Balanced Search Trees

Robert Tarjan, Princeton University & HP Labs

(Joint work with Bernhard Haeupler and Siddhartha Sen)

Searching: Dictionary Problem

Maintain a set of items, so that

Access: find a given item
Insert: add a new item
Delete: remove an item

are efficient

Assumption: items are totally ordered, so that
binary comparison is possible

Balanced Search Trees

AVL trees)
red-black trees
weight balanced trees
binary B-trees
2,3 trees }

multiway
B trees
etc.

>~ binary

—/

Topics

 Rank-balanced trees [WADS 2009]

Example of exploring the design space

e Ravl trees [SODA 2010]

Example of an idea from practice

* Splay trees [Sleator & Tarjan 1983]

Rank-Balanced Trees

Exploring the design space...

Joint work with B. Haeupler and S. Sen

Problem with BSTs: Imbalance

How to bound the height?

* Maintain local balance condition,
rebalance after insert or delete
balanced tree

e Restructure after each access
self-adjusting tree

Store balance information in nodes,
guarantee O(log n) height

After insert/delete, restore balance
bottom-up (top-down):

* Update balance information

e Restructure along access path

Restructuring primitive: Rotation

right
(] a — a ()
%

ANVA /o\ /o)

Preserves symmetric order
Changes heights
Takes O(1) time

Known Balanced BSTs

AVL trees — small height
red-black trees - little rebalancing
weight balanced trees

binary B-trees

etc.

Goal: small height, little rebalancing, simple
algorithms

Ranked Binary Trees

Each node has an integer rank

Convention: leaves have rank 0, missing nodes have
rank -1

rank difference of a child =
rank of parent — rank of child

i-child: node of rank difference i
i,j-node: children have rank differencesiand

Example of a ranked binary tree

If all rank differences are positive, rank > height

10

Rank-Balanced Trees

AVL trees: every node isa 1,1- or 1,2-node

4 N
Rank-balanced trees: every nodeisa 1,1-, 1,2-, or 2,2-

node (rank differences are 1 or 2)
_ J

Red-black trees: all rank differences are O or 1, no O-
child is the parent of another

Each needs one balance bit per node.

11

Basic height bounds

n, = minimum n for rank k

AVL trees:
ng=1,n,=2,n.=n,,+n,,+1
n=Fu3-1=k<log,n=144lgn

F. = k™ Fibonacci number

¢ = (1+5)/2
no=1,n,=2,n,=2n,, Fo> o

Rank-balanced trees:

n,=2k21=k<2lgn

Same height bound for red-black trees

Rank-balanced trees: Insertion

A new leaf g has a rank of zero

If the parent p of g was a leaf before, g is a O-
child and violates the rank rule

Insertion Rebalancing

2
101'2
()1 ()1 —>

Non-terminal

Insertion example

1 Demote c

Rodptetiefd at d

Insert e 0“’

15

Insertion example

Insert £

16

Insertion example

Insert f

Rank-balanced trees: Deletion

If node has two children, swap with symmetric-
order successor or predecessor

Becomes a leaf (just delete) or node with one child
(replace with child)

If node g replaces the deleted node and p is its
parent, a violation occurs if p is a leaf of rank
one or g is a 3-child

Deletion Rebalancing

%
(p)lor2
(s)2 Lor2

Non-terminal

19

Delete fi

Deletion example

Double rotate at ¢
Double promote ¢

20

Deletion example

Delete f

Rebalancing Time

Theorem. A rank-balanced tree built by m
insertions and d deletions does at most 3m + 6d
rebalancing steps.

Proof idea: Make non-terminating cases release
potential

5
Q lor2 Q lor2 Q Oor 1
(1 ()1 —> ()0 ()1 —> (1 (5)2

.
lor2 /) ’ \

Q lor2 201‘3
(s)2 (HDlor2 —> (s)2 (g)20r3 —> (s)1 (q)1lor2

Proof. Define the potential of a node:

1 ifitisa 1,1-node
2 if itisa 2,2-node
Zero otherwise

Potential of tree = sum of potentials of nodes

Non-terminating steps are free
Terminating steps increase potential by O(1)

Rank-Balanced Trees

height <2lgn

< 2 rotations per rebalancing

O(1) amortized rebalancing
time

Red-Black Trees

height <2lgn
< 3 rotations per rebalancing

O(1) amortized rebalancing
time

Tree Height

Sequential Insertions:

rank-balanced red-black

height = Ig n (best) height = 2lg n (worst)

Tree Height

Theorem 1. A rank-balanced tree built by m

insertions intermixed with arbitrary deletions
has height at most log , m.

If m = n, same height as AVL trees
Overall height is min{2Ig n, log , m}

Proof idea: Exponential potential function

Exploit the exponential structure of the tree

Proof. Give a node a count of 1 when inserted.
Define the potential of a node:

Total count in its subtree

When a node is deleted, add its count to parent

@, = minimum potential of a node of rank k

Claim:
O,=1, D, = 2,[(Dk =1+®, , + D, fork> 1]

Show that ®, =1+ ®, , + D, , fork>1
Easy to show for 1,1- and 1,2-nodes

Harder for 2,2-nodes (created by deletions)

But counts are inherited

Rebalancing Frequency

How high does rebalancing propagate?
O(m + d) rebalancing steps total, which implies
= O((m + d)/k) insertions/deletions at rank k

Actually, we can show something much stronger

Rebalancing Frequency

Theorem. In a rank-balanced tree built by m
insertions and d deletions, the number of

rebalancing steps of rank k is at most
O((m + d)/2K73).

Good for concurrent workloads

Proof. Define the potential of a node of rank k:

b ifitisa 1,1- or 2,2-node
b 2 ifitisa 1,2-node

where b = 21/3

Potential change in non-terminal steps
telescopes

Combine this effect with initialization and
terminal step

Telescoping potential:

34

Truncate growth of potential at rank k — 3:
Nodes of rank < k—3 have same potential
Nodes of rank > k—3 have potential as if rank k-3

Rebalancing step of rank k reduces the potential
by pk=3

Same idea should work for red-black trees
(we think)

Summary

Rank-balanced trees are a relaxation of AVL
trees with behavior theoretically as good as red-
black trees and better in important ways.

Especially height bound of min{2lg n, log, m}

Exponential potential functions yield new
insights into the efficiency of rebalancing

Ravl Trees

An idea from practice...

Joint work with S. Sen

Balanced Search Trees

AVL trees
rank-balanced trees
red-black trees " binary
weight balanced trees
Binary B-trees

2,3 trees?r |
multiway

B trees
etc.

Common problem: Deletion is a pain!

Deletion in balanced search trees

Deletion is problematic

— May need to swap item with its successor/
predecessor

— Rebalancing is more complicated than during
Insertion

— Synchronization reduces available parallelism
[Gray and Reuter]

Example: Rank-balanced trees
- p

% % %
Q lor2 Q lor2 201‘3
(s)2 (QPlor2 —> ()2 (92013 —> ()1 (g)lor2

Non-terminal

Synchronization ®

Deletion rebalancing: solutions?

Don’t discuss it!
— Textbooks

Don’t do it!

— Berkeley DB and other database systems
— Unnamed database provider...

Storytime...

Deletion Without Rebalancing

Is this a good idea?

Empirical and average-case analysis suggests yes for
B+ trees (database systems)

How about binary trees?
Failed miserably in real application with red-black trees

No worst-case analysis, probably because of
assumption that it is very bad

Deletion Without Rebalancing

We present such balanced search trees, where:

— Height remains logarithmic in m, the number of
insertions

— Amortized time per insertion or deletion is O(1)

— Rebalancing affects nodes exponentially infrequently
in their heights

Binary trees: use Q)(loglog m) bits of balance
information per node

Red-black, AVL, rank-balanced trees use only one bit!

Similar results hold for B* trees, easier [ISAAC 2009]

Ravl(relaxed AVL) Trees

AVL trees: every node isa 1,1- or 1,2-node

Rank-balanced trees: every nodeisa 1,1-, 1,2-, or 2,2-
node (rank differences are 1 or 2)

Red-black trees: all rank differences are O or 1, no O-
child is the parent of another

. . : L
Ravl trees: every rank difference is positive

Any tree is a ravl tree; efficiency comes from design of
operations

Ravl trees: Insertion

Same as rank-balanced trees (AVL trees)!

Insertion Rebalancing

Non-terminal

Ravl trees: Deletion

©

If node has two children, swap with symmetric-
order successor or predecessor. Delete.
Replace by child.

Swapping not needed if all data in leaves
(external representation).

Delete fi

Deletion example

49

Deletion example

Insert g

Tree Height

Theorem 1. A ravl tree built by m insertions

intermixed with arbitrary deletions has height at

most log , m.
$=(1++/5)/2

Compared to standard AVL trees:

f m=n, height is the same

f m = O(n), height within an additive constant
f m = poly(n), height within a constant factor

Proof idea: exponential potential function

Exploit the exponential structure of the tree

Proof. Let F, be the k™" Fibonacci number.
Define the potential of a node of rank k:

F.., ifitisa0,1-node

F.., ifithasa 0-child butis nota 0,1-node
F, ifitisal,1 node

Zero otherwise

Potential of tree = sum of potentials of nodes

Recall: F,=1,F,=1,F =F_,+F _,fork>1
Fk+2>¢k

Proof. Let F, be the k™" Fibonacci number.
Define the potential of a node of rank k:
F.., ifitisa0,1-node
F.., ifithasa 0-child butisnota 0,1-node
F, ifitisal,1node
Zero otherwise

Deletion does not increase potential

Insertion increases potential by <1, so total
potentialis<m -1

Rebalancing steps don’t increase the potential

Consider a rebalancing step of rank k:

Fk+1+Fk+2 Fk+3+O
O+Fk+2 Fk+2+O
F..,+0 0+0

Consider a rebalancing step of rank k:

Consider a rebalancing step of rank k:

If rank of root is r, there was a promotion of rank
k that did not create a 1,1-node, forO< k< r-1

Total decrease in potential:

r+1

ZF r+3

Since potential is always non-negative:
m—-1>F -2

r+3

m>Fr+3 r+2 —¢

Rebalancing Frequency

Theorem 2. In a ravl tree built by m insertions
intermixed with arbitrary deletions, the number
of rebalancing steps of rank k is at most

(m—1)/F, <(m-1)/¢*>.

—> O(1) amortized rebalancing steps

Proof. Truncate the potential function:

Nodes of rank < kK have same potential

Nodes of rank > k have zero potential
(with one exception for rank = k)

Deletion does not increase potential

Insertion increases potential by <1, so total
potentialis<m —1

Rebalancing steps don’t increase the potential

Proof. Truncate the potential function:

Nodes of rank < kK have same potential

Nodes of rank > k have zero potential
(with one exception for rank = k)

Step of rank k preceded by promotion of rank
k — 1, which reduces potential by:

F,., if stop or promotion at rank k
F..,—F,,=F,if (double) rotation at rank k

Potential can decrease by at most (m—-1)/F,

Disadvantage of Ravl Trees?

Tree height may be w(log n)

Only happens when ratio of deletions to
insertions approaches 1, but may be a concern
for some applications

Address by periodically rebuilding the tree

Periodic Rebuilding

Rebuild the tree (all at once or incrementally)
when rank r of root (> tree height) is too high

Rebuild when r > log ,n + c for fixed ¢ > O:
Rebuilding time is O(1/(¢ — 1)) per deletion

Then tree height is always log ,n + O(1)

Constant bits?

Ravl tree stores Q)(loglog n) balance bits per node

Various methods that use O(1) bits fail (see
counterexamples in paper)

Main problem: deletion can increase the ranks of
nodes; if we force all deletions to occur at leaves,
then an O(1)-bit scheme exists

But now a deletion may require multiple swaps

Summary

Deletion without rebalancing in binary trees has
good worst-case properties, including:

— Logarithmic height bound
— Exponentially infrequent node updates

With periodic rebuilding, can maintain height
logarithmic in n

Open problem: Requires Q2(loglog n) balance
bits per node?

Experiments

Preliminary Experiments

Compared three trees that achieve O(1)
amortized rebalancing time

— Red-black trees

— Rank-balanced trees
— Ravl trees

Performance in practice depends on the
workload!

Preliminary Experiments

Test Red-black trees Rank-balanced trees Ravl trees
#rots | #bals avg. max. | #rots | #bals avg. max. | #rots | #bals avg. max.
x10% | x 106 pLen plen| x109| x10° pLen pLen | x109| x10° pLen pLen
Random | 26.44| 116.07 | 10.47| 15.63| 29.55| 133.74| 10.39| 15.09| 14.32| 80.61| 11.11| 16.75
Queue 50.32 | 285.13 | 11.38 | 22.50 | 50.33|184.53| 11.20| 14.00| 33.55| 134.22| 11.38| 14.00
Working
cet 41.71(185.35| 10.51| 16.18| 43.69(159.69| 10.45| 15.35| 28.00(119.92| 11.20| 16.64
;;CS]EIC 25.24 | 112.86 | 10.41| 1546 | 28.27|130.93| 10.34| 15.05| 13.48| 78.03| 11.12| 17.68
Dynamic
Ziof 23.18 | 103.48 | 10.48 | 15.66| 26.04| 12599 | 10.40| 15.16| 12.66| 74.28(11.11| 16.84

213 nodes, 2%° operations

No periodic rebuilding in ravl trees

Preliminary Experiments

Test Red-black trees Rank-balanced trees Ravl trees
#rots | #bals avg. max. | #rots | #bals avg. max. | #rots | #bals avg. max.
x 10 | x 10° pLen plen| x10°| x10° pLen pLen| x10°| x10° pLen pLen
Random | 26.44 | 116.07 | 10.47| 15.63| 29.55| 133.74| 10.39| 15.09| 14.32| 80.61| 11.11| 16.75
Queue 50.32 | 285.13 | 11.38 | 22.50| 50.33 | 184.53 | 11.20| 14.00| 33.55| 134.22 | 11.38| 14.00
Working
<ot 41.71|185.35| 10.51| 16.18| 43.69| 159.69 | 10.45| 15.35| 28.00(119.92 | 11.20| 16.64
;?;;IC 25.24 | 112.86 | 10.41| 15.46| 28.27|130.93 | 10.34| 15.05| 13.48(78.03|(11.12| 17.68
Dynamic
Ziof 23.18 | 103.48 | 10.48 | 15.66| 26.04| 12599 | 1040 15.16| 12.66| 74.28| 11.11| 16.84

rank-balanced: 8.2% more rots, 0.77% more bals

ravl: 42% fewer rots, 35% fewer bals

Preliminary Experiments

Test Red-black trees Rank-balanced trees Ravl trees
#rots | #bals avg. max. | #rots | #bals avg. max. | #rots | #bals avg. max.
x10% [x 10° pLen plen | x10%| x10° pLen pLen | x10%| x10° pLen pLen
Random | 26.44|116.07 | 10.47| 15.63 | 29.55|133.74| 10.39| 15.09(14.32(80.61| 11.11| 16.75
Queue 50.32 | 285.13 | 11.38 | 22.50| 50.33|184.53| 11.20| 14.00(33.55| 134.22| 11.38| 14.00
Working
<ot 41.71 | 185.35| 10.51| 16.18| 43.69| 159.69 | 10.45| 15.35| 28.00| 119.92| 11.20| 16.64
;?;;IC 25.24 | 112.86 | 10.41 | 15.46| 28.27|130.93| 10.34| 15.05| 13.48| 78.03| 11.12| 17.68
Dynamic
Ziof 23.18 1 103.48 | 10.48 | 15.66| 26.04 (12599 | 10.40| 15.16| 1266 74.28| 11.11| 16.84

rank-balanced: 0.87% shorter apl, 10% shorter mpl
ravl: 5.6% longer apl, 4.3% longer mpl

Ongoing/future experiments

Trees:
— AVL trees
— Binary B-trees (Sedgewick’s implementation)

Deletion schemes:
— Lazy deletion (avoids swapping, uses extra space)

Tests:
— Real workloads!
— Degradation over time

The End

