

| 0.7647 | 382240 | CLK-ABCC-N-b10
| 0.8204 | 60.230 | ILK-NYYY-Ng

| 0.8257 | 24460 | CLK-ACR-N

| 0.8343 | 33.610 | BSDP-10

| 0.8374 | 24.890 | BSDP-8

| 0.8422 | 23420 | BSDP-6

| 0.8478 | 331340 | CLK-ABCC-10N

| 0.8482 | 23.060 | CLK-ABCC-N.Sparc




Held-Karp (or "Subtour”) Bound

* Linear programming relaxation of the following
formulation of the TSP as an integer program:

* Minimize Zcify oairs {c,c'}(x{c,c'}d(cic'))
« Subject to
— e Xy = 2, forall c e C.
— 2iiscecs Xy 2 2, forall S < € (subtour constraints)

— O0<¢xpel for all pairs {c,c’} c C.

.

Linear programming relaxation



Percent by which Optimal Tour exceeds Held-Karp Bound
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Computing the Held-Karp Bound

Difficulty: Too many “subtour” constraints:

Yeescecs Xieey 22, forall S = C
(There are 2N-2 such S)

Fortunately, if any such constraint is violated by our current
solution, we can find such a violated constraint in polynomial time:

Suppose the constraint for S is violated by solution x. Consider
the graph G, where edge {c,c’} has capacity x;. ., . For any pair of
vertices (u,v),u € Sand v € C-S, the maximum flow from u to v is
less than 2 (and conversely).

Consequently, an S yielding a violated inequality can be found
using O(N) network flow computations, assuming such an
inequality exists.



Computing the Held-Karp Bound

Pick a city c. If the desired cut exists, there must be some
other city ¢’ such that the max flow from c to ¢’ is less than 2 (a
"small flow").

Test all candidates for ¢’ (N-1 flow computations)

If no small flows found, no subtour constraint is violated.
Otherwise, let c* be a ¢ with a small flow.

Initialize S to {c}.

For each other city ¢’ in turn, merge c' with all the cities in S
and test whether the flow from the merged vertex to c*
remains small.

— If yes,add c' to S.
— Otherwise, add ¢’ to C-S.
Once all N-2 candidates for ¢ have been tested, output S.

(Total fime can be reduced to that for a constant number of flow computations
using more algorithmic ideas.)
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Optimization: State of the Art

Lin-Kernighan [Johnson-McGeoch Implementation]
1.4% off optimal
10,000,000 cities in 46 minutes at 2.6 Ghz

Iterated Lin-Kernighan [J-M Implementation]
0.4% off optimal
100,000 cities in 35 minutes at 2.6 Ghz

Concorde Branch-and-Cut Optimization
[Applegate-Bixby-Chvatal-Cook]

Optimum

1,000 cities in median time 5 minutes at 2.66 Ghz



Concorde

"Branch-and-Cut"” approach exploiting linear programming to determine
lower bounds on optimal tour length.

Based on 30+ years of theoretical developments in the "Mathematical
Programming” community.

Exploits "chained” (iterated) Lin-Kernighan for its initial upperbounds.

Eventually finds an optimal four and proves its optimality (unless it
runs out of time/space).

Also can compute the Held-Karp lower bound for very large instances.

Executables and source code can be downloaded from
http://www.tsp.gatech.edu/



Geometric Interpretation

Hyperplane
perpendicular
to the vector
of edge lengths

o« Optimgl Tour

® -- Points in RN(N-1)/2 corresponding to a tour.



Optimal Tour is a point on the convex hull of
all fours.

«——Facet

A
A

Unfortunately, the LP relaxation of the TSP can be a very
pob? PRPRNGME RS YO CUIVERIRES GEYEUPs.




One Facet Class: Comb Inequalities

T1 T2 T3 TS-I TS

Teeth T, are disjoint, s is odd,
all regions contain at least one city.



| O | O ﬁ
JERE A T, T
« For Y the handle or a tooth, let x(Y) be the total
value of the edge variables for edges with one
endpoint in Y and one outside, when the function x
corresponds to a tour
By subtour inequalities, we must have x(Y) > 2 for

each such Y. It also must be even, which is exploited
to prove the comb inequality:

x(H) +Zs:x(Ti) >3s+1



Branch & Cut

« Use a heuristic to generate a initial "champion” tour
and provide provide an upper bound U > OPT.

 Let our initial "subproblem” consist of an LP with just
the inequalities of the LP formulation (or some subset
of them).

 Handle subproblems as follows:



Branch & Cut

Keep adding violated inequalities (of various sorts) that you can
find, until

— (a) LP Solution value > U. In this case we prune this case and
if no other cases are left, our current tour is optimal.

— (b) Little progress is made in the objective function. In this
case, for some edge {c,c’} with a fractional value, split into
two subproblems, one with x; ., fixed at 1 (must be in the

tour, and one with it fixed at O (must not be in the tour).

If we ever encounter an LP solution that is a tour and has length
L'<L,setL =L and let this new tour be the champion. Prune any
subproblems whose LP solution exceeds or equals L. If at any
point all your children are pruned, prune yourself.



x{a,b}:/ Wb} =1

U=97

Initial LP, U =100, LB =90

LB =92 LB =93
X{c,d} =0 X{C,d} =1 X{C(’C} =0 X{alc} =1
LB =92 LB =100 LB =98 LB =97
New Opt = 97
X{e,a} =0

LB =101




TSP History = hMilestones

¢

Home

TSP History

TSP in Pictures

= Milestones
459 cities
120 cities
318 cities
532 cities
BEE cities
239%2 cities
7397 cities
15112 cities
24978 cities

Bitliography

Travelling

Milestones in the Solution of TSP Instances

computer codes for the TSP have become increasingly more sophisticated over the wears. A
conspicuous sign of these improvements is the increasing size of nontrivial instances that have been
solved, moving from Dantzig, Fulkerson, and Johnson's solution of a 49-city problem in 1934 up

through the solution of a 24 978-city problem S0 yvears later.

Year Research Team Size of Instance Name

1954 G. Dantzig, RB. Fulkerson, and 5. Johnson 49 cities dantzigd 2
1971 M. Held and R.M. Karp G4 cities B4 randarn points
1975 P M. Camerini, L. Fratta, and F. Maffioli A7 cities 67 randaorn points
1977 M. Gratschel 120 cities griz2o

19580 H. Crowder and MW, Padberg 318 cities lin31a

1987 M. Padberg and G. Rinaldi 832 cities atts32

1987 M. Gritschel and O, Holland BEE Cities OreBe6

1987 M. Padberg and G. Rinaldi 2,392 cities prz23az
1994 D. Applegate, K. Bixby, . Chyvatal, and Wy, Cook 7,397 cities plavasy
1998 D. Applegate, K. Bixby, . Chyvatal, and W, Coalk 13,509 cities usa13509
2001 D Applegate, R Bixhy, % Chvatal, and W Cook 15 112 cities d15112
ogna D APplegate, R. Bixay, V. Chvatal, W. Cook, 24 978 cities -

and K. Helsgaun

Home | TSP History

Back
Last Updated: Jan 2005



Current World Record (2006)

Fesearch Team

® [David Applegate, ATET Labs - Research
& Hobert Bixby, ILOG and Rice Liniversity
® ‘Jasek Chyatal, Concordia University

® ‘William Cook, Geargia Tech
L
L
L

Daniel Espinoza, University of Chile
Warcos Goycoolea, Universidad Adolfo Ibanez
Keld Helsgaun, Roskilde University

e Ry g S

Using a parallelized version of the
i T
i

Concorde code, Helsgaun's 1 T L e T S
sophisticated variant on Iterated SR Y D i T 1 A A

Lin-Kernighan, and 2719.5 cpu-days +—H4w-——
N = 85,900

The optimal tour is 0.09% shorter than the tour DSJ constructed using Iterated Lin-Kernighan
in 1991. In 1986, when computers were much slower, we could only give the Laser Logic people a
Nearest-Neighbor tour, which was 23% worse, but they were quite happy with it...
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Concorde Asymptotics
[Hoos and Stitzle, 2009 draft]

» Estimated median running time for
planar Euclidean instances.

* Based on

— 1000 samples each for N = 500,600,...,2000
— 100 samples each for N = 2500, 3000,3500,4000,4500

— 2.4 Ghz AMD Opteron 2216 processors with IMB L2 cache
and 4 GB main memory, running Cluster Rocks Linux v4.2.1.

0.21-1.24194 N

Actual median for N = 2000: ~57 minutes, for N = 4,500: ~96 hours



Theoretical Properties of Random
Euclidean Instances

Expected optimal tour length for an N-city
instance approaches CVN for some constant
Cas N — oo, [Beardwood, Halton, and Hammersley, 1959]

Key Open Question:
What is the Value of C?



The Early History

1959: BHH estimated C ~ .75, based on hand solutions for a
202-city and a 400-city instance.

1977 Stein estimates C ~ .765, based on extensive simulations
on 100-city instances.

Methodological Problems:

« Not enough data
« Probably not true optima for the data there is

« Misjudges asymptopia
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What is the dependence on N ?

Expected distance to nearest neighbor proportional
to 1/VN, times n cities yields O(VN)

O(VN) cities close to the boundary are missing some
neighbors, for an added contribution proportional to

(VN)(1/9N), or 6(1)

A constant number of cities are close to two
boundaries (at the corners of the square), which may

add an additional ®(1/7N)
This yields target function

OPT/+N = C + B/AN + vy/N



Asymptotic Upper Bound Estimates
(Heuristic-Based Results Fitted to OPT/N =
C + B/N)

1989: Ong & Huang estimate C < .74, based on runs of
3-Opf.

1994: Fiechter estimates C < .73, based on runs of
“parallel tabu search”

1994: Lee & Choi estimate C < .721, based on runs of
“multicanonical annealing”

Still inaccurate, but converging?
Needed: A new idea.



New Idea (1995): Suppress the variance
added by the "Boundary Effect” by using

Toroidal Instances

» Join left boundary of the unit square to the
right boundary, top to the bottom.




Toroidal Unit Ball
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Toroidal Instance Advantages

* No boundary effects.

» Same asymptotic constant for E[OPT/N] as
for planar instances [Jaillet, 1992] (although
it is still only asymptotic).

 Lower empirical variance for fixed N.



Toroidal Approaches

1996: Percus & Martin estimate
C ~.7120 + .0002.

1996: Johnson, McGeoch, and Rothberg estimate
C~.7124 + .0002.

2004:. Jacobsen, Read, and Saleur estimate
C ~.7119.

Each coped with the difficulty of computing optima in a
different way.



Percus-Martin
(Go Small)

* Toroidal Instances with N < 100:

— 250,000 samples, N = 12,13,14,15,16,17
("Optimal” = best of 10 Lin-Kernighan runs)

— 10,000 samples with N = 30
("Optimal” = best of 5 runs of 10-step-Chained-LK)

— 6,000 samples with N = 100
("Optimal” = best of 20 runs of 10-step-Chained-LK)

* Fit to OPT/VN = (C + a/N + b/N?2)/(1+1/(8N))

(Normalization by the expected distance to the kth nearest neighbor)



Jacobsen-Read-Saleur
(Go Narrow)

Cities go uniformly on a 1 x 100,000 cylinder - that is,
only join the top and bottom of the unit square and
stretch the width by a factor of 100,000.

For W=12345,6, set N=100,000W and generate 10
sample instances.

Optimize by using dynamic programming, where only
those cities within distance k of the frontier (~kw
cities) can have degree Oor 1, k=456,7,8.

Estimate true optimal for fixed W as k — oo.

Estimate unit square constant as W — o,
With N > 100,000, assume ho need for asymptotics in N



Johnson-McGeoch-Rothberg
(Go Held-Karp)

« QObserve that

— the Held-Karp (subtour) bound also has an asymptotic
constant, i.e., HK/\n — C,, [Goemans, 1995], and is
easier to compute than the optimal.

— (OPT-HK)/"N has a substantially lower variance than
either OPT or HK.

+ Estimate

— C, ¢ based on instances from N=100 to 316,228, using
heuristics and Concorde-based error estimates

— (C- C¢) based on instances with N = 100, 316, 1000, using
Concorde for N < 316 and Iterated Lin-Kernighan plus
Concorde-based error estimates for N = 1000.



Modern Approach: Use Concorde

 Can compute true optima and Held-Karp for Toroidal as
well as Euclidean.

» Faster for Toroidal than for Euclidean.
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Optimal Tour Lengths:
One Million 100-City Instances

y | N

-le+Q7 -5e+06 0 +He+06

Optimal Tour Lengths Appear to Be Normally Distributed



Optimal Tour Lengths:
One Million 1000-City Instances

e

y

-1le+Q7 -5e+06

+He+06

With a standard deviation that appears to be independent of N



The New Data

e Solver:

— Latest (2003) version of Concorde with a
few bug fixes and adaptations for new metrics

* Primary Random Number Generator:

— RngStream package of Pierre L'Ecuyer,
described in

« "AN OBJECT-ORIENTED RANDOM-NUMBER PACKAGE
WITH MANY LONG STREAMS AND SUBSTREAMS,”
Pierre L'ecuyer, Richard Simard, E. Jack Chen, W. David
Kelton, Operations Research 50:6 (2002), 1073-1075



Toroidal Instances

Number of

Number of Cities Instances OPT HK
N=3,4,.,49,50 1,000,000 | X X
N = 60, 70, 80, 90, 100 1,000,000 | X X
N = 200, 300, ..., 1,000 1,000,000 | X X
N = 110, 120, ..., 1,900 10000 | X X
N = 2,000 100,000 | X X
N = 2,000, 3,000, .., 10,000 1,000,000 X
N = 100,000 1,000 X
N = 1,000,000 100 X




Euclidean Instances

Number of

Number of Cities OPT HK
Instances

N=3,4,..,49, 50 1,000,000 X X
N = 60, 70, 80, 90, 100 1,000,000 | X X
N = 110, 120, ..., 1,000, 2,000 10,000| X X
N =1,100, 1,200 ..., 10,000 10,000 X
N = 20,000, 30,000, ..., 100,000 10,000 X
N = 1,000,000 1,000 X




Standard Deviations

D.025
0.02
0D.015 -
W EucOpt
B TorOpt
Euchiff
B TorDiff
0.01 -
D.005 -
|:| a

N = 100 N =1,000



99% Confidence Intervals for OPT/AN
for Euclidean and Toroidal Instances
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99% Confidence Intervals for (OPT-HK)/vVN
for Euclidean and Toroidal Instances
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Gnuplot Least Squares fit for the Percus-Martin
values of N -- OPT/N = (€ + a/N + b/N2)/(1+1/(8N))

0,7142

"tnrapt,percus“ uzing 1:2:(2.5?*$3} ——
Flz) —

0,714

0,718

0,713

0,7134

07132

0,713

0,7128

07126

07124 F

07122

20 40 B0 a0 100

C=.712234 + 00017 versus originally claimed C = .7120 + .0002



Least Squares fit for all data from
[12,100] -- OPT/WN = (C + a/N + b/N?)

0.7142

0,7138

i "tnrnpt:ac" usin9'1:2:(2.5?*%3} —
Flx) —

0,713 F
07134
0,7132 F

0,713

07128

20 0 40 G EQ il an a0 100

C=.712333 + .00006 versus C=.712234 +.00017



Least Squares fit for all data from
[30,2000] -- OPT/WN = (C + a/N + b/N2)

0,7138
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Flu) —
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C =.712401 + .000005 versus C=.712333 + .00006



What is the right function?

Power Series in 1/N - the Percus-Martin Choice

Range of N Function | C___|Confidence

[30,2000] C+a/N +b/N? 712401  + 000005
[100,2000] C+a/N + b/Nz? 712403  +.000010
[100,2000] C+a/N 712404  + .000006

Justification: Expected distance to the k™ nearest
neighbor is provably such a power series.



What is the right function?

OPT/sqrt(N) = Power Series in 1/sqrt(N))

Range of N

[100,2000] C +a/N°> 712296  +.000015
[100,2000] C +a/N% +b/N 712403  +.000030
[100,2000] C +a/N%> +b/N + ¢/N!> 712424  +.000080

Justification: This is what we saw in the planar
Euclidean case (although it was caused by boundaries).



What is the right function?

OPT = (1/sqrt(N) - (Power Series in 1/N)

Range of N

[100,2000] C +a/N°> 712296  +.000015
[100,2000] C+a/N°%>+ b/N!> 712366  +.000022
[100,2000] C+a/N%> + b/N!> +¢c/N2> 712385  +.000040

Justification: Why not?



What is the right function?

Range of N Function | C___|Confidence

[30,2000] C +a/N +b/N2 712401  + .000005
[100,2000] C +a/N + b/N2 712403  +.000010
[100,2000] C +a/N 712404  + 000006
[100,2000] € + a/NO5 712296  + 000015
[100,2000] C + a/NO°5 + b/N 712403  +.000030
[100,2000] C + a/NO5 + b/N + ¢/NL5 712424  + 000080
[100,2000] C +a/NO05 + b/NL5 712366  +.000022
[100,2000] € +a/No5 + b/N!5 + ¢/N25 712385  + 000040




Effect of Data Range on Estimate
[30,2000], [60,2000], [100,2000], [200,2000], [100,1000]

0,7126

i ' 'Functl"uaing 12243 ——
| 95% Confidence
Intervals
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ol oy ] l }H l
] Tl b
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0.7122 | I

0.71215 | C + a/n® + b/nld +c/n25
0.7121 |

0, 71205




0,71246

0,71244 |

0,71242

0,714

0,71233

0,71236

0.71234

The Winners?

C + a/n

‘Functl using 1:2:3 ——
ol2d —

+ b/n2 + c/n3

C =.71240 + .0000@5




Question

Does the HK-based approach
agree?



C,y = 707980 + .000003

0,7034 —
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95% confidence interval derived using C + a/N + b/N? functional
form



C-C,y = 004419 + 000002
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95% confidence interval derived using C + a/N + b/N? functional
form



HK-Based Estimate

C-C,=.004419 + .000002
+ Cp=.707980 * .000003
€=.712399 * .000005

Versus (Conservative) Opt-Based Estimate
C=.712400 * .000020

Combined Estimate?
C=.71240 * .00001



OPEN PROBLEM:
What function truly describes the data?

Our data suggests OPT/sqrt(N) =

71240 + a/N - b/N2 + O(1/N3),
a=.049+ 004  b=3%.2

(from fits for ranges [60,2000] and [100,2000])

But what about the range [3,30]?



(95% confidence intervals on data) - f(N),
3<N<30
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Fit of a+ b/N + ¢/N2 + d/N3 + e/N* for
[3,30]

0.0025 "toropt,ac Using 1:($2—F(§1}}:(2*$3% ——
0,002 | } 95% Confidence Intervals
0,0015 |
0,001 }
0,0005 | } } } }
- 1
0 i1 thy
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~0,0015 : : : : : :
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To date, no good fit of any sort has been found.



Problem

» Combinatorial factors for small N may
make them unfittable:

— Only one possible tour for N = 3 (expected length
of optimal tour can be given in closed form)

— Only 3, 12, 60, 420, ... possible tours for N=4, 5,
6,7, .., so statistical mechanics phenomena may
not yet have taken hold.

e So let's throw out data for N < 12



Fit of a+ b/N + ¢/N2 + d/N3 + e/N* for
[12,2000]
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Still Questionable...



Unexplained Phenomenon: Rise and then Fall

0,7145 =

tordatag' using 1:2:($3/333) ——
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] Peaks at N =17
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99.7% confidence intervals on OPT/+n,
10 < n< 30.
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g = =1

U 'tArmeighborZ’ using 1121(ZFER)
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0, bE4
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Random One-Tree Bound: Pick a
random city ¢, construct a minimum
spanning tree on the remaining cities
and add the edges joining ¢ to its two
nearest neighbors.
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"Explaining”
The Expected Optimal Tour Length

* The fraction of optimal tour edges that go to k'™ nearest

neighbor seems to be going to a constant q, for each k.



Fraction of Optimal Tour Edges
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"Explaining”
The Expected Optimal Tour Length

* The fraction of optimal tour edges that go to k'™ nearest
neighbor seems to be going to a constant q, for each k.

« If d, is the expected distance to your k' nearest
neighbor, we then get (asymptotically)

OPTy » Zk(Nak)dk

* Or
OPTN/Sqr'T(N) ~ Zkak(dksqrf(N))

« d,sqrt(N) also appears to go to a constant for each k



(/N)-(Average distance to k™ Nearest Neighbor)
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Hole in the Reasoning

Tour edges to k" nearest neighbors are
likely to be shorter than the average
distance to a k" nearest neighbor



Kth Nearest Neighbors

(Average length in optimal tour)/(Average length overall)
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Suggests Balancing Phenomena

* Decrease in overall average distance to
k'™ nearest neighbor, approaching d,
from above

* ITncrease for each k in

(average length of tour edges to k™ nearest neighbors)

(average distance to k™ nearest neighbors overall)

* So how do these balance out?...



(/N)-(Average Length of k™ Nearest Neighbor
Edges in Optimal Tour)
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More Anomalies: Standard Deviations

* [Cerf et al., 1997] conjectured that the
standard deviation of OPT is asymptotic
to a constant.

* Our data appears to confirm this.
* But what about the WAY it converges?



Standard Deviation for OPT
(Fit to a + b/N)
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Asymptotic Std Dev = .1883 + .0004



Standard Deviations for OPT,
3 <N <100

' using 1':8 +
Finy —

Anomaly in [7,17] ?




Optimal versus Held-Karp
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Standard Deviation Comparisons
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Stop!



