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    Informal introduction and Overview 
    Informal introductions to P,NP,co-NP and themes from and 

relationships with  Proof complexity     

  First Steps in Proof Complexity 
   Complexity theory and motivating problems 
   Proof systems (PS) and  polynomially bounded PS  
   Polynomial Simulation between proof systems 
   Encoding of combinatorial principles as boolean formulae  
   The main problem of  Proof Complexity 

Organization 
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Resolution proof system 
-  Definitions 
-  Soundness and Completeness 
-  Treelike Resolution (TLR) and daglike Resolution (DLR) 
-  Complexity measure for Resolution: size, width and space. 
-  Examples 
-  Interpolation  
-  Davis Putnam (DPLL) Algorithm for SAT and TLR 
-  Search Problems and  refutations in Resolution 

Organization 

3 15-16/08/2009 Nicola Galesi 



 Exponential Separation between TLR e DLR 
-  History and evolution of the results for TLR 
-  Prover-Delayer game: A two players game to model lower 

bounds for TLR 
-  Pebbling Games on DAG 
-  Peb(G): UNSAT formula encoding pebbling games on dag 
-  Poly size refutations in DLR for Peb(G)  
-  Exponential lower bounds for PEB(G) in TLR 
-  Open problems 

Organization 
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Exponential lower bounds for DLR. 
-  From Resolution to Monotone Resolution. Polynomial 

equivalence wrt PHP. 
-  The Beame-Pitassi method: PHP requires exponential 

refutations in DLR. 
-  Synthesis of BP method: The width method of Ben-Sasson-

Wigderson 
-  Application of width method - I : Random systems of linear 

equations 
-  Application of width method - II : Tseitin formulae. 
-  The “strange case” of Weak PHP: pseudowidth 

Organization 
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Other measures and methods for Resolution 
-  Space complexity in Resolution: results 
-  Combinatorial characterization of width and relation with 

space 
-  Efficient Interpolation for Resolution 
-  DLR has Efficient Interpolation 
-  Automatizability and Efficient Interpolation 
-  DLR is not automatizable unless W[P] in RP 
-  Open Problems 

Organization 

6 15-16/08/2009 Nicola Galesi 



Other proof systems and Open Problems 
-  Res[k]: Resolution on  k-DNF  
-  Geometric Systems: Cutting Planes e Lovasz-Schriver 
-   Logic systems: Frege and bounded depth Frege 
-  Algebraic system: Polynomial Calculus and Hilbert 

Nullstellensatz 
-   Open problems: new ideas 

Organization 
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Complexity theory (P,NP,co-NP) 
 Σ an alphabet. A decision problem  is a subset of Σ*. 

Def. [P]  A decision problem Q is in P if there is a TM M s.t. 
-  ∀x∈ Σ*: x ∈Q iff M accepts x 
-  For some polynomial p(), on inputs x, M halts within p(|x|) 

steps. 

Def. [NP] A decision problem Q is in NP if there a relation  
R(*,*) in P and a polynomial p(), s.t. 
   ∀x∈ Σ*(x∈ Q iff ∃ w: |w|≤p(|x|) and R(x,w))   

Def. [co-NP] A decision problem Q is in co-NP if its 
complement is in NP 
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Complexity theory (SAT e TAUT) 
 SAT = {boolean frm A: A is satisfiable} 
 SAT ∈ NP [… have a look] 
 SAT è NP-hard (∀ Q ∈ NP there is a many-one reduction  
                            f:Q->SAT, f in FP ) [ have a look] 
    SAT is NP-complete 

TAUT = {boolean frm A: A is tautology} 
            TAUT is co-NP complete 
Proof.    
 (1) ¬TAUT ∈  NP.  
   F ∈ ¬TAUT iff F ∉ TAUT  
                    ∃ assignment σ s.t. σ(F)=F  [NP def] 
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Complexity theory (SAT e TAUT) 
 (2) ¬TAUT is NP-hard.  
 we give a poly time many-one reduction of SAT to ¬TAUT 
  F ∈  SAT iff  ¬ F ∉ TAUT  
                 iff ¬ F ∈ ¬ TAUT  
     The reduction is then F -> ¬ F  

Big questions: Does NP = P ?,  Does NP = co-NP ? 

Exercise: 1. Prove that P=NP, implies NP=co-NP 
                2. Prove that UNSAT = TAUT 
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Proof Systems 
 Classical Definition  
 A propositional  proof system is a surjective function f 

computable in polynomial time f: Σ*  TAUT. 

   Let A ∈TAUT. Let P be a string.  
    If  f(P) =A, then we interpret P as a PROOF of A.  

    f() is then a polytime function (in |P|) that efficiently verifies 
that P is in fact a proof of A. 

    the length of P, |P| (the size of the proof) has to be 
considered as a measure of the size of the tautology  

    |A| 
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Proof Systems 
 Modern Definition  
 A proof system for a language L (TAUT) is a polynomial 

time algorithm (verifier) V such that  

∀A: (A ∈ L iff ∃ a string P (a proof) s.t. V accepts (A,P) ) 

we think of  

 - P as a proof that A is in L 
 - V as a verifier of the correctness of the proof 

A propositional proof system is a proof system for TAUT . 
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P 

A∈TAUT 

V 0/1 

Proof Systems 

Intuition 
 Take your favorite inference system. You can think of V as 

an algorithm that efficently checks that the proof P 
terminates in A and follows from applications of the rules of 
your system. 

 Complexity 
 The main point is how big is |P| as a function of |A| ? 
This affects the efficiency of V, as well. 
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Super Proof Systems 
A proof system F is  SUPER (p-bounded) if there is a  
polynomially  bounded size proof for every tautology: 

 ∀A ∈ TAUT ∃ P : |P| ≤ p(|A|) s.t. f(P)=A (V(P,A)=1) 
 for some polynomial p(). 

Thm [Cook-Rekhow,71] There exists a super proof system  
iff NP=co-NP. 
Proof.  
(⇒) f is super  
       ⇒ ∀A ∈ TAUT ∃ x : |x| ≤ p(|A|) s.t. f(x)=A   
       ⇒  TAUT ∈ NP  
       ⇒  NP = co-NP [Exercise 3] 15 15-16/08/2009 Nicola Galesi 



Super Proof Systems 
(⇐) Assume NP=co-NP.  
       ⇒ TAUT ∈ NP 
       ⇒ there is a polynomial p() and a relation R(,) s.t. 
          ∀x (x∈ TAUT  iff ∃ w: |w|≤p(|x|) and R(x,w)). 

Define f as follows: 
    f(v) =  x        if v= <x,w> and R(x,w)  
    f(v) = p ∨¬p  ow. 

Corollary. If there is no super proof system, then NP ≠ P. 

Exercise 3. TAUT∈ NP ⇔ NP = co-NP 
Exercise 4. f is super.  16 15-16/08/2009 Nicola Galesi 



Main questions in Proof Complexity 
By Cook-Reckhow Theorem, to prove, NP ≠ co-NP we have  
to prove that  

   there is no super proof systems 

Assume we have a proof systems S. What exactly mean 
prove that S is not super ? 

Find a  tautology A ∈ TAUT and prove that the size  
of all the proofs of A in S are not bounded by any  
polynomial in the size of the formula A to be proved.  
Then it suffices to prove that it does hold for the shortest  
proof of A in S  17 15-16/08/2009 Nicola Galesi 



Main questions in Proof Complexity 
S is not super 
 There exists A ∈ TAUT such that for all polynomials p 
 and for all proof P of A in S, |P|>p(|A|). 

Stronger. 
There exists A TAUT such that the shortest proof P of A in S is  
of size  |P|>exp(|A|ε), with ε>0.  

Notation and Positions 
Usually, instead of a single tautology A we speak of families of  
(uniform) tautologies {Fn}n∈N, where n is some parameter  
coming from the encoding. In general the size of  Fn is  
polynomial in n, and hence wrt to proving a system is not super  
we usually use n instead of |Fn|. 
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Comparing strength of Proof systems 
Question          
Assume we have two proof systems S1 and S2. How we can  
say that “S1 is stronger than S2” 

Answer: Find a family of tautologies Fn such that: 
1.  There are polynomial size proofs of Fn in S1 
2.  The shortest proof of Fn in S2 is not polynomially bounded 

in n (is exponential in n) 

We say that S2 is exponentially separated from S1 
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Comparing strength of Proof systems 
Question          
Let us given two proof systems S1 and S2 defined over the  
same language. When can we say that if S1 is not super, then  
also S2 is not super ? 

Answer: S2 Polynomially simulates S1 (S2≥S1)  
Iff there is a P-time computable function g:{0,1}*→{0,1}*, s.t. for all w in {0,1}*  
S1(w))=S2(g(w)). In other words 

Theorem.[Exercise 5] 
If S1 is not super and S2≥S1, then S2 is not super € 

S1 P1 →  A,   then   S2 P 2 →  A,    P2 = p(P1) 
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Separations and Incomparability  
of Proof systems Defn          

Two proof systems S1 and S2 are exponentially separated if  
there exists a family  of formulas F  over n variables  
such that 
1.  F admits polynomial size O(nO(1)) proofs in S1 

2.  The shortest proof of F in S2 is exponentially long in n 
exp(nε). 

Defn          
Two proof systems S1 and S2 are incomparable if there are  
two families of formulae that respectively separates  
exponetially S1 from S2 and S2 from S1. 21 15-16/08/2009 Nicola Galesi 



 k-CNF k-DNF 
Propositional formulas are can be transformed into normal  
form called CNF conjuntive normal form and DNF disjunctive  
normal form. 

CNF  Conjuctions fo Disjunctions 

DNF  Disjunctions of Conjunctions 

k-CNF all clauses have <=k literals 
k-DNF all terms have <= k literals 22 15-16/08/2009 Nicola Galesi 



 Values and assignments 

Consider a k-CNF F and a partial  assignment α to its   
variables. F[α] is the formula resulting form F after applying the  
following semplifications: 
-  Delete all clauses containing literals set to 1 by α 
-  Delete from all clauses the literals set to 0 by α 

Consider a k-DNF F and a partial  assignment α to its a  
variable. F[α] is the formula resulting form F after applying the  
following semplifications: 
-  Delete all terms containing literals set to 0 by α 
-  Delete from all terms the literals set to 1 by α 

23 15-16/08/2009 Nicola Galesi 



A Concrete Example: 
Frege Systems 

Rules  
.             .        [Axiom Scheme: Examples] ........ 
A(BA) 

.             .         
A(A∨B) 
………….. 

A  A-> B     [Modus Ponens] 
      B 
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Frege Systems 

Proofs 
A proof of a Tautology A in a Frege Systems is a sequence  
of fomulas  
    A1,A2,A3………,Am  
such that  
1. Am is exactly A 
2. Each Ai is obtained either as instance of an axiom scheme, 

or from two previous formulas in the sequence by using (an 
instantiation of) the MP rule 

Example 
 A->A  

25 15-16/08/2009 Nicola Galesi 



Complexity Measures in Frege Systems 
Size of Proof 
Total number of symbols used in the proof 
P:= A1,...,Am, then |P|= |A1|+...+|Am| 
Length of a Proof 
Number of lines of the proof 
P:= A1,...,Am, then length of P = m 

Thm[Cook-Rekchow] If a tautology A has a Frege proof of m  
lines, then A has a Frege proof of p(m) symbols, for some  
polynomial p(). 

Cor. No matter length or size wrt to prove Frege is NOT super 
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Proof Graph 

A7 A1 

A11 
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A4 
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A9 A12 

A2 

A10 
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A14 

Length of Proof  = number of nodes in the graph 

A13 
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Daglike and Treelike Proofs  
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Have tree and daglike proofs  
the same strenght ? 

Question 
Let S be a proof system. Is it true that treelike S polynomially  
simulates daglike S ? 

Answer 
It depends on the proof system. 
1.  For Frege systems this is true [Krajicek, next slides] 
2.  for Resolution it is false [next Chapter] 
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treelike and daglike Frege 
Thm [Krajicek] 
Treelike Frege system, polynomially simulates daglike Frege. 

Proof 
Let A1,.....,Am be a  proof in daglike Frege. 
let Bi =A1∧A2∧....∧Ai,  for i=1,...,m 
We get separated treelike proofs of the following formulas 

- B1 
- Bi → B(i+1) for all i=1,...,m-1 [Exercise 6] 

m applications of the Modus ponens gives a treelike proof of  
Am. 30 15-16/08/2009 Nicola Galesi 



Properties of Proof Systems 
Automatizability 

 Automatizability [Impagliazzo; Bonet,Pitassi,Raz] 
A proof system S is automatizable if there is an algorithm 
AS which in input a tautology  A gives a proof in S of the  
A in time  polynomially bounded in the  shortest proof of A in S 

Motivation 
Devise algorithms for proof search in proof systems  
independently from the property to be p-bounded 

A∈TAUT AS PA 
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Interpolation: general setting 

Let U and V two disjoint NP-sets (as subset of {0,1}*). By  
Cook SAT NP-completeness theorem we know that there  
exists two sequence of formulas An(p,q) and Bn(p,r) s.t. 

1.  The size of A and B are polynomial in n 

2.  Un=U∩{0,1}*={ε ∈{0,1}*: ∃α An(ε,α) true} 

3.  Vn=V∩{0,1}*={ε ∈{0,1}*: ∃β Bn(ε,β) true} 
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Intepolation: general setting 

 U∩V=∅ is equivalent to say that An→¬Bn are tautologies. 

By Craig’s interpolation theorem exist In s.t. 

     An→In  and In→¬Bn   

This maens that the set 

Separates U from V. i.e. 

    U⊆W and W∩V=∅ 33 15-16/08/2009 Nicola Galesi 



 Intepolation and complexity 

Hence a lower bound on the complexity of the interpolant is a  
lower bound on the complexity of separating two disjoint NP- 
Sets. 

Thm[Mundici] If W is computable by a polynomial size boolean  
circuit, then NP∩co-NP⊆P/poly. 

34 15-16/08/2009 Nicola Galesi 



 Feasible Intepolation  

[Krajicek]  
For a given proof system P, try to estimate the circuit size of an  
interpolant of an implication in terms of the size of shortest  
proof of the implication in P. 

[Pudlak] Resolution admits feasible interpolation [Lecture III] 

[Pudlak,Krajicek] Frege systems does not have feasible  
interpolation unless RSA cryptographic scheme is breakable 
[Lecture III ] 
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Propositional Encoding 
Relations 
  Assume to have a binary relations R(i,j) over some domain D.  
 I can think of modelling R through boolean variables xi,j such  
 that xi,j = TRUE iff R(i,j) does hold. 

Encoding statements over R 
 ∀i ∈ D ∃ j ∈ D R(i,j) is encoded by 

∃ k∈ D ∀ i, j∈ D R(i,k) → R(j,k) 
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Encoding of Combinatorial principles 
PigeonHole Principle 
- There is no 1-1 function from [n+1] to [n]. 
- If a total mapping f maps [n+1] to [n], then there will be two  
  elements in the dom(f) mapped to the same element in Rng(f) 

Pi,j = “pigeon i mapped by f into hole j” 

37 15-16/08/2009 Nicola Galesi 



Encoding of Combinatorial principles 
PigeonHole Principle 
  If a total mapping f maps [n+1] to [n], then there are two  
  elements in the dom(f) mapped to the same element in Rng(f) 

 if ∀i ∈ [n+1] ∃ j∈[n] f(i)=j → ∃ i≠j ∈ [n+1] ∃k ∈[n] (f(i)=k ∧ f(j)=k) 

 Other PHP Statements [Exercise 7] 
 - Functional-PHP: Every function from [n+1] to [n] is non 

injective., i.e. Every pigeon is mapped to exactly one hole  
 - Onto-PHP: Functional-PHP + every hole gets a pigeon  

€ 

PHPn
n+1 =def

i∈[n+1]
∧

j∈[n ]
∨ pi, j →

i, j∈[n+1]
∨

k∈[n ]
∨ (pi,k ∧ p j ,k )
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Encoding of Combinatorial principles 
Weak PigeonHole Principle 
  If a total mapping f maps [m] to [n] m>n, then there are two  
  elements in the dom(f) mapped to the same element in Rng(f) 

 Complexity of Weak PHP  
  WeakPHP is “more” true than PHP. We will see that 
  approximately for m = Ω(n2/log n) the PHP starts to behave  
 differently for PHP . But the situation is different for  
 different proof system and this represents an imporant  
 questions in different proof systems  
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Encoding of Combinatorial principles 

Negation of the PigeonHole Principle as CNF (UNSAT) 

  

€ 

¬PHPn
n+1 =def

i∈[n+1]
∧ (pi,1∨∨ pi,n )

i≠ j∈[n+1]
∧

k∈[n ]
∧ (¬pi,k ∨¬p j ,k )

 

 
 

 
 
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Encoding of Combinatorial principles 
Linear Ordering Principle 
Every linearly ordered finite set has a minimal element. 

Let D a finite set linearly ordered. E.g. D=[n]. 
xi,j=TRUE iff i<j in the linear order 

- If [n] is linearly ordered then there exists a minimal element  
in [n] (∀j∈[n]: i<j) 

- [n] linearly ordered iff  
 - antisymmetry (i<j→ ¬j<i) 
    - transitivity  (i<j ∧ j<k → i<k) 

41 15-16/08/2009 Nicola Galesi 



Encoding of Combinatorial principles 
Linear Ordering Principle 

Negation of Linear Ordering Principle (UNSAT) 
A finite set is linearly ordered but no element is minimal 
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Encoding of Combinatorial principles 
Tseitin Principle - Odd Charged Graph 
 The sum along nodes of the edges of a simple connected  
graph  is even. 

Encoding  
Let G =(V,E) be a connected graph. Let m:V→{0,1} a labelling  
of the nodes of V s,t.  

Assign a variable xe to each edge e in G. 

For a  node v in V 
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Random Formulae in CNF 

Experiment: 
Choose uniformly and independently m clauses with k  
variables from the space of all possible such clauses over n  
variables 
         (¬ x4∨ ¬x2 ∨ x6) ∧ (x1∨ ¬x2 ∨ x3) ∧ (¬x1∨ ¬x4 ∨ x5) 

Fact 
Let D=m/n be  density. There exists a threshold value   
r*  s.t.: 
-  if r < r*: F (n,m) è SAT w.h.p 
-  If  r > r*: F(n,m) è UNSAT w.h.p. 
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Complexity of Random k-CNF 

UNSAT Proofs: 
Take a random k-CNF F with a density which w.h.p. guarentees  
UNSAT of F 

Study complexity of Proofs for such a formula 

Density m/n. 
It is not difficult to see that the more the density grown over  
the  threshold the easier will be to verify the UNSAT of F(n,m).   
Hardness results hold only for weak proof systems  
and for (almost always) constant densities. 
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