
Lower Bounds of Static Lovász-Schrijver
Calculus Proofs for Tseitin Tautologies

Dmitry Itsykson ∗ Arist Kojevnikov †

St.Petersburg Department of

Steklov Institute of Mathematics,

27 Fontanka, 191023 St.Petersburg, Russia.

http://logic.pdmi.ras.ru/{~arist,~dmitrits}/

Abstract

We prove an exponential lower bound on the size of static Lovász-
Schrijver proofs of Tseitin tautologies. We use several techniques,
namely, translating static LS+ proof into Positivstellensatz proof of
Grigoriev et al., extracting a “good” expander out of a given graph
by removing edges and vertices of Alekhnovich et al., and proving
linear lower bound on the degree of Positivstellensatz proofs for Tseitin
tautologies.

1 Introduction

Expander graphs, that were introduced in the early 70s of previous century
by Margulis, play significant role in the complexity theory. The first lower
bound on the proof size in the resolution proof system was achieved on graphs
in [21]. Later it was improved by using expanders in [22]. The recent result
of Reingold [20] on the equivalence of two complexity classes, logspace and
symmetric logspace (L = SL), is based on properties of expander graphs. We
should also mention new simplified proof of PCP theorem using expanders
[8]. In this work we investigate the following property of expanders in the
framework of semialgebraic proof complexity: after removing small enough
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linear (with respect to number of vertices) number of edges the remaining
graph remains enough “good” expander.

The complexity of semialgebraic proof systems is one of the rapidly de-
veloped in last years area of propositional complexity. Semialgebraic proof
systems are proof systems for the language of unsolvable systems of polyno-
mial inequalities with rational coefficients and propositional variables.

One of the first introduced semialgebraic proof system was Cutting Planes
(CP). [9, 4, 7]. This system operates with linear inequalities with integer
coefficients by rules of addition and rounding. A proof in CP is the derivation
of contradiction 0 ≥ 1. Exponential lower bound for CP was proved by
Pudlak in [19].

Another semialgebraic proof system Lovász-Schrijver (LS) [15, 14] op-
erates with quadratic inequalities and uses the following rules: addition,
multiplication by variable or its negation. We also consider stronger version
of this system using as axiom the fact about nonnegativeness of the square
of linear polynomial (LS+). Exponential lower bounds for both systems are
unknown.

In this paper we prove exponential lower bound for static (and therefore
for tree-like) propositional prove system LS+. The only known lower bound
for static system LS+ was proved in [12] for system of linear inequalities
“symmetric knapsack”, that has not short representation as Boolean formula.
In the paper [3] lower bound nε was proved for tree-like LS as propositional
proof system.

The paper is organized as follows. Sect. 2 contains the necessary defini-
tions. The proof of the main result is based on ideas of Theorem 9.3 from
[12] and is divided into four parts. In Sect. 3 we prove that if a graph G
with n vertices is a “good” expander then we can extract a “good” expander
out of G after removing O(n) vertices. (This part of the proof was not nec-
essary in the [12] as there knapsack problem was considered.) In order to
do this, we use the technique of [1]. Sect. 4 contains the transformation of
the lower bound for Positivstellensatz into a Boolean degree lower bound for
static LS+. In Sect. 5 we extend the linear lower bound on degree of the
Positivstellensatz calculus [10] to linear lower bound on the Boolean degree
of Tseitin tautologies in binomial form. Finally, in Sect. 6 we obtain expo-
nential lower bounds for Tseitin tautologies in static and tree-like LS+ with
squares.
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2 Preliminaries

2.1 Proof systems

A proof system [6] for a language L is a polynomial-time computable func-
tion mapping words (treated as proof candidates) to L (whose elements are
considered as theorems).

A propositional proof system is a proof system for the language TAUT
of Boolean tautologies in disjunctive normal form (DNF). In order to com-
pare proof system for any co-NP-complete language with propositional proof
systems we need to fix a concrete reduction of TAUT to L.

An algebraic proof system is a proof system for the co-NP-hard language
of unsolvable systems of polynomial equations: we are given several polyno-
mials over a field F and the question is whether these polynomials have no
common roots in F. The polynomials are represented as sums of monomials
c · x1 · · ·xs, where x1, . . . , xs are variables and c ∈ F∗ = F \ {0} is a constant
given in some reasonable (e.g., binary) notation.1

It is easy to see that this problem is co-NP-complete: it is possible to
transform Boolean formula F in k-DNF with n variables into the set of
polynomials f1, . . . , fm such that the system of polynomials

f1, . . . , fm, x2
1 − x1, . . . , x

2
n − xn ,

has not common roots if and only if F is tautology. Let us give example
of such transformation: each clause Ci of formula ¬F in k-CNF containing
variables xi1 , . . . , xis we transform into a polynomial

fi = (1− li1) · . . . · (1− lis) , (2.1)

where lij = xij if the variable xij occurs in Ci positively, and lij = (1 − xij)
if it occurs negatively.

In Polynomial Calculus (PC) [5], one starts with the polynomial equation
system D and derives new polynomials using the following two rules:

f = 0 g = 0

f + g = 0
and

f = 0

f · g = 0
.

A proof in this system is a derivation of 1 = 0 from D using these rules.

1Unfortunately this representation does not permit to consider propositional formulas
without restriction on the length of conjunctions in DNF as (1−x1) · · · · · (1−xn) contains
exponential number of monomials. Therefore we consider algebraic proof systems for
co-NP-complete language of tautologies in k-DNF.
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We fix F as the field of rational numbers for all the following proof systems.
Positivstellensatz (PS) [13] operates with polynomials over a real field. The
proof D consists of polynomials g1, . . . , gm+n and h1, . . . , hs such that

m+n∑
i=1

figi = 1 +
s∑

j=1

h2
j . (2.2)

It is a “static” proof in the sense that it contains only one step. Note that
the right-hand side of (2.2) is the derivation in PC.

A semialgebraic proof system operates with language of unsolvable sys-
tems of polynomial inequalities. They are much more powerful than algebraic
proof systems. No nontrivial complexity lower bounds for some of them are
known so far. Moreover, in semialgebraic systems there exist short proofs of
many tautologies that are hard for other proof systems [12].

To define a propositional proof system working with inequalities, we trans-
late each formula ¬F with n variables in CNF into a system of linear inequal-
ities such that F is a tautology if and only if the system has not solution in
{0, 1}-variables. For a formula F , we translate each clause Ci of ¬F with
variables xj1 , . . . , xjt , into the inequality

li1 + . . . + lit − 1 ≥ 0 , (2.3)

where lij = xij if the variable xij occurs positively in the clause, and lij =
(1 − xij) if xij occurs negatively. For every variable xi, 1 ≤ i ≤ n, we also
add to the system D the inequalities

0 ≤ xi ≤ 1 . (2.4)

In Lovász-Schrijver proof system (LS) [15], one obtains the contradiction
0 ≥ 1 using the rules

f ≥ 0 g ≥ 0

λff + λgg ≥ 0
,

h ≥ 0

hx ≥ 0
,

h ≥ 0

h(1− x) ≥ 0
,

where λf , λg ≥ 0, the polynomial h is linear and x is a variable. Also, the
set of axioms (2.4) is extended by the inequalities

x2
i − xi ≥ 0 , for every variable xi, 1 ≤ i ≤ n . (2.5)

The system LS+ [15] has the same axioms and derivation rules as LS and
the addition axiom

h2 ≥ 0 , for every linear h . (2.6)
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The proof is tree-like if the underlying directed acyclic graph, representing
the implication structure of the proof, is a tree. That is, every inequality
in the proof, except for the initial inequalities, is used at most one as an
antecedent of an implication.

A proof of inequality system {f1 ≥ 0, . . . , fm ≥ 0} with n variables in
static LS+ [12] consists of positive real coefficients ci,s and multisets U+

i,s, U
−
i,s

determining the polynomials gi,s = ci,s ·
∏

k∈U+
i,s

xk ·
∏

k∈U−
i,s

(1− xk) such that

M∑
i=1

fi

∑
s

gi,s +
n∑

j=1

(x2
j − xj)

∑
s

gm+j,s +
n′∑

i=n+1

h2
i

∑
s

gm+i,s = −1 . (2.7)

Note that static proof systems like PS and static LS+ are not proposi-
tional proof systems in the sense of Cook and Reckhow [6], but are something
more general, since there is no obvious way to verify (2.7) in deterministic
polynomial time. However, they can be easily augmented to match the def-
inition of proof systems, by including a proof of equality (2.7) based on the
axioms of a ring (see F-NS of [11]). Clearly, any lower bound for the original
system is valid for any augmented system as well.

2.2 Tseitin formulas

Let us consider undirected graph G = (V, E), degrees of all vertices are not
exceed d, V ′ ⊆ V . For each edge e we attach propositional variable xe. For
each vertex v ∈ V ′ we write down

⊕
e3v xe = 1, and for each vertex v ∈ V \V ′

write down
⊕

e3v xe = 0.2 The conjunction of all written formulas we denote

as T V ′
G .
Formula T V ′

G may be defined by the following set of clauses:∨
e∈Sv\S′v

xe ∨
∨

e∈S′v

¬xe, (2.8)

for all vertices v ∈ V ′ and all even cardinality subsets S ′
v of set of edges

Sv that contain vertex v and for all vertices v ∈ V \ V ′ and all S ′
v of odd

cardinality.
We need in the following lemmas:

Lemma 2.1. Formula T V ′
G is unsatisfiable if cardinality of set V ′ is odd.

Proof. Assume that there is satisfying assignment for formula T V ′
G . Let us

consider graph G̃ that contains all edges of G with value 1 of corresponding

2Here and after ⊕ denotes operation sum modulo 2 (“exclusion or”)
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variable in satisfying assignment. Graph G̃ contains odd number of vertices
with odd degree. Therefore sum of all degrees is odd. But sum of degrees is
doubled number of edges.

For all subsets V ′ of odd cardinality formula ¬T V ′
G is called Tseitin tau-

tology. We will call formula T V ′
G Tseitin formula and will usually omit V ′ in

notations.
Substitution of a variable value in Tseitin formula TG corresponds to

removing of an edge in the graph G. Tseitin formula remain to be Tseitin
after substitution: if we substitute value 0 then set V ′ is not changed and if
we substitute 1 then both ends of the edge simultaneously change the parity
if the sum around and therefore parity of |V ′| is not changed. We use the
following simplified notation: if ρ is partial substitution of variable of formula
TG then we denote graph with set of edges corresponding to unassigned
variable of ρ as G|ρ.

Lemma 2.2. G = (V, E) is connected graph. The formula T V ′
G is satisfiable,

if cardinality of set V ′ is even.

Proof. One may find satisfying assignment of formula T V ′
G using the following

algorithm:

• Assign to all variables value 0. The number of vertices with broken
condition of parity is even.

• While there is vertices with broken condition of parity do:

– Choose two such vertices and flip value of edges on the path be-
tween them. Thus the number of vertices with broken condition
of parity is decreased by 2.

Lemma 2.3. Let us G = (V, E) be connected graph, U $ V . Then con-
junction of clauses from T V ′

G corresponding to vertices of set U is satisfiable
formula.

Proof. Consider connected components H1, H2, . . . , Hk of a graph GU =
(U,EU), where EU = {(u, v) ∈ E|u, v ∈ U}. If Hi contains even number
of vertices from V ′, then by Lemma 2.2 the part of the formula correspond-
ing to Hi may be satisfied (all external edges has value 0). If Hi contains
odd vertices from V ′, one may repair parity by assigning value 1 to one of
external edges.
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2.3 Expander graphs

For subsets I, I1 of vertices and subset of edges J ⊆ E we define boundary
operation ∂:

∂V \I,E\J(I1) = {(v, v′) ∈ E \ J : v ∈ I1 and v′ ∈ (V \ I1) \ I} .

Here and in the rest of the paper we use ∂V,E(I) as short notation for
∂V \∅,E\∅(I). We say that a graph G = (V, E) is an (r, d, c)-expander [17]
if the maximal degree of any vertex is d, and for every set X ⊆ V of cardi-
nality at most r,

|∂V,E(X)| ≥ c · |X| .

Further we always consider Tseitin formulas based on expanders.

2.4 Boolean degree

For lower bounds on PS refutations the following binomial representation of
Tseitin formulas was used [10]. To each edge of the graph G we assign a
{1,−1}-variable yk. The system TbG contains the equations

Y (v) = cv ·
∏
e3v

ye = 1 (2.9)

for each vertex v ∈ V ′ with constant cv = −1, for each vertex v ∈ V \ V ′

with constant cv = 1 and y2
e = 1.

The Boolean degree of monomial in {0, 1}-variables is the number of dif-
ferent variables in it. In case of {1,−1}-variables the Boolean degree of mono-
mial is the number of variables having odd degree in it. The Boolean degree
of polynomial is the maximum of Boolean degrees of all monomials in it.

We may transform polynomial in {0, 1}-variables into the polynomial in
{1,−1}-variables by means of the following substitution: xi = 1−yi

2
. From

the explicitly form of this substitution we may conclude the following lemma:

Lemma 2.4. The Boolean degree of polynomial in {0, 1}-variables does not
increase after the transformation to {1,−1}-variables.

3 Closure Operator on Expanders

In this section we describe cleaning procedure of expander graphs which is
very similar to cleaning procedure of expander matrices from [2, 1].
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For a (r, d, c)-expander graph G = (V, E) and a subset of its edges J ⊆ E
we define an inference relation `J on subsets of vertices I, I1 ⊆ V :

I `J I1
def⇐⇒ (|I1| ≤

r

2
) ∧ (

∣∣∂V \I,E\J(I1)
∣∣ <

c

2
|I1|) .

For a subset of vertices I and a set of edges J we consider the following
cleaning procedure:

• If there exists a nonempty I1 ⊆ V , such that I `J I1 and I ∩ I1 = ∅,
then take such I1 and add it to I.

• Repeat the cleaning step as long as it is applicable.

Let the closure Cl(J) of J be the result of cleaning procedure applied to ∅
and J .

The notion of Cl(J) is ambiguous and depends on choice of set I1. We
call as Cl(J) the result of any correct cleaning procedure. We will use special
cleaning procedure from the following Lemma.

Lemma 3.1. Let sets of vertices I1, I2, . . . , Ik be pairwise disjoint, |Ij| ≤ r/2
for all 1 ≤ j ≤ k and |∂V,E\JIj| < c/2|Ij|. Then there is cleaning procedure
with the following property: Ij ⊆ Cl(J) for all 1 ≤ j ≤ k.

Proof. For all j we have ∅ `J Ij, therefore I `J Ij for all sets I. We add sets
in the order: I1, I2, . . . , Ik. After it we add other sets in arbitrary order.

Informally speaking if we remove from expander graph edges from J ,
Cl(J) is precisely the set of vertex we need to remove from graph to make it
expander (but with worse properties).

Lemma 3.2 ([1], Lemma 3.4). Assume that a graph G = (V, E) is an
(r, d, c)-expander and J is a subset of its edges. Let I ′ = Cl(J) and J ′ =
{(v, x) ∈ E : v ∈ I ′ or x ∈ I ′}. Denote by G′ = (V \ I ′, E \ J ′) the graph
that results from G by removing vertices corresponding to I ′ and edges cor-
responding to J ′. If G′ is non-empty then it is an (r/2, d, c/2)-expander.

Proof. Follows immediately from the definition of Cl.

In the next lemma we show that if we take J of small cardinality, then
the graph G′ from Lemma 3.2 is non-empty.

Lemma 3.3 ([1], Lemma 3.5). Let a graph G = (V, E) be an (r, d, c)-
expander and |J | < cr/4. Then |Cl(J)| < 2c−1|J |.
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Proof. Assume that |Cl(J)| ≥ 2c−1|J |. Consider the sequence I1, I2, . . . , Is

appearing in the cleaning procedure; i.e.,

I = I1 ∪ I2 ∪ . . . ∪ Ik `J Ik+1 k = 1, . . . , s− 1 .

Note that Ii ∩ Ij = ∅ for all i 6= j. Denote by Ct = ∪t
k=1Ik the set of vertices

derived in t steps.
Let T be the first t such that Ct ≥ 2c−1|J |. Note that |J | ≤ c|CT |/2,

hence |CT | ≤ 2c−1|J | + r/2 ≤ r. Because of the expansion properties of G,
∂V,E(CT ) ≥ c|CT |, which implies

|∂V,E\J(CT )| ≥ c|CT | − |J | ≥ c|CT |/2 . (3.1)

On the other hand, every time we add some It+1 to Ct during the clean-
ing procedure, by the subadditivity property for the boundary operator we
add strictly less than c/2|It+1| new elements to ∂V,E\J(CT ). This implies
|∂V,E\J(CT )| < c|CT |/2, which contradicts (3.1).

4 Simulation of Static LS+ in PS

In this section we transform a proof in static LS+ of the system of linear
inequalities TaG into a PS proof of the system of binomial equations TbG

with constant increase of Boolean degree.
Let us consider PS proof

1 +
M∑

j=1

h2
j =

n∑
i=1

figi, (4.1)

of binomial system of equalities PT : fi = 0, i = 1, . . . , n.
The Boolean degree of PS proof (4.1) is the maximum of Boolean degrees

of polynomials figi, 1 ≤ i ≤ n and h2
j , 1 ≤ j ≤ M .

Let us define the Boolean degree of static LS+ proof as maximum of
Boolean degrees of polynomials gi,l from proof (2.7) in static LS+.

Next two lemmas can be applied to a static LS+ proof P of arbitrary
Boolean formula F , they show that P can be transformed into the PS proof
of F with only constant increase of Boolean degree.

Fix a Boolean formula F with m clauses and n variables, let FA be set of
linear inequalities provided by translation (2.3) and FM be set of equations
provided by (2.1) from formula F .

Lemma 4.1. In static LS+, every proof P of FA can be transformed into a
proof P ′ of the polynomial equation system FM . Moreover, if Bdeg(P ) = k
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and the number of variables in every inequality of FA is at most d, then
Bdeg(P ′) ≤ k + d.

Proof. The proof P can be represented in the form

m∑
i=1

fA
i

∑
s

gi,s +
n∑

i=m+1

fi

∑
s

gi,s = −1 , (4.2)

where
gi,s = ci,s

∏
t∈U+

i,s

xt ·
∏

t∈U−
i,s

(1− xt)

for appropriate multisets of variables U+
i,s, U

−
i,s and a positive ci,s ∈ Q.

We show that the translation of a clause Ci = (l1∨ . . .∨ ldi
), i = 1, . . . ,m

into an inequality fA
i =

∑di

t=1 lt−1 ≥ 0 can be represented as the translation

of the clause Ci into an equation fM
i =

∏di

t=1(1− lt) = 0:

fA
i = −fM

i + ρ(l1, . . . , ldi
) , (4.3)

where the second summand ρ(l1, . . . , ldi
) is nonnegative and equal to a sum

of literal products. The induction base is ρ(l1) = 0 ≥ 0, the induction step is

ρ(l1, . . . , ldi
) = ρ(l1, . . . , ldi−1)(1− ldi

) +

di−1∑
t=1

lt · ldi
≥ 0.

Let us replace each fA
i in proof P by (4.2). As a result, we obtain the

proof P ′:

m∑
i=1

−fM
i

∑
s

g′i,s +
n′∑

i=m+1

fi

∑
s

g′i,s = −1 , (4.4)

where
g′i,s = c′i,s ·

∏
t∈U+

i,s

xt ·
∏

t∈U−
i,s

(1− xt)

for appropriate multisets U+
i,s, U

−
i,s and positive c′i,s ∈ Q.

Since the right-hand side of (4.3) has the Boolean degree at most d, the
Boolean degree of the new refutation is at most k + d.

Lemma 4.2. Every static LS+ proof P of FM can be transformed into PS
proof P ′ of it. If Bdeg(P ) = k and Bdeg(fi) ≤ d, then Bdeg(P ′) ≤ k + d.

10



Proof. We use ideas from the proof of Lemma 9.3, [12]. The refutation P
can be represented in the form

n+m∑
i=1

fi

∑
s

gi,s +
n′∑

j=1

h2
0,j · gm+n+1,j +

n′′∑
j=n′+1

gm+n+1,j = −1 ,

where fi, 1 ≤ i ≤ m are translations of Boolean clauses, fm+i = x2
i − xi,

1 ≤ i ≤ n and gi,s = ci,s ·
∏

t∈U+
i,s

xt ·
∏

t∈U−
i,s

(1− xt) for appropriate multisets

of variables U+
i,s, U

−
i,s, positive real ci,s, and linear h0,j.

Let us replace each occurrence of xe in gm+n+1,j by (xe − x2
e) + x2

e =
−fm+e +x2

e and each occurrence of 1−xe by (xe−x2
e)+(1−xe)

2 = −fm+e +
(1 − xe)

2, expand the factors obtained, gather all the terms containing at
least one of fi and the products of squares. As a result, we obtain PS proof
P ′ of the form

n+m∑
i=1

figi +
n′′′∑
j=1

h2
j = −1 ,

for appropriate polynomials gi, hj. The Boolean degrees of gi, hj are at most
Bdeg(gi,s) and Boolean degrees of all fi are at most d, so Boolean degree of
P ′ is at most k + d.

Next part of the reductions depends on Tseitin formula T = TG con-
structed according to graph G = (V, E) and its representations as systems of
linear inequalities, equations and binomials.

Lemma 4.3. Every PS proof P of TmG can be transformed into a PS proof
P ′ of TbG. The Boolean degree of P ′ is at most Bdeg(P ) + d.

Proof. Assume the proof P is as follows:∑
v,Sv

fM
v,Sv

· gv,Sv +
∑
e∈E

(x2
e − xe) · ge = 1 +

∑
j

h2
j .

First of all, we replace each occurrence of xe by (1− ye)/2. Note that the
substitution transforms each x2

e − xe = 0 into (y2
e − 1)/4 = 0, and each FM

into ∏
e∈Sv\S′v

1 + ye

2
·
∏
e∈S′v

1− ye

2
= 0 . (4.5)

Due to Lemma 2.4 the Boolean degree of the new proof is at most Bdeg(P ).
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Next, we multiply (4.5) and (2.9) for v ∈ V ′ and use the reduction modulo
ideal 〈y2

e = 1|e ∈ E〉:∏
e∈Sv\S′v

1 + ye

2

∏
e∈S′v

1− ye

2
(
∏
e3v

ye + 1) =

∏
e∈Sv\S′v

ye + y2
e

2

∏
e∈S′v

ye − y2
e

2
+

∏
e∈Sv\S′v

1 + ye

2

∏
e∈S′v

1− ye

2
=

∏
e∈Sv\S′v

ye + 1

2

∏
e∈S′v

ye − 1

2
+

∏
e∈Sv\S′v

1 + ye

2

∏
e∈S′v

1− ye

2
=

2 ·
∏

e∈Sv\S′v

1 + ye

2

∏
e∈S′v

1− ye

2
.

The set S ′
v has even cardinality, so

∏
e∈S′v

(ye − 1) =
∏

e∈S′v
(1− ye). A similar

equality holds for v ∈ V \ V ′.
Now we can write down the transformed proof P ′:∑
v,S′v

(
∏
e3v

ye + 1) · 2 · f ′M
v,S′v

· g′v,S′v
+

∑
e∈E

2−2 · (y2
e − 1) · g′e = 1 +

∑
j

h′
2
j ,

where the polynomials f ′M
v,S′v

, g′e, h′2j are obtained from fM
v,S′v

, ge, h2
j by apply-

ing the substitution xi = (1− ye)/2.
The Boolean degree of each equation (2.9) is at most d, hence Bdeg(P ′) ≤

Bdeg(P ) + d.

Lemma 4.4. Every static LS+ proof of the TaG can be transformed into a
PS proof TmG. We can bound the Boolean degree of the new proof by k+3d,
where k is the Boolean degree of the static LS+ proof.

Proof. Fix a static LS+ proof P of TaG and apply Lemma 4.1 to obtain a
static LS+ proof P ′ of the equation system TmG. Next, transform P ′ into
a PS proof P ′′ of TmG by Lemma 4.2. Finally, due to Lemma 4.3 we can
transform P ′′ into a PS proof P ′′′ of system TmG. The Boolean degree of
P ′′′ is at most k + 3d.

5 Linear Lower Bound on the Boolean De-

gree of the PS Proof of Tseitin Formulas

In this section we extend lower bound on the degree of the binomial Tseitin
formulas derivations in PS to lower bound on the boolean degree.

In [10] was used different notion of expanders but it is easy to see that
the result [10, Lemma 8] is also correct in the following form:
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Theorem 5.1 ([10], Lemma 8). For all d, c there is an ε0 so that if n-
vertex graph G is (n/2, d, c)-expander, then the degree of every PS derivation
of the system of equalities TbG is at least ε0n, where TbG is the binomial
representation of the Tseitin formula based on the graph G.

Lemma 5.2. Lets fi be the set of multilinear polynomials. Then every PS
derivation 1 +

∑
i h

2
i =

∑
j fjgj +

∑
t(x

2
t − 1)g̃t can be transformed into the

derivation 1 +
∑

i h
′2
i =

∑
j fjg

′
j +

∑
t(x

2
t − 1)g̃′t so that it’s Boolean degree

is not increased and degree of each variable in the polynomials h′2i , fjg
′
j and

(x2
t − 1)g̃′t is at most 2.

Proof. We will show that for any variable xq the derivation 1 +
∑

i h
2
i =∑

j fjgj +
∑

t(x
2
t − 1)g̃t can be transformed into the derivation 1 +

∑
i h

′2
i =∑

j fjg
′
j +

∑
t(x

2
t − 1)g̃′t so that it’s Boolean degree is not increased and the

degree of variable xq in the polynomials h′2i , fjg
′
j and (x2

t − 1)g̃′t is at most 2.
Assume that in all monomials of the polynomial p an algorithm α replaces

the variable xq in the even degree with 1 and in the odd degree with xq.
We denote h′i = α(hj), g

′
j = α(gj) and g̃′t = α(g̃t). The polynomial

1+
∑

i h
′2
i is not necessary equals to

∑
j fjg

′
j+

∑
t6=q(x

2
t−1)g̃′t. The main reason

is the following: before application of α two monomials were equal (may be
with different coefficients), and they are not equal after the application. Note
that parity of number of all appearances of variable xq was not changed and
degree of all the appearances after replacement is at most 2, therefore the
only way that two monomials after replacement become not equal is that
these monomials are of the type m and x2

qm. For all monomials of this type
we add to the right hand side of the derivation (x2

q −1)m with corresponding
coefficients.

Now we need to repeat with same operation for other variables.

Now we are ready to prove main result of this section:

Theorem 5.3. For all d and c there is a positive number ε so that for all
n ∈ N if n-vertex graph G is (n/2, d, c)-expander, then Boolean degree of any
PS derivation of the system of equalities TbG has degree at least εn.

Proof. Consider a derivation of the system TbG in PS:

1 +
∑

i

h2
i =

∑
j

fjgj +
∑

t

(x2
t − 1)g̃t.

By Lemma 5.2 we can transform it without increasing of boolean degree into
the derivation 1 +

∑
i h

′2
i =

∑
j fjg

′
j +

∑
k(x

2
t − 1)g̃′t. Boolean degree of the

13



last derivation is at least half of the initial degree. By Theorem 5.1 degree is
less then ε0n for some ε0.

Therefore the Boolean degree of the initial derivation is at least ε0
2
n.

Lemma 5.4. For any d and c there is an 0 < ε < 1 and R ∈ N so that
the Boolean degree of any static LS+ refutation of Tseitin formula (2.8) with
respect to (r, d, c)-expander G, where r = n/2, is at least εr for all r > R.

Proof. Let P be a static LS+ proof of the formula (2.8) represented as the sys-
tem of linear inequalities, and Boolean degree of P is k. We apply Lemma 4.4
and transform it to into a PS proof P ′ of the equation system (2.9) extended
by all y2

e − 1 = 0, e ∈ E. The Boolean degree of P ′ is at most k + 3d.
Theorem 5.3 implies that there is ε′ > 0 depended only on c and d, such

that k + 3d ≥ ε′n; the required statement follows from the fact that d is a
constant.

6 An Exponential Lower Bound on the Size

of Static LS+ Refutation of Tseitin Formu-

las

In this section we use the idea of the proof of lower bound for static LS+

from [12].

Lemma 6.1 ([12], Lemma 9.2). Let M denote the number of gi,s in (2.7)
that have Boolean degrees at least k and N denote the number of different
variables in (2.7). Then there is a variable x and a value a ∈ {0, 1} such
that the result of substitution x = a in (2.7) contains at most M(1−k/(2N))
nonzero polynomials gi,s|x=a of Boolean degrees at least k.

Proof. For each polynomial gi,s with Boolean degree at least k there is at least
k substitutions so that gi,s become zero. There is 2N different substitutions
of variables from the proof. Therefore there exists substitution x := a so that
at least Mk/(2N) polynomials gi,s with Boolean degree at least k become
zero.

In the following theorem we use graphs with a positive expansion constant
c > 1. For sufficiently large n there are such graphs of degree bounded by
a constant (see, e. g. the proof in the Sect. 4 of [18] that for any d-regular
graph G = (V, E) and any subset of vertices A ⊆ V

|∂A|
|A|

≥ (d− λ1)
|V \ A|
|V |

,

14



where λ is the second eigenvalue of G. It follows that G is ( |V |
2

, d, d−λ
2

)-
expander. As example of the graph with small second eigenvalue we use
Ramanujan graph: is a d-regular graph satisfying λ1 ≤ 2

√
d− 1 and use the

explicit construction of Ramanujan graphs, Sect. 5 of [18] or [16].
We assume that partial assignment is an ordered set of substitutions

of the form x := a, and we apply these substitutions in the given order.
For example, if an assignment ρ already contains x := 1 we assume that
ρ ∪ {x := 0} equals to ρ.

In Sect. 3 the operator Cl was defined for sets of edges. We extend it for
use with partial assignments: Cl(ρ) = Cl({e | ρ(e) is set to 0 or 1}).

Definition 6.2. Let f be a mapping from partial assignments to their ex-
tensions. For a set x1, x2, . . . , xκ of formula TG variables and for a {0, 1}-
constants set a1, a2, . . . aκ we define sequence of partial assignments with
respect to f as follows: ρ0 = ∅; ρi = f(ρi−1 ∪ {xi := ai}), 1 ≤ i ≤ κ.

Definition 6.3. An edge e is called a bridge in the undirected graph G if the
removing of e from G increases the number of connected components in G.

Theorem 6.4. Let graph G with n vertices be (r, d, c)-expander with c > 1,
r = n/2, d ≥ 4, formula TG be Tseitin formula with respect to G and κ =
d cr

13
e. Then there exists a mapping f such that for any xi and ai (1 ≤ i ≤ κ)

partial assignment ρκ, that is the last in the sequence of partial assignments
with respect to f , can be extended to partial a assignment σ and formula
TG|σ is nontrivial Tseitin formula with respect to (r/2, d, c/2)-expander with
number of vertices at least 3

4
n.

Proof. We define mapping f as the first part of result of the following algo-
rithm.

Algorithm A.
Input: Assignment π.
Output: Assignment π′ (an extension of π) and an assignment τ .

1. π′:=π, τ := ∅.

2. While G|π′ contains bridges execute steps 3-6.

3. Let e be lexicographically first bridge in the graph G|π′ . Let e split
connected component H on H1 and H2 (assume that |H1| ≤ |H2|).

4. Choose value a in such a way that a formula TH1|π′∪{xe:=a} becomes
satisfiable (it can be done by Lemma 2.3 since H is connected graph).

5. π′ := π′ ∪ {xe := a}, τ := τ ∪ {xe := a}.
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6. Extend π′ by satisfying assignment of formula TH1|π′ .

7. Return π′ and τ .

Using second part of result of the algorithm we define a mapping g. In-
formally speaking g is the part of assignment f(π) \ π corresponding to the
bridges.

We define a partial assignment τi as follows:

τ1 = g({x1 := a1}), τi = τi−1 ∪ g(ρi−1 ∪ {xi := ai}), 2 ≤ i ≤ κ .

For convenience we also define τ ′:

τ ′i = τi ∪ {x1 := a1} ∪
⋃

2≤j≤i: xj /∈ρj−1

{xj = aj}, 1 ≤ i ≤ κ .

Assignment τ ′κ corresponds to bridges and substitutions xi := ai.

Lemma 6.5. All graphs G|ρi
, 1 ≤ i ≤ κ consist of one connected component

and probably of some vertices of zero degree.

Proof. By induction on i. The graph G doesn’t contain bridges (otherwise a
bridge connects two connected components H1 and H2, |H1| ≤ |H2|, |H1| ≤
n/2 = r and 1 = |∂H1| ≥ dc|H1|e > 1). Therefore G|{x1:=a1} is connected
graph. By the construction of f we get that G|ρ1 consists of one connected
component and may contains some disconnected vertices.

Induction step. Assume that G|ρi
consists of one connected component

and probably of some vertices of zero degree. By construction G|ρi
doesn’t

contain bridges, therefore G|ρi∪{xi+1:=ai+1} also consists of one connected com-
ponent and of some vertices of zero degree. The application of f saves this
property.

Corollary 6.6. Let s = |τκ|. Then G|τ ′κ contains exact s + 1 connected
components H, H(1), H(2), . . . H(s), and all subformulas corresponding to H(i)

are satisfied by the assignment ρκ.

Proof. Each new component appears after removing a bridge from the graph.
By the definition of τi, s is exact the number of removed bridges.

By the construction of the algorithm A the size of the component H(i)

is at most r = n/2, since A every time chooses smallest component. By
the expansion property of the graph G: |∂H(i)| ≥ 3 (this inequality is true
if |H(i)| < 3 since each vertex has degree at least 4 and if |H(i)| ≥ 3 we
can estimate |∂H(i)| ≥ dc|H(i)|e ≥ 3). Hence the size of assignment τ ′κ is at
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least 3s
2
. On another hand the size of τ ′κ is at most κ + s since τ ′κ contains

exact s bridges and at most κ substitutions of the type xj := aj. Therefore
κ + s ≥ |τ ′κ| ≥ 3s/2 and κ ≥ s/2. And we can bound the size of τ ′κ in the
following way |τ ′κ| ≤ κ + s ≤ 3κ < cr

4
.

The size of H(i) is less then r/2, otherwise by the expansion property of
the graph G: |∂H(i)| ≥ cr/2, but the numbers of edges in the graphs Gτ ′κ

and G differ by |τ ′κ| < cr
4
. By Lemma 3.1 there is cleaning procedure such

that H(i) ⊆ Cl(τ ′κ) (since Hi is connected component in the graph Gκ).
By Lemma 3.3 |Cl(τ ′κ)| ≤ r/2 = n/4. The closure Cl(τ ′κ) consists of

all H(i) and some strict subset L of vertices from the component H. The
assignment ρκ satisfies all H(i). Since H is connected component in the graph
G|ρκ , ρκ can be extended to assignment σ, satisfying part of the formula TG|ρκ ,
that contains edges with at least one end in L. The assignment σ actually
removes from G the set of vertices Cl(τ ′κ) with incident edges. By Lemma 3.2
the graph Gσ is (r/2, d, c/2)-expander.

Theorem 6.7. Let G be (r, d, c)-expander, with c > 1, r = n/2, d ≥ 4, and
n is number of vertices. The degree of each vertex in G is at least 4. TG is
Tseitin formula with respect to G. Any static proof of formula TG in LS+

has size exp(Ω(n)).

Proof. Let P be a static LS+ proof of the TG. We set k = d εn
5
e, where ε is

from Corollary 5.4 for an (r/2, d, c/2)-expander.
Let f be mapping from the Theorem 6.4. We define the sequence of

assignments: ρ0 = ∅, ρ1, . . . , ρκ, κ = d cr
13
e. ρi = f(ρi−1 ∪ {xi := ai}), where

xi := ai are substitutions from Lemma 6.1 for the proof P |ρi−1
.

By the Theorem 6.4 there exists assignment σ such that σ extends ρκ

and P ′ = P |σ is static proof of Tseitin formula with respect to (r/2, d, c/2)-
expander.

Let M0 denote the number of polynomials gi,l of degree at least k in P .
Let us denote strictly positive constants (1 − ε/(5d)) by D (0 < ε < 1,
therefore 0 < D < 1) and c

26
by C.

Since each vertex has degree at most d, we can estimate the number of
edges: N = |E| ≤ dn/2. By Lemma 6.1, the refutation P ′ contains at most

M0(1 − k/(2N))κ ≤ M0(1 − εn/5
dn

)κ ≤ M0 · DCn nonzero polynomials g′i,l of
degrees at least k. By Corollary 5.4 there is at least one polynomial g′i,l of
degree at least εn/4 > k. Hence we have M0 ·DCn ≥ 1, i.e., M0 ≥ (1/D)Cn,
which proves the theorem.

Corollary 6.8. Any tree-like LS+ refutation of (2.8) for a connected d-
regular (r = n/2, d, c)-expander G with n vertices and c > 2 has size exp(Ω(n)).
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Proof. We can easily simulate any tree-like LS+ proof by a static LS+ proof
and apply Theorem 6.7 afterwards.
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