
New Combinatorial Complete One-Way

Functions ∗

Arist Kojevnikov † Sergey I. Nikolenko ‡

Abstract

In 2003, Leonid A. Levin presented the idea of a combinatorial com-
plete one-way function and a sketch of the proof that Tiling represents
such a function. In this paper, we present two new one-way functions
based on semi-Thue string rewriting systems and a version of the Post Cor-
respondence Problem and prove their completeness. Besides, we present
an alternative proof of Levin’s result. We also discuss the properties a
combinatorial problem should have in order to hold a complete one-way
function.

1 Introduction

In computer science, complete objects naturally play an extremely important
role. If a certain class of problems has a complete representative, one can shift
the analysis from the whole class (where usually nothing can really be proven)
to this certain, well-specified complete problem. Examples include Satisfiability
and Graph Coloring for NP (see [GJ79] for a survey) or, which is more closely
related to our present work, Post Correspondence and Matrix Transformation
problems for DistNP [Gur91, BG95].

However, there are problems that are undoubtedly complete for their com-
plexity classes but do not actually cause such a nice concept shift because they
are too hard to analyze. Such problems usually come from diagonalization pro-
cedures and require enumeration of all Turing machines or all problems of a
certain complexity class.

Our results lie in the field of cryptography. For a long time, little has
been known about complete problems in cryptography. While “conventional”
complexity classes got their complete representatives relatively soon, it had
taken thirty years since the definition of a public-key cryptosystem [DH76]

∗Supported in part by INTAS (YSF fellowship 05-109-5565) and RFBR (grants 05-01-
00932, 06-01-00502).

†St.Petersburg Department of V. A. Steklov Institute of Mathematics, Fontanka 27,
St.Petersburg, Russia, 191023, http://logic.pdmi.ras.ru/~arist/

‡St.Petersburg Department of V. A. Steklov Institute of Mathematics, Fontanka 27,
St.Petersburg, Russia, 191023, http://logic.pdmi.ras.ru/~sergey/

1

to present a complete problem for the class of all public-key cryptosystems
[HKN+05, GHP06]. However, this complete problem is of the “bad” kind of
complete problems, requires enumerating all Turing machines and can hardly
be put to any use, be it practical implementation or theoretical complexity
analysis.

Before tackling public-key cryptosystems, it is natural to ask about a seem-
ingly simpler object: one-way functions (public-key cryptography is equivalent
to the existence of a trapdoor function, a particular case of a one-way func-
tion). The first big step towards useful complete one-way functions was taken
by Leonid A. Levin who provided a construction of the first known complete
one-way function [Lev87] (see also [Gol99]).

The construction uses a universal Turing machine U to compute the following
function:

funi(desc(M), x) = (desc(M),M(x)),

where desc(M) is the description of a Turing machine M . If there are one-way
functions among M ’s (and it is easy to show that if there are any, there are one-
way functions that run in, say, quadratic time), then funi is a (weak) one-way
function.

As the reader has probably already noticed, this complete one-way function is
of the “useless” kind we’ve been talking about. Naturally, Levin asked whether
it is possible to find “combinatorial” complete one-way functions, functions that
would not depend on enumerating Turing machines or giving their descriptions
as input. For 15 years, the problem remained open and then was resolved by
Levin himself [Lev03]. Levin devised a clever trick of having determinism in one
direction and indeterminism in the other.

Having showed that a modified Tiling problem is in fact a complete one-way
function, Levin asked to find other combinatorial complete one-way functions.
In this work, we answer this open question. We take Levin’s considerations
further to show how a complete one-way function may be derived from string-
rewriting problems shown to be average-case complete in [Wan95] and a vari-
ation of the Post Correspondence Problem. Moreover, we discuss the general
properties a combinatorial problem should enjoy in order to contain a complete
one-way function by similar arguments.

2 Distributional Accessibility problem for semi-
Thue systems

Consider a finite alphabet A. An ordered pair of strings 〈g, h〉 over A is called
a rewriting rule (sometimes also called a production). We write these pairs as
g → h because we interpret them as rewriting rules for other strings. Namely,
for two strings u, v we write u ⇒g→h v if u = agb, v = ahb for some a, b ∈ A∗.
A set of rewriting rules is called a semi-Thue system. For a semi-Thue system
R, we write u ⇒R v if u ⇒g→h v for some rewriting rule 〈g, h〉 ∈ R. Slightly
abusing notation, we extend it and write u ⇒R v if there exists a finite sequence

2

of rewriting rules 〈g1, h1〉, . . . , 〈gm, hm〉 ∈ R such that

u = u0 ⇒g1→h1 u1 ⇒g2→h2 u2 ⇒ . . . ⇒gm→hm um = v.

For a more detailed discussion of semi-Thue systems we refer the reader to
[BO93].

We can now define the distributional accessibility problem for semi-Thue
systems:

Instance. A semi-Thue system R = {〈g1, h1〉, . . . , 〈gm, hm〉}, two binary strings
u and v, a positive integer n. The size of the instance is n+ |u|+ |v|+

∑m
1 (|gi|+

|hi|).
Question. Is u ⇒n

R v?
Distribution. Randomly and independently choose positive integers n and m
and binary strings u and v. Then randomly and independently choose binary
strings g1, h1, . . . , gm, hm. Integers and strings are chosen with the default
uniform probability distribution, namely the distribution proportional to 1

n2

for integers and proportional to 2−|u|

|u|2 for binary strings.

In [WB95], this problem was shown to be complete for DistNP.
For what follows, we also need another notion of derivation in semi-Thue

systems. Namely, for a semi-Thue system R we write u ⇒∗
R v if u = agb, v = ahb

for some 〈g, h〉 ∈ R and, moreover, there does not exist another rewriting rule
〈g′, h′〉 ∈ R such that u = a′g′b′ and v = a′h′b′ for some a′, b′ ∈ A∗. Similarly
to ⇒R, we extend ⇒∗

R to finite chains of derivations. In other words, u ⇒∗
R v

if u ⇒R v, and on each step of this derivation there was only one applicable
rewriting rule. This uniqueness (or, better to say, determinism) is crucial to
perform the Levin’s trick. We also write u ⇒∗,n

R v if u ⇒∗
R v in not more than

n steps.

3 Post Correspondence Problem

The following problem was proven to be complete for DistNP in [Gur91] (see
also Remark 2 in [BG95]):

Instance. A positive integer m, pairs Γ = {〈u1, v1〉, . . . , 〈um, vm〉}, binary string
x, a positive integer n. The size of the instance is n + |x|+

∑m
1 (|ui|+ |vi|).

Question. Is ui1 · · ·uik
= uvi1 · · · vik

for some k ≤ n?
Distribution. Randomly and independently choose positive integers n and m
and binary string x. Then randomly and independently choose binary strings
u1, v1, . . . , um, vm. Integers and strings are chosen with the default uniform
probability distribution.

3

We need a modification of this problem. Namely, the question now is as follows:
does

ui1 · · ·uik
y = xvi1 · · · vik

hold for some y? If we remove the restriction n, this problem is undoubtedly
undecidable, but the bounded version is not known to be complete for DistNP.

Given a nonempty list Γ = (〈u1, v1〉, . . . , 〈um, vm〉) of pairs of strings, it
will be convenient to view the function based on modified Post Correspondence
Problem as a derivation with pairs from Γ as inference rules. A string x yields
a string y in one step if there is a pair 〈u, v〉 in Γ such that uy = xv. The
“yield” relation `Γ is defined as the transitive closure of the “yield-in-one-step”
relation.

To perform Levin’s trick, we need to get rid of the indeterminism. This
time, the description of a deterministic version of `∗ is more complicated than
in the case of semi-Thue systems. If we simply required it to be deterministic,
we would not be able to move the head of the Turing machine to the left. To
solve this problem, we have to look ahead by one step; if one of the two branches
fails in two steps, we consider the choice deterministic.

Formally speaking, we write x `∗ y if there are no more then two 〈p, s〉, 〈p′, s′〉 ∈
Γ such that py = xs and p′y′ = xs′ for some strings y, y′ (where y 6= y′, but p
may equal p′: two possible applications of the same rule are still nondetermin-
istic) and, moreover, we cannot apply any rule in Γ to y′. We write u `∗,n

Γ v if
u `∗Γ v in not more than n steps.

4 Complete One-Way Tiling Function

Before presenting our own construction, we recall Levin’s complete one-way
function from [Lev03] and present an alternative proof based on ideas from
[Wan99]. The difference with the original Levin’s construction is that he con-
sidered the tiling function for tiles with marked corners, namely, the corners of
tiles, instead of edges, are marked with symbols. In the tiling of an n×n square,
symbols on touching corners of adjacent tiles should be the same.

A tile is a square with a symbol for a finite alphabet A on each size which
may not be turned over or rotated. We assume that there exist infinite copies
of each tile. By a tiling of an n × n square we mean a set of n2 tiles covering
the square in which the symbols on the common sides of adjacent tiles are the
same.

It will be convenient for us to consider Tiling as a string transformation
system. Fix a finite set of tiles T . We say that T transforms a string x to
y, |x| = |y|, if there is a tiling of an |x| × |x| square with x on the bottom
and y on top. We write x −→T y in this case. By a tiling process we mean
the completion of a partially tiled square by one tile at the time. Similarly to
semi-Thue systems, we define x −→∗

T y if and only if x −→T y and we permit
the extension of a partially tiled square only if the possible extension is unique.

4

Definition 1. The Tiling simulating function (Tiling) is the function f : A∗ →
A∗ that does the following:

• if the input contains a finite set of tiles T and a string x, then:

– if x −→∗
T y, returns (T, y);

– otherwise, returns the input;

• otherwise, returns the input.

Theorem 1. If one-way functions exist, then Tiling is a weakly one-way func-
tion.

Proof. Let Q be the set of states of a Turing machine M , s be the initial state
of M , h — the halting state, πM — the transition function of M , 0, 1, B — the
tape symbols. By $ we denote the begin marker and by # — the end marker.
We also introduce a new symbol for each pair from Q×{0, 1, B}. Let us present
the construction of a tileset TM .

1. For each tape symbol a ∈ {0, 1, B} we add

a

a

(h, a)

(h, a)

2. For each a, b, c ∈ {0, 1, B}, q ∈ Q \ {h}, p ∈ Q, if πM (q, a) = (p, b, R) we
add

(q, a)

b

p

c

(p, c)

p

3. For each a, b, c ∈ {0, 1, B}, q ∈ Q \ {h}, p ∈ Q, if πM (q, a) = (p, b, L) we
add

(q, a)

b

p

c

(p, c)

p

4. Finally, for $ and # we add

$

$

$

#

#

#

The following lemma is now obvious.

5

Lemma 1. For a deterministic Turing machine M that works n2 steps and its
corresponding tiling system TM ,

M(x) = y, |x| = |y|, if and only if $sxBn(n−1)# −→∗
TM

$hyBn(n−1)#.

The rest of the proof closely follows [Gol99]. Suppose that g is a length-
preserving one-way function that works for time not exceeding n2. By Lemma 1,
there exists a finite system of tiles TM such that $sxBn(n−1)# −→∗

TM
$hyBn(n−1)#

is equivalent to g(x) = y. Therefore, with constant probability solving Tiling is
equivalent to inverting g.

5 A complete one-way function based on semi-
Thue systems

Our complete one-way function is based upon the distributional accessibility
problem for semi-Thue systems. We need to make it a function and add Levin’s
trick in order to assure length-preservation.

Definition 2. The semi-Thue accessibility function (STAF) is the function
f : A∗ → A∗ that does the following:

• if the input has the form (〈g1, h1〉, . . . , 〈gm, hm〉, x), consider the semi-Thue
system Γ = (〈g1, h1〉, . . . , 〈gm, hm〉) and:

– if x ⇒∗,t
Γ y, t = |x|2 + 4|x|+ 2, there are no rewriting rules in Γ that

may be applied to y, and |y| = |x|, returns (Γ, y);

– otherwise, returns the input;

• otherwise, returns the input.

Obviously, STAF is easy to compute: one simply needs to use the first part
of the input as a semi-Thue system (if that’s impossible, return input) and
apply its rules until either there are two rules that apply, or we have worked for
|x|2 + 4|x| + 2 steps, or y has been reached and no other rules can be applied.
In the first two cases, return input. In the third case, check that |y| = |x| and
return (Γ, y) if so and input otherwise.

Theorem 2. If one-way functions exist, then STAF is a weakly one-way func-
tion.

Proof. This time we need to encode Turing machines into the string-rewriting
setting. Following [Wan99, WB95, Gur91], we have the following proposition:

Proposition 1. For any finite alphabet A with |A| > 2 and any pair of binary
strings x and y there exists a dynamic binary coding scheme of A with {0, 1}
with the following properties.

1. All codes (binary codes of symbols of A) have the same length l =
2 log |x|+ O(1).

6

2. Both strings x and y are distinguishable from every code, that is, no code
is a substring of x or y.

3. If a nonempty suffix z of a code u is a prefix of a code v then z = u = v
(one can always distinguish where a code ends and another code begins).

4. Strings x and y can be written as a unique concatenation of binary strings
1, 10, 000, and 100 which are not prefixes of any code.

Now let us define the semi-Thue system RM that corresponds to a Turing
machine M . The rewriting rules are divided into three parts: RM = R1∪R2∪R3.
Let us denote B = {1, 10, 100, 000}. We fix a dynamic binary coding scheme
and denote by w the encoding of w in this scheme.

R1 consists of the following rules for each u ∈ B:

su → $us1,
s1u → us1,

us1$ → s2u$,
us2 → s2u,
$s2 → $s.

These rules are needed to rewrite the initial string sx$ into sx. Since x can be
uniquely written as u1 . . . um, where ui ∈ B, this transformation can be carried
out in 2m + 1 ≤ 2|x|+ 1 steps.

R2 consists of rewriting rules corresponding to Turing machine instructions.
By h we denote the halting state, by s — the initial state, by B — the blank
symbol, by QM — the set of states of M , by πM — the transition function of
M , and by $ the begin/end marker. Then R2 consists of the following pairs:

1. For each state q ∈ QM \ {h}, p ∈ Q, a, b, c ∈ {0, 1, B}:

πM (q, a) = (p, b, R) ⇒ qac → bpc, qa$ → bpB$ ∈ R2.

2. For each state q ∈ QM \ {h}, p ∈ Q, a, b, d ∈ {0, 1, B} and c ∈ {0, 1, $},

πM (q, a) = (p, b, L) ⇒ dqac → pdbc, dqB$ → pdbB$ ∈ R2

for a 6= B, c 6= $, or b 6= B.

R1 and R2 are completely similar to the construction presented in [Wan99].
The third part of his construction is supposed to reduce the result from sy,
where y is the result of the Turing machine computation, to the protocol of
the Turing machine that is needed to prove that non-deterministic semi-Thue
systems are DistNP-hard.

We need a different set of rules because we actually need the output of the
machine, and not the protocol. Thus, our version of R3 looks like the following:

$hu → $us5,
s5u → us5,

s5u$ → us6$,
us6 → s6u,
$s6 → h.

7

This transformation can be carried out in at most 2|y|+ 1 steps.
These rules simply translate y back into the original y and add h in front of

the output, thus achieving the actual output configuration of the original Turing
machine M .

The following lemma is now obvious.

Lemma 2. For a deterministic Turing machine M and its corresponding semi-
Thue system RM ,

M(x) = y if and only if sx$ ⇒∗,t
RM

hy$,

where t = T + 2|x|+ 2|y|+ 2, T being the running time of M on x.

The rest of the proof follows the lines of [Gol99]. There is a constant proba-
bility (for the uniform distribution, it is proportional to 1

|R|22|R|) that any given
semi-Thue system appears as the first part of the input. Suppose that g is a
length-preserving one-way function. By [Gol99], we can safely assume that and
there is a Turing machine Mg that computes g and runs in quadratic time.
By Lemma 2, there exists a semi-Thue system RM such that sx$ ⇒∗,t

RM
hy$ is

equivalent to g(x) = y. Therefore, with constant probability solving STAF is
equivalent to inverting g.

6 A complete one-way function based on Post
Correspondence

In this section, we describe a one-way function based on the Post Correspon-
dence Problem and prove that it is complete. The function is defined as follows.

Definition 3. The Post Transformation function (PTF) is the function f :
A∗ → A∗ that does the following:

• if the input has the form (〈g1, h1〉, . . . , 〈gm, hm〉, x), considers the deriva-
tion system Γ = (〈g1, h1〉, . . . , 〈gm, hm〉) and:

– if x `∗,n4

Γ y, there are no rewriting rules in Γ that may be applied to
y, and |y| = |x|, returns (Γ, y);

– otherwise, returns the input;

• otherwise, returns the input.

Now, we reduce the computation of a universal Turing machine to Post
Correspondence in the way described in [Gur91].

Theorem 3. If one-way functions exist, then PTF is a weakly one-way function.

Proof. As usual, let Q be the set of states of a Turing machine M , s be the
initial state of M , h — the halting state, πM — the transition function of M ,
0, 1, B — the tape symbols. For all symbols we use the dynamic binary coding
scheme described in Section 5.

We now present the construction of a derivation set ΓM .

8

1. For every tape symbol x:
〈x, x〉.

2. For each state q ∈ QM \ {h}, p ∈ Q, a, b ∈ {0, 1} and rule πM (q, a) =
(p, b, R):

〈qa, bp〉.

3. For each state q ∈ QM \ {h}, p ∈ Q, a ∈ {0, 1} and rule πM (q, B) =
(p, a, R):

〈qB, bpB〉.

4. For each state q ∈ QM \ {h}, p ∈ Q, a, b, c ∈ {0, 1} and rule πM (q, a) =
(p, b, L):

〈cqa, pcb〉.

5. For each state q ∈ QM \ {h}, p ∈ Q, a ∈ {0, 1} and rule πM (q, B) =
(p, a, L):

〈cqB, pcbB〉.

The configuration of M after t steps of computation is represented by a string
xqy, where q is the current state of M , x is the tape before the head, and y is the
tape from the head to the first blank symbol. The simulation of a step of M from
a configuration xqy consists of at most |x| applications of the rule 1, followed by
one application of one of the rules 2–5, followed by |y|−1 applications of rule 1.
Note that before an application of a rule that moves head to the left one could
also apply rule 1. If the Turing Machine M is deterministic, then this “wrong”
application leads to a situation where no rule from ΓM is applicable. Thus, we
have the following lemma.

Lemma 3. For a deterministic Turing machine M with running time at most
n2 and its corresponding Post Transformation system ΓM ,

M(x) = y if and only if sxB `∗,n4

ΓM
hyB.

As usual, the rest of the proof closely follows [Gol99]. Suppose that g is a
length-preserving one-way function that works for time not exceeding n2. By
Lemma 3, there exists a finite system of pair ΓM such that sxB `∗,n4

RM
hyB is

equivalent to g(x) = y. Therefore, with constant probability solving PTF is
equivalent to inverting g.

Remark 1. Note the slight change in distributions on inputs and outputs: PTF
accepts as input x and outputs y, while the emulated machine g accepts x and
outputs y. However, distributions on x and x can be transformed from one to
another by a polynomial algorithm, so PTF is still a weak one-way function (see
[Gol99] for details).

9

7 Complete one-way functions and DistNP-hard
combinatorial problems

Both our constructions of a complete one-way function look very similar to the
construction on the Tiling complete one-way function. This naturally leads
to the question: in what other combinatorial settings can one apply the same
reasoning to find a complete one-way function?

The whole point of this proof is to keep the function both length-preserving
and easily computable. The obvious functions fall into one of two classes.

1. Easily computable, but not length-preserving. Whenever one has a DistNP-
hard problem, one can have a hard-to-invert function f that transfers
protocols of this problem into its results. This function is hard to invert
on average, but it does not preserve length, and thus it is impossible to
translate a uniform distribution on outputs of f into a reasonable dis-
tribution on its inputs. The reader is welcome to think of a reasonably
uniform distribution on proper tilings that would result in a reasonably
uniform distribution on their upper rows; we believe that to construct
such a distribution is either impossible or requires a major new insight.

2. Length-preserving, but hard to compute. Take a DistNP-hard problem
and think about the function that sends its input into its output (e.g. the
lowest row of the tiling into its uppermost row). This function is hard to
invert and length-preserving, but it is also hard to compute, because to
compute it one needs to solve Tiling.

Following Levin, we get around these obstacles by having a deterministic
version of a DistNP-hard problem. This time, a Tiling problem produces non-
trivial results only if there always is only one proper tile to attach. Similarly, in
Section 5 we demanded that there is only one rewriting rule that can be applied
on each step (we introduced ⇒∗ for this very purpose). In Section 6 we gen-
eralize this idea of determinism, allowing fixed length deterministic backtrack.
However, if for all z ∈ f−1(y) we can do this deterministic procedure, then we
can easily invert f . So we need that for most z an indeterminism appears and
the procedure return z.

A combinatorial problem should have two properties in order to hold a com-
plete one-way function.

1. It should have a deterministic restricted version, like Tiling, string rewrit-
ing and modified Post Correspondence.

2. Its deterministic version should be powerful enough to simulate a deter-
ministic Turing machine (e.g. natural deterministic Post Correspondence
(without any backtrack) is, of course, easy to formulate, but it does not
seem to be powerful enough).

Keeping in mind these properties, one is welcome to look for other combi-
natorial settings with combinatorial complete one-way functions.

10

8 Discussion and further work

We have shown a new complete one-way function and discussed possibilities of
other combinatorial settings to hold complete one-way functions. These func-
tions are combinatorial in nature and represent a step towards the easy-to-
analyze complete cryptographic objects, much like SAT is a perfect complete
problem for NP.

However, we are still not quite there. Basically, we sample a Turing ma-
chine at random and hope to find precisely the hard one. This distinction is
very important for practical implications of our constructions. We believe that
constructing a complete cryptographic problem that has properties completely
analogous to SAT requires a major new insight, and such a construction repre-
sents one of the most important challenges in modern cryptography.

Another direction would be to find other similar combinatorial problems that
can hold a complete one-way function. By looking at our one-way functions and
Levin’s Tiling, one could imagine that every DistNP-complete problem readily
yields a complete one-way function. However, there is also this subtle require-
ment that the problem (or its appropriate restriction) should be deterministic
(compare ⇒∗

R and ⇒R). It would be interesting to restate this requirement
as a formal restriction on the problem setting. This would require some new
definitions and, perhaps, a more general and unified approach to combinatorial
problems.

Acknowledgments

The authors are very grateful to Dima Grigoriev, Edward A. Hirsch and Yuri
Matiyasevich for helpful comments and fruitful discussions.

References

[BG95] Andreas Blass and Yuri Gurevich. Matrix transformation is complete
for the average case. SIAM Journal on Computing, 24(1):3–29, 1995.

[BO93] Ronald V. Book and Friedrich Otto. String Rewriting Systems.
Springer-Verlag, 1993.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptog-
raphy. IEEE Transactions on Information Theory, IT-22:644–654,
1976.

[GHP06] Dima Grigoriev, Edward A. Hirsch, and Konstantin Pervyshev. A
complete public-key cryptosystem. Technical Report 006-046, Elec-
tronic Colloquium on Computational Complexity, 2006.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity, A Guide to the Theory of NP-Completeness. W. H. Freeman,
San Francisco, CA, 1979.

11

[Gol99] Oded Goldreich. Introduction to Complexity Theory. Lecture Notes.
Weizmann Institute of Science, 1998-99.

[Gur91] Yuri Gurevich. Average case completeness. Journal of Computer
and System Sciences, 42(3):346–398, 1991.

[HKN+05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon
Rosen. On robust combiners for oblivious transfer and other primi-
tives. In Eurocrypt’05, pages 96–113, 2005.

[Lev87] Leonid A. Levin. One-way functions and pseudorandom generators.
Combinatorica, 7(4):357–363, 1987.

[Lev03] Leonid A. Levin. The tale of one-way functions. Problems of Infor-
mation Transmission, 39(1):92–103, 2003.

[Wan95] Jie Wang. Random instances of bounded string rewriting are hard.
Journal of Computing and Information, 1(1):11–23, 1995.

[Wan99] Jie Wang. Distributional word problem for groups. SIAM Journal
on Computing, 28(4):1264–1283, 1999.

[WB95] Jie Wang and Jay Belanger. On the np-isomorphism problem with
respect to random instances. Journal of Computer and System Sci-
ences, 50(1):151–164, 1995.

12

