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Abstract. We show that every formula over the basis {∧,∨,¬} for a
function f : {0, 1}n → {0, 1}, such that ∀x, y ∈ f−1(1), d(x, y) ≥ 2d + 1,
has size

Ω(nd+2 |f−1(1)|
|f−1(0)| ) .

This immediately implies a lower bound Ω(n2) for a characteristic func-
tion of a BCH code of distance 2d + 1. The main technique used is
estimating the number of monochromatic rectangles needed to cover a
matrix.

1 Introduction

One of the most important problems in theoretical computer science is proving
lower bounds for various computational models. Boolean circuits is probably
the simplest such model. A Boolean circuit has n inputs, one output, interior
gates that are labeled by Boolean functions (usually, these are ∧, ∨ and ¬) and
computes in a natural way a function f : {0, 1}n → {0, 1}. By general counting
arguments it is possible to show that almost every Boolean function has ex-
ponential circuit complexity. Despite of this no nonlinear lower bound on the
circuit size of an explicit Boolean function is known. Some progress however has
been made in restricted settings.

Razborov [2] proved a superpolynomial lower bound on the monotone com-
plexity of the clique function. Exponential lower bounds are also known for
constant depth circuits (see, e.g., [3] and references therein).

In this paper we consider another restricted case of Boolean circuits, namely
Boolean formulas. A formula is just a circuit whose underlying graph is a tree.
While a formula is weaker than a circuit, it is known [4] that for any Boolean
function the minimal depth D(f) of a circuit and the logarithm of the minimal
size L(f) of a formula computing the same function f have the same asymptotic
behavior, i.e., ∀f : {0, 1}n → {0, 1},

D(f) = Θ(log L(f)) .

? After we finished this paper, we were told that the result was proved (by more simple
method) in [1]. However, you may still want to read our draft to get the details of
the proof (if, for example, you do not know Russian).



There are several general methods for proving lower bounds for the formula
size. For example, the method of Fischer, Meyer and Paterson [5] uses the fact
that simple functions have simple subfunctions, the Nečiporuk’s method [6] gets
rid of the fact that a simple function has only a few subfunctions, the method
by Khrapchenko [7] counts the number of pairs (x, y) such that f(x) = 0 and
f(x) = 1 and d(x, y) = 1 (where d(x, y) is the Hamming distance of words x and
y). See [8] for a survey of these and other methods.

In this paper, we prove lower bounds for functions f with f−1(1) having mini-
mal distance bounded below by a constant. Namely, we prove an Ω(nd+2 |f−1(1)|

|f−1(0)| )
lower bound on the formula size of any Boolean function f : {0, 1}n → {0, 1}
such that ∀x, y ∈ f−1(1), d(x, y) ≥ 2d+1. A natural candidate for a lower bound
given by our method is the characteristic function of a BCH code. We get an
Ω(n2) lower bound for this function (and this is actually the best bound that
can be obtained by using our theorem).

Our result is inspired by a recent paper by Lee [9]. He presented a new rank
technique for proving lower bounds on the formula size. It is based on estimating
the rank of a certain relation matrix. We generalize Lee’s method of estimating
the number of monochromatic rectangles needed to cover a matrix.

2 General Setting

2.1 Formula Size

By Bn we denote the set of Boolean functions g: {0, 1}n → {0, 1}. Let V =
{x1, . . . , xn} be a set of Boolean variables. A formula over the basis Ω ⊆ B1∪B2

is a rooted tree whose leaves are labelled with variables from V and nodes are
labelled with functions from Ω. The size of a formula is the number of leaves in
the tree. For a function f ∈ Bn, the formula size of f , denoted by LΩ(f), is the
minimum size of a formula over Ω which computes f . The two frequently used
bases are

– U = {∨,∧,¬},
– B = {all the functions of 1 and 2 variables}.

In this paper we consider the basis U .

2.2 Communication Complexity

There is a strong connection between formula size and communication complex-
ity of a function [10]. Let X and Y be two disjoint subsets of {0, 1}n. A commu-
nication protocol between Alice and Bob on X × Y is a binary tree, where each
internal node v is labelled either by a function av:X → {0, 1} or by a function
bv:Y → {0, 1} and each leaf is labelled by an integer i ∈ [1..n]. By C(X, Y ) we
denote the minimum number of leaves in a protocol that for any (x, y) ∈ X × Y
outputs a coordinate i such that xi 6= yi.

Theorem 1 ([10]). For every function f ∈ Bn,

LU (f) = C(f−1(0), f−1(1)) .



2.3 Covering by Rectangles

By selection function (or selection matrix ) for X × Y we mean a function that
maps a pair (x, y) to a coordinate at which x and y differ. By rectangle in
X × Y we mean a set that can be represented as X ′ × Y ′ for some X ′ ⊆ X,
Y ′ ⊆ Y . We say that a rectangle is monochromatic w.r.t. a selection function
S, if S is constant on this rectangle. By RS(X, Y ) we denote the minimal num-
ber of monochromatic rectangles needed to cover X × Y . Let also R(X, Y ) =
minS RS(X, Y ). It is not difficult to show [11] that R(X, Y ) ≤ C(X, Y ) (as every
communication protocol defines a covering in a natural way).

For a 0/1-matrix M , by R1(M) we denote the minimal number of rectangles
needed to cover all 1’s of M and by T1(M) we denote the total number of 1’s
in M . We say that a 0/1-matrix M [X, Y ] contains a 0/1-matrix M0[X ′, Y ′] if
X ′ ⊆ X, Y ⊆ Y ′ and ∀(x, y) ∈ X ′ × Y ′, M0[x, y] = 1 implies M [x, y] = 1.
Clearly, R1(M [X, Y ]) ≥ R1(M0[X ′, Y ′]).

Lemma 1. Let M [X, X] be a 0/1-matrix and suppose that it contains a matrix
M0[X, X], such that each column and each row of M0 contain exactly one 1 (i.e.,
M0 is a permutation matrix). Then

R1(M) · T1(M) ≥ |X|2 .

Proof. The proof is by induction on n. The base case (n = 1) is trivial. For
the induction step consider some covering of M by rectangles. Let X ′ × Y ′ be
a rectangle of this covering and suppose w.l.o.g. that |X ′| ≤ |Y ′|. Note that
the matrix M [X\X ′, X\X ′] satisfies the condition of the lemma. Let |X| = n,
|X ′| = n0, R1(M [X, X]) = r, T1(M [X, X]) = t. Then, by induction,

rt = R1(M [X, X]) · T1(M [X, X]) ≥

≥ (1 + R1(M [X\X ′, X\X ′])) · T1(M [X, X]) ≥ (1 +
(n− n0)2

t− n0
2

)t .

Thus, rt ≥ n2 if t(t−n0
2) + (n−n0)2 ≥ n2(t−n2

0). It is easy to see that the
last inequality is equivalent to (t− n0n)2 ≥ 0. ut

Intuitively, this lemma says that by adding a few 1’s to a permutation matrix
it is not possible to reduce greatly the number of rectangles needed to cover all
its 1’s. The following lemma is a simple extension of this fact.

Lemma 2. Let M [X, Y ], where k|X| = |Y |, be a 0/1-matrix and suppose that it
contains a matrix M0[X, Y ], such that each column of M0 contains exactly one
1 and each row of M0 contains exactly k 1’s. Then

R1(M [X, Y ]) · T1(M [X, Y ]) ≥ k|X|2 .



Proof. It is easy to see that Y can be represented as Y1∪Y2∪ . . .∪Yk, such that
for any i, |Yi|=|X| and the matrix M [X, Yi] satisfies the condition of Lemma 1
(see Fig. 1). Thus, for each Yi,

R1(M [X, Y ]) · T1(M [X, Yi]) ≥ R1(M [X, Yi]) · T1(M [X, Yi]) ≥ |X|2 .

By summing up all these inequalities one gets the required inequality. ut

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

Fig. 1. Matrices with blocks of 1’s.

For a selection function S, we define functions S1, . . . , Sn:X × Y → {0, 1}
as follows: Si(x, y) = 1 iff S(x, y) = i. Clearly, RS(X, Y ) =

∑n
i=1 R1(Si) and so

R(X, Y ) = minS

∑n
i=1 R1(Si). In our main result we apply Lemma 2 to estimate

this sum.

3 The Main Result

For x, y ∈ {0, 1}n, let diff(x, y) = |{i : xi 6= yi}|; d(x, y) = |diff(x, y)| is the
Hamming distance of x and y. We say that a set C ⊆ {0, 1}n has minimal
distance d, if ∀x, y ∈ C, d(x, y) ≥ d.

Theorem 2. Let d ≥ 1 be an integer constant, f ∈ Bn, A0 ⊆ f−1(0), A1 ⊆
f−1(1). If A1 has minimal distance 2d + 1, then

LU (f) = Ω(nd+2 |A1|
|A0|

) .

Let us first give some informal ideas for proving this theorem. Let C ⊂ {0, 1}n

be an error-correcting code of distance 3, i.e., ∀x, y ∈ C, d(x, y) ≥ 3. For example,
we can consider the Hamming code. Then, for n = 2t−1, |C| = n|C|. Let f ∈ Bn

be the characteristic function of the set C. Note that there are Ω(n2|C|) pairs
(x, y), such that x ∈ C, y 6∈ C and d(x, y) = 2 (as by flipping any two bits
in a Hamming word one gets a non-Hamming word). Now consider a selection
matrix S and let 0/1-matrices Mi, 1 ≤ i ≤ n, be defined as follows: Mi[x, y] = 1
iff S[x, y] = i and d(x, y) = 2. Obviously, for each i, Si contains Mi. Moreover,
each column of Mi contains at most one 1: if Mi[x1, y] = Mi[x2, y] = 1, then
diff(x1, y) = {i, j}, diff(x2, y) = {i, k} (for some j, k) and hence diff(x1, x2) ⊆
{j, k}. Fig. 2 shows the selection matrix for the Hamming code for n = 7, marked
cells indicate all possible places where the matrix M1 for this code can have 1’s.
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0000000 • • • • • •
0001111 • • • • • •
0010110 • • • • • •
0011001 • • • • • •
0100101 • • • • • •
0101010 • • • • • •
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1000011 • • • • • •
1001100 • • • • • •
1010101 • • • • • •
1011010 • • • • • •
1100110 • • • • • •
1101001 • • • • • •
1110000 • • • • • •
1111111 • • • • • •

Fig. 2. Selection matrix for a characteristic function of a Hamming code for n = 7. Cells (x, y), such that d(x, y) = 2 and x1 6= y1, are
marked.
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1000011 • • • • • ◦
1001100 • • • • • ◦
1010101 • • • • • ◦
1011010 ◦ ◦ ◦ ◦ ◦ ◦
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1110000 • • • • • ◦
1111111 ◦ ◦ ◦ ◦ ◦ ◦

Fig. 3. Matrix from Fig. 2. Marked cells indicate a 0/1-submatrix of size 5× 20, such that each row contains exactly five 1’s and each
column contains exactly one 1.



By the above arguments we know that the total number of 1’s in all Mi’s is
Ω(n2|C|). This means that some constant fraction of Mi’s contains Ω(n|C|)
1’s. From this we can conclude that in these Mi’s we can find matrices of size
approximately |C| × n|C| satisfying the condition of Lemma 2 (more precisely,
containing exactly n 1’s in each string and exactly one 1 in each column). Fig. 3
shows an example of such a matrix.

Now, the total number of 1’s in all Si’s is |C||C| = n|C|2 (as we need to cover
by monochromatic rectangles a matrix of size |C| × |C|). Then some constant
fraction of Si contains O(|C|2) 1’s. Overall, we have a constant fraction of Si,
each of which contains at most O(|C|2) 1’s and contains also a matrix of size
|C|×n|C| satisfying the condition of Lemma 2. Thus, each of this matrices needs
Ω(n) monochromatic rectangles and the Ω(n2) lower bound for f follows.

Before formalizing these ideas we prove two simple technical facts. Stated
informally, they say that if a sum of several elements is fixed, then many of
these elements are not big (compared to the sum) and vice versa.

Lemma 3. 1. Let
∑m

i=1 xi ≤ S, 0 < ∆ < 1. If c(1−∆)m ≥ 1, then

|{i : xi ≤ cS}| ≥ ∆m .

2. Let
∑m

i=1 xi ≥ S, 0 < ∆ < 1. If ∀i, xi ≤ X and ∆mX + mcS ≤ S, then

|{i : xi ≥ cS}| ≥ ∆m .

Proof. 1. If |{i : xi ≤ cS}| < ∆m, then |{i : xi > cS}| ≥ (1 − ∆)m and∑m
i=1 xi > cS(1−∆)m ≥ S.

2. If |{i : xi ≥ cS}| < ∆m, then at most ∆m of xi’s can be equal to X and all
the remaining xi’s do not exceed cS. Thus,

∑m
i=1 xi < ∆mX + mcS ≤ S.

ut

Proof (Theorem 2). Consider a selection function S for A1 ×A0. It is sufficient
to prove the stated lower bound for

∑n
i=1 R1(Si).

Let Mi[A1, A0] (1 ≤ i ≤ n) be a 0/1-matrix defined as follows: Mi(x, y) = 1
iff Si(x, y) = 1 and d(x, y) = d + 1 (so, Si contains Mi). Let also si = T1(Si),
mi = T1(Mi). It is easy to see that each column of Mi contains at most one 1:
if Mi[x1, y] = 1 and Mi[x2, y] = 1, then d(x1, x2) ≤ 2d.

Clearly,
n∑

i=1

si = |A1||A0| , (1)

n∑
i=1

mi = Cd+1
n |A1| and ∀i,mi ≤ Cd

n|A1| . (2)

Let
α =

8d + 8
n− 2d

, β =
1
4n

, γ =
1
8n

,

∆1 =
(8d + 7)n + 2d

(8d + 8)n
, ∆2 =

2n− 2d

(8d + 8)n
, ∆3 =

n− d

(8d + 8)n
.



By Lemma 3,
|{i : si ≤ α|A1||A0|}| ≥ ∆1n , (3)

|{i : mi ≥ βCd+1
n |A1|}| ≥ ∆2n . (4)

Let
I = {i : si ≤ α|A1||A0| and mi ≥ βCd+1

n |A1|} . (5)

It follows from (3) and (4) that |I| ≥ (∆1 + ∆2 − 1)n.
Now consider a matrix Mi for i ∈ I. For 1 ≤ j ≤ |A1|, let bj denote the

number of 1’s in the j-th row of Mi. By (5) we know that
∑|A1|

j=1 bj ≥ βCd+1
n |A1|.

It is easy to see also that for any j, bj ≤ Cd
n. Thus,

|{j : bj ≥ γCd+1
n }| ≥ ∆3|A1| . (6)

This means that Mi contains a submatrix of size ∆3|A1| ×∆3|A1|γCd+1
n , such

that each row of this submatrix contains exactly γCd+1
n 1’s and each column

contains exactly one 1. By Lemma 2,

R1(Si) ≥
∆2

3|A1|2γCd+1
n

si
≥ ∆2

3|A1|γCd+1
n

α|A0|
.

Thus,

n∑
i=1

R1(Si) ≥
∑
i∈I

R1(Si) ≥ (∆1 + ∆2 − 1)n∆2
3C

d+1
n

γ

α

|A1|
|A0|

. (7)

Finally, since (∆1 + ∆2 − 1) = (8d + 8)−1, ∆3 ∼ 1, Cd+1
n ∼ nd+1, γ/α ∼ 1,

by (7),
n∑

i=1

R1(Si) = Ω(nd+2 |A1|
|A0|

) .

ut

It is easy to see that Theorem 2 cannot prove lower bounds greater than
Ω(n2), since if f−1(1) has minimal distance 2d + 1, then |f−1(1)| = O(2n/Cd

n).
From the other hand, it is well-known that a BCH error-correcting code [12] has
size Ω(2n/Cd

n).

Corollary 1. Let Cn be a BCH error-correcting code of minimal distance 2d+1
and f be the characteristic function of Cn. Then LU (f) = Ω(n2).

4 Open Problems and Further Directions

The question on exact formula complexity of error-correcting codes remains
open. For example, a straightforward upper bound for the Hamming codes is
O(n2 log n), as these codes are defined by log n parities and it is known that the



complexity of parity is Θ(n2), while the lower bound given by our method is
Ω(n2).

Note that to prove lower bounds on the number of monochromatic rectangles
we use quite a simple criteria (Lemma 2). It would be interesting to find more
powerful ones.

Acknowledgments

We would like to thank Edward A. Hirsch and Pavel Pudlák for valuable com-
ments.

References

1. Rychkov, K.L.: A modification of khrapchenko’s method and its applications to
bounds on the complexity of pi-schemes and coding functions. Metody Diskretnogo
Analiza v theorii graphov i skhem 42 (1985) 91–98 (in Russian).

2. Razborov, A.A.: Lower bounds for the monotone complexity of some Boolean
functions. Dokl. Akad. Nauk SSSR 281(4) (1985) 798–801 (in Russian). English
translation in Soviet Math. Dokl. 31:354–357, 1985.

3. Paturi, R., Saks, M.E., Zane, F.: Exponential lower bounds for depth three boolean
circuits. Computational Complexity 9(1) (2000) 1–15

4. Spira, P.M.: On time-hardware complexity tradeoffs for boolean functions. In:
Proceedings of the 4th Hawaii Symposium on System Sciences, Western Periodicals
Company, North Hollywood (1971) 525–527

5. Fischer, M.J., Meyer, A.R., Paterson, M.S.: Ω(n log n) lower bounds on length of
boolean formulas. SIAM Journal of Computation 11(3) (1982) 416–427
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