
Balanced Search Trees

Robert Tarjan, Princeton University & HP Labs

(Joint work with Bernhard Haeupler and Siddhartha Sen)

Searching: Dictionary Problem

Maintain a set of items, so that

Access: find a given item

Insert: add a new item

Delete: remove an item

are efficient

Assumption: items are totally ordered, so that
binary comparison is possible

Balanced Search Trees

AVL trees

red-black trees

weight balanced trees

binary B-trees

2,3 trees

B trees

etc.

multiway

binary

Topics

• Rank-balanced trees [WADS 2009]

Example of exploring the design space

• Ravl trees [SODA 2010]

Example of an idea from practice

• Splay trees [Sleator & Tarjan 1983]

Rank-Balanced Trees

Exploring the design space…

Joint work with B. Haeupler and S. Sen

Problem with BSTs: Imbalance

How to bound the height?

• Maintain local balance condition,
rebalance after insert or delete
balanced tree

• Restructure after each access
self-adjusting tree

Store balance information in nodes,
guarantee O(log n) height

After insert/delete, restore balance
bottom-up (top-down):

• Update balance information

• Restructure along access path

a

b

c

d

e

f

6

7

Restructuring primitive: Rotation

Preserves symmetric order

Changes heights

Takes O(1) time

y

x

A B

C

x

y

B C

A

right

left

Known Balanced BSTs

AVL trees

red-black trees

weight balanced trees

binary B-trees

etc.

Goal: small height, little rebalancing, simple
algorithms

 small height

 little rebalancing

Ranked Binary Trees

Each node has an integer rank

Convention: leaves have rank 0, missing nodes have
rank -1

rank difference of a child =
rank of parent  rank of child

i-child: node of rank difference i
i,j-node: children have rank differences i and j

10

Example of a ranked binary tree

If all rank differences are positive, rank  height

1f

1 1e

d

b

2

a c 11

1

0 0 0

1

11

Rank-Balanced Trees

AVL trees: every node is a 1,1- or 1,2-node

Rank-balanced trees: every node is a 1,1-, 1,2-, or 2,2-
node (rank differences are 1 or 2)

Red-black trees: all rank differences are 0 or 1, no 0-
child is the parent of another

Each needs one balance bit per node.

12

Basic height bounds

nk = minimum n for rank k

AVL trees:

n0 = 1, n1 = 2, nk = nk-1 + nk-2 + 1

nk = Fk+3 - 1  k  log n  1.44lg n

Rank-balanced trees:

n0 = 1, n1 = 2, nk = 2nk-2,

nk = 2k/2 k  2lg n

Same height bound for red-black trees

Fk = kth Fibonacci number

 = (1 + 5)/2

Fk+2 > k

Rank-balanced trees: Insertion

A new leaf q has a rank of zero

If the parent p of q was a leaf before, q is a 0-
child and violates the rank rule

14

Insertion Rebalancing

Non-terminal

1

2

15

>

e

d

2

Insert e

0

0

1

1

c

b
>

a

1

>
Rotate left at d

Insertion example

Demote c0

0

01 Promote d

16

01 e

2

1

1d

b

a

c

2

Insertion example

Insert eInsert f

>

>

>

f 0

2

1

0 Rotate left at d

Demote b

1

0 0

0

0

1

2

Promote e

Promote d

17

1

Insert f

f

1 1e

d

b

2

Insertion example

a c 11

1

0 0 0

1

Rank-balanced trees: Deletion

If node has two children, swap with symmetric-
order successor or predecessor

Becomes a leaf (just delete) or node with one child
(replace with child)

If node q replaces the deleted node and p is its
parent, a violation occurs if p is a leaf of rank
one or q is a 3-child

19

Deletion Rebalancing

Non-terminal

20

210 def

e

Delete aDelete fDelete d

1

Swap with successor

Delete

1f

1

d

b

2

Deletion example

a c 11

1

0 0 0

Double rotate at c
Double promote c

Demote b

Double demote e

21

e

c

b

Delete f

Deletion example

20 20

2

Rebalancing Time

Theorem. A rank-balanced tree built by m
insertions and d deletions does at most 3m + 6d
rebalancing steps.

Proof idea: Make non-terminating cases release
potential

Proof. Define the potential of a node:

1 if it is a 1,1-node
2 if it is a 2,2-node
Zero otherwise

Potential of tree = sum of potentials of nodes

Non-terminating steps are free

Terminating steps increase potential by O(1)

25

Rank-Balanced Trees

height  2lg n

 2 rotations per rebalancing

O(1) amortized rebalancing
time

Red-Black Trees

height  2lg n

 3 rotations per rebalancing

O(1) amortized rebalancing
time

Tree Height

Sequential Insertions:

rank-balanced red-black

height = lg n (best) height = 2lg n (worst)

26

Tree Height

Theorem 1. A rank-balanced tree built by m
insertions intermixed with arbitrary deletions
has height at most log m.

If m = n, same height as AVL trees

Overall height is min{2lg n, log m}

Proof idea: Exponential potential function

Exploit the exponential structure of the tree

Proof. Give a node a count of 1 when inserted.
Define the potential of a node:

Total count in its subtree

When a node is deleted, add its count to parent

k = minimum potential of a node of rank k

Claim:

0 = 1, 1 = 2, k = 1 + k-1 + k-2 for k > 1

 m  Fk+3  1  k

Show that k = 1 + k-1 + k-2 for k > 1

Easy to show for 1,1- and 1,2-nodes

Harder for 2,2-nodes (created by deletions)

But counts are inherited

Rebalancing Frequency

How high does rebalancing propagate?

O(m + d) rebalancing steps total, which implies

 O((m + d)/k) insertions/deletions at rank k

Actually, we can show something much stronger

31

Rebalancing Frequency

Theorem. In a rank-balanced tree built by m
insertions and d deletions, the number of
rebalancing steps of rank k is at most
O((m + d)/2k/3).

Good for concurrent workloads

Proof. Define the potential of a node of rank k:

bk if it is a 1,1- or 2,2-node
bk2 if it is a 1,2-node

where b = 21/3

Potential change in non-terminal steps
telescopes

Combine this effect with initialization and
terminal step

34

0

01

1

0

0

1

11

1 2

2

2

2

0 1

1

1

bkbk-1 -

bk+1bk -

bk+2bk+1 -

bk+3bk+2 -

0

 = -bk+3

Telescoping potential:

35

Truncate growth of potential at rank k  3:

Nodes of rank < k3 have same potential

Nodes of rank  k3 have potential as if rank k3

Rebalancing step of rank k reduces the potential
by bk3

Same idea should work for red-black trees
(we think)

Summary

Rank-balanced trees are a relaxation of AVL
trees with behavior theoretically as good as red-
black trees and better in important ways.

Especially height bound of min{2lg n, log m}

Exponential potential functions yield new
insights into the efficiency of rebalancing

Ravl Trees

An idea from practice…

Joint work with S. Sen

Balanced Search Trees

AVL trees
rank-balanced trees
red-black trees
weight balanced trees
Binary B-trees
2,3 trees
B trees
etc.

Common problem: Deletion is a pain!

multiway

binary

Deletion in balanced search trees

Deletion is problematic

– May need to swap item with its successor/
predecessor

– Rebalancing is more complicated than during
insertion

– Synchronization reduces available parallelism
[Gray and Reuter]

Example: Rank-balanced trees

Non-terminal

Synchronization 

Deletion rebalancing: solutions?

Don’t discuss it!

– Textbooks

Don’t do it!

– Berkeley DB and other database systems

– Unnamed database provider…

Storytime…

Deletion Without Rebalancing

Is this a good idea?

Empirical and average-case analysis suggests yes for
B+ trees (database systems)

How about binary trees?

Failed miserably in real application with red-black trees

No worst-case analysis, probably because of
assumption that it is very bad

We present such balanced search trees, where:
– Height remains logarithmic in m, the number of

insertions
– Amortized time per insertion or deletion is O(1)
– Rebalancing affects nodes exponentially infrequently

in their heights

Binary trees: use (loglog m) bits of balance
information per node

Red-black, AVL, rank-balanced trees use only one bit!

Similar results hold for B+ trees, easier [ISAAC 2009]

Deletion Without Rebalancing

45

Ravl(relaxed AVL) Trees

AVL trees: every node is a 1,1- or 1,2-node

Rank-balanced trees: every node is a 1,1-, 1,2-, or 2,2-
node (rank differences are 1 or 2)

Red-black trees: all rank differences are 0 or 1, no 0-
child is the parent of another

Ravl trees: every rank difference is positive
Any tree is a ravl tree; efficiency comes from design of
operations

Ravl trees: Insertion

Same as rank-balanced trees (AVL trees)!

Insertion Rebalancing

Non-terminal

Ravl trees: Deletion



If node has two children, swap with symmetric-
order successor or predecessor. Delete.
Replace by child.

Swapping not needed if all data in leaves
(external representation).

49

210 def

e

Delete aDelete fDelete d

1

Swap with successor

Delete

1f

1

d

b

2

Deletion example

a c 11

1

0 0 0

Insert g

50

e

1b

2

Deletion example

c 1

1

0

>

g 20

Tree Height

Theorem 1. A ravl tree built by m insertions
intermixed with arbitrary deletions has height at
most log m.

Compared to standard AVL trees:

If m = n, height is the same

If m = O(n), height within an additive constant

If m = poly(n), height within a constant factor

2/)51(

Proof idea: exponential potential function

Exploit the exponential structure of the tree

Proof. Let Fk be the kth Fibonacci number.
Define the potential of a node of rank k:

Fk+2 if it is a 0,1-node
Fk+1 if it has a 0-child but is not a 0,1-node
Fk if it is a 1,1 node
Zero otherwise

Potential of tree = sum of potentials of nodes

Recall: F0 = 1, F1 = 1, Fk = Fk1 + Fk2 for k > 1

Fk+2 > k

Proof. Let Fk be the kth Fibonacci number.
Define the potential of a node of rank k:

Fk+2 if it is a 0,1-node
Fk+1 if it has a 0-child but is not a 0,1-node
Fk if it is a 1,1 node
Zero otherwise

Deletion does not increase potential

Insertion increases potential by  1, so total
potential is  m  1

Rebalancing steps don’t increase the potential

Consider a rebalancing step of rank k:

Fk+1 + Fk+2 Fk+3 + 0

0 + Fk+2 Fk+2 + 0

Fk+2 + 0 0 + 0

Consider a rebalancing step of rank k:

Fk+1 + 0 Fk + Fk-1

Consider a rebalancing step of rank k:

Fk+1 + 0 + 0 Fk + Fk-1 + 0

If rank of root is r, there was a promotion of rank
k that did not create a 1,1-node, for 0 < k < r1

Total decrease in potential:

Since potential is always non-negative:

23

1

2

 





 r

r

k
k FF

r
rr

r

FFm

Fm









23

3

1

21

Rebalancing Frequency

Theorem 2. In a ravl tree built by m insertions
intermixed with arbitrary deletions, the number
of rebalancing steps of rank k is at most

 O(1) amortized rebalancing steps

./)1(/)1(2 k
k mFm 

Proof. Truncate the potential function:

Nodes of rank < k have same potential

Nodes of rank  k have zero potential
(with one exception for rank = k)

Deletion does not increase potential

Insertion increases potential by  1, so total
potential is  m  1

Rebalancing steps don’t increase the potential

Proof. Truncate the potential function:

Nodes of rank < k have same potential

Nodes of rank  k have zero potential
(with one exception for rank = k)

Step of rank k preceded by promotion of rank
k  1, which reduces potential by:

Fk+1 if stop or promotion at rank k

Fk+1  Fk1 = Fk if (double) rotation at rank k

Potential can decrease by at most (m1)/Fk

Disadvantage of Ravl Trees?

Tree height may be (log n)

Only happens when ratio of deletions to
insertions approaches 1, but may be a concern
for some applications

Address by periodically rebuilding the tree

Periodic Rebuilding

Rebuild the tree (all at once or incrementally)
when rank r of root ( tree height) is too high

Rebuild when r > log n + c for fixed c > 0:

Rebuilding time is O(1/(c  1)) per deletion

Then tree height is always log n + O(1)

Constant bits?

Ravl tree stores (loglog n) balance bits per node

Various methods that use O(1) bits fail (see
counterexamples in paper)

Main problem: deletion can increase the ranks of
nodes; if we force all deletions to occur at leaves,
then an O(1)-bit scheme exists

But now a deletion may require multiple swaps

Summary

Deletion without rebalancing in binary trees has
good worst-case properties, including:

– Logarithmic height bound

– Exponentially infrequent node updates

With periodic rebuilding, can maintain height
logarithmic in n

Open problem: Requires (loglog n) balance
bits per node?

Experiments

Preliminary Experiments

Compared three trees that achieve O(1)
amortized rebalancing time

– Red-black trees

– Rank-balanced trees

– Ravl trees

Performance in practice depends on the
workload!

Preliminary Experiments

213 nodes, 226 operations

No periodic rebuilding in ravl trees

Test Red-black trees Rank-balanced trees Ravl trees

rots
 106

bals
 106

avg.
pLen

max.
pLen

rots
 106

bals
 106

avg.
pLen

max.
pLen

rots
 106

bals
 106

avg.
pLen

max.
pLen

Random 26.44 116.07 10.47 15.63 29.55 133.74 10.39 15.09 14.32 80.61 11.11 16.75

Queue 50.32 285.13 11.38 22.50 50.33 184.53 11.20 14.00 33.55 134.22 11.38 14.00

Working
set

41.71 185.35 10.51 16.18 43.69 159.69 10.45 15.35 28.00 119.92 11.20 16.64

Static
Zipf

25.24 112.86 10.41 15.46 28.27 130.93 10.34 15.05 13.48 78.03 11.12 17.68

Dynamic
Zipf

23.18 103.48 10.48 15.66 26.04 125.99 10.40 15.16 12.66 74.28 11.11 16.84

Preliminary Experiments

rank-balanced: 8.2% more rots, 0.77% more bals

ravl: 42% fewer rots, 35% fewer bals

Test Red-black trees Rank-balanced trees Ravl trees

rots
 106

bals
 106

avg.
pLen

max.
pLen

rots
 106

bals
 106

avg.
pLen

max.
pLen

rots
 106

bals
 106

avg.
pLen

max.
pLen

Random 26.44 116.07 10.47 15.63 29.55 133.74 10.39 15.09 14.32 80.61 11.11 16.75

Queue 50.32 285.13 11.38 22.50 50.33 184.53 11.20 14.00 33.55 134.22 11.38 14.00

Working
set

41.71 185.35 10.51 16.18 43.69 159.69 10.45 15.35 28.00 119.92 11.20 16.64

Static
Zipf

25.24 112.86 10.41 15.46 28.27 130.93 10.34 15.05 13.48 78.03 11.12 17.68

Dynamic
Zipf

23.18 103.48 10.48 15.66 26.04 125.99 10.40 15.16 12.66 74.28 11.11 16.84

Preliminary Experiments

rank-balanced: 0.87% shorter apl, 10% shorter mpl

ravl: 5.6% longer apl, 4.3% longer mpl

Test Red-black trees Rank-balanced trees Ravl trees

rots
 106

bals
 106

avg.
pLen

max.
pLen

rots
 106

bals
 106

avg.
pLen

max.
pLen

rots
 106

bals
 106

avg.
pLen

max.
pLen

Random 26.44 116.07 10.47 15.63 29.55 133.74 10.39 15.09 14.32 80.61 11.11 16.75

Queue 50.32 285.13 11.38 22.50 50.33 184.53 11.20 14.00 33.55 134.22 11.38 14.00

Working
set

41.71 185.35 10.51 16.18 43.69 159.69 10.45 15.35 28.00 119.92 11.20 16.64

Static
Zipf

25.24 112.86 10.41 15.46 28.27 130.93 10.34 15.05 13.48 78.03 11.12 17.68

Dynamic
Zipf

23.18 103.48 10.48 15.66 26.04 125.99 10.40 15.16 12.66 74.28 11.11 16.84

Ongoing/future experiments

Trees:
– AVL trees

– Binary B-trees (Sedgewick’s implementation)

Deletion schemes:
– Lazy deletion (avoids swapping, uses extra space)

Tests:
– Real workloads!

– Degradation over time

The End

