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Abstract. In this paper we report preliminary results of experiments
with finding efficient circuits (over binary bases) using SAT-solvers. We
present upper bounds for functions with constant number of inputs as
well as general upper bounds that were found automatically. We focus
mainly on MOD-functions. Besides theoretical interest, these functions
are also interesting from a practical point of view as they are the core
of the residue number system. In particular, we present a circuit of size
3n + c over the full binary basis computing MODn

3 .

1 Introduction

In the recent years SAT solving became one of the main tools for formal verifica-
tion [21]. In [9] it was proposed to use SAT in another very important area of the
digital hardware production, namely in logical design synthesis. At the present
time most electronic design automation tools (EDA) use algebraic manipulations
[16] or binary decision diagrams (BDD) [14]. There are some successful experi-
ments with genetic algorithms [7] and annealing optimizations [23]. See [10] for
a survey.

Kamath at el. [9] propose a translation of the logical design synthesis problem
to SAT. In [5] experiments with modern SAT solvers using this translation were
reported. One of the advantages of this method is that it can also be used to
prove lower bounds on Boolean functions, i.e., to prove that circuits of a given
size do not exist. We use a similar reduction to CNF, however we are working
with a more general computational model, namely with circuits over any binary
basis.

It is known that finding efficient circuits is a difficult and important task.
For many important functions there is a large gap between known lower and
upper bounds. This shows that our current understanding of circuits is quite
poor. As Williams notes [27] it might be helpful to know optimal circuits for
such functions at least for small values of input size. Knowing this could help us
to understand the structure of optimal circuits for general functions.
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In this paper we report results of experiments with finding efficient circuits
using SAT-solvers. We focus mainly on circuit complexity of MOD-functions
defined as follows:

MODn
K,k(x1, . . . , xn) = 1 iff

n∑
i=1

xi ≡ k (mod K)

(we omit k and/or n when they are not important). These are one of the simplest
symmetric Boolean functions. Circuit complexity of these functions was studied
by many researchers. Still, we know the exact circuit complexity for only a
few values of K. Table 1 shows known lower and upper bounds for MODn

K in
different computational models. There, by C and L we denote the circuit and
formula complexity, respectively; B2 is the full binary basis, U2 = B2 \ {⊕,≡}.
Interestingly, for formulas and circuits over the bases U2 and B2 it is known that
the complexity of MODn

K , K = 3 or K ≥ 5, is not less than the complexity of
MODn

4 . However, for none of these models it is known that MODn
3 or MODn

5 is
strictly harder than MODn

4 .

K LU2 LB2 CU2 CB2

2
lower

Θ(n2) [11] n 3n + c [24] n− 1
upper

3
lower Ω(n2) [11] Ω(n log n) [6] 4n + c [28] 2.5n + c [25]

upper O(n2.58) [2] O(n2) [26] 7n + o(n) [17] 5n + o(n) [17]

4
lower Θ(n2) [11]

Ω(n log n) [6]
4n + c [28]

2.5n + c [25]
upper O(n2 log2 n)[6] 5n [28]

≥ 5
lower Ω(n2) [11] Ω(n log n) [6] 4n + c [28] 2.5n + c [25]

upper O(n4.57) [19] O(n3.13) [19] 7n + o(n) [17] 5n + o(n) [17]

Table 1. Known lower and upper bounds on the complexity of MODn
K in different

computational models.

Another motivation for studying MOD-functions is that a residue number
system [12] is based on such functions. One of the main advantages of the residue
number system is that additions, subtractions and multiplications are carry-free.

MOD-functions can be computed inductively. For example, the optimal cir-
cuit of size 2.5n + c for MODn

4 by Stockmeyer [25] is constructed from blocks
consisting of 10 gates that sums 4 new variables with a residue number modulo
4, see Fig. 1. There, the bits z0, z1 encode the value of

∑n
i=1 xi (mod 4) as



follows:
n∑

i=1

xi (mod 4) =


0, if (z0, z1) = (0, 0),
1, if (z0, z1) = (1, 1),
2, if (z0, z1) = (1, 0),
3, if (z0, z1) = (0, 1).

The two output bits z′0, z
′
1 encode the value of

∑n+4
i=1 xi (mod 4) in the same

way. Thus, one can prove general upper bounds on the circuit complexity of
MOD-functions by finding efficient blocks of constant size. We report the results
of experiments with finding such blocks by translating them to SAT.

z1 z0 xn+1 xn+2 xn+3 xn+4

⊕ ≡

∧ ⊕

⊕ ⊕

⊕

∨ ⊕

⊕

z′
1 z′

0

Fig. 1. Stockmeyer’s block for MOD4

The rest of the paper is organized as follows. In Sect. 2 we give all the nec-
essary definitions. Section 3 describes the way we translate the fact of existence
of a particular circuit into a CNF formula. In Sect. 4 we present some new cir-
cuit complexity upper bounds that were proved automatically. Sect. 5 presents
results of experiments. Finally, in Sect. 6 we discuss some further directions.

2 General Setting

By Bn we denote the set of all Boolean functions f : {0, 1}n → {0, 1}. A function
f ∈ Bn is called symmetric if its value depends on the sum of the input bits only.
That is, there must exist a vector v ∈ {0, 1}n+1 such that f(x1, . . . , xn) = vs

where s =
∑n

i=1 xi. A typical symmetric function is a modular function MODn
K,k

defined as follows:

MODn
K,k(x1, . . . , xn) = 1 iff

n∑
i=1

xi ≡ k (mod K) .



A circuit over the basis A ⊆ B2 is a directed acyclic graph with nodes of
in-degree 0 or 2. Nodes of in-degree 0 are marked by variables from {x1, . . . , xn}
and are called inputs. Nodes of in-degree 2 are marked by functions from A and
are called gates. There are also special output gates. The size of a circuit is its
number of gates. In this paper we mainly consider circuits over the full binary
basis B2.

We call a function f ∈ Bn degenerated if it does not depend essentially on
some of its variables, i.e., there is a variable xi such that the subfunctions f |xi=0

and f |xi=1 are equal. It is easy to see that a gate computing a degenerated
function from B2 can be easily eliminated from a circuit without increasing its
size (when eliminating this gate one may need to change the functions computed
at its successors). For example, a gate computing NOT is degenerated. The set
B2 contains exactly ten non-degenerated functions f(x, y):

– eight functions of the form ((x⊕ a) ∧ (y ⊕ b))⊕ c, where a, b, c ∈ {0, 1};
– two functions of the form x⊕ y ⊕ a, where a ∈ {0, 1};

3 Using SAT-Solvers for Finding Small Circuits

In this section we give the details of the reduction we use to encode the fact of
existence of a particular circuit in CNF. We first describe the general reduction
which is quite similar to the one described in [3] (where circuits over the basis U2

are considered) and then discuss also some additional encoding which is specific
to the considered functions.

3.1 Representing Circuits as CNFs

Given a truth table of a Boolean function f :Bn → Bm we would like to find
a Boolean circuit computing f over the given basis A ⊆ B2 with the smallest
possible number of gates. We can encode the fact of existence of a circuit with
N gates computing the function f in CNF using the following Boolean variables
(input variables are numbered from 0 to n− 1 and gates from n to n + N − 1):

1. tib1b2 (n ≤ i < n + N , 0 ≤ b1 < 2, 0 ≤ b2 < 2) is the output of the i-th gate
if its first input is b1 and the second is b2. Four variables ti00, ti01, ti10, ti11
thus completely define the binary Boolean function computed by the i-th
gate. It gives O(N) variables in total.

2. cikj (n ≤ i < n + N − 1, 0 ≤ k < 2, 0 ≤ j < n + N) is true if the k-th
input of the i-th gate comes from the j-th gate and false otherwise. These
variables completely define the underlying graph of a circuit. It gives O(N2)
variables in total.

3. oij (n ≤ i < n + N , 0 ≤ j < m) is true iff the j-th output of a circuit is
computed by the i-th gate. These variables define which gates are used as
outputs. It gives O(Nm) variables in total.



4. vit (0 ≤ i ≤ n + N , 0 ≤ t < 2n) is the output value of the i-th gate if the
input variables have values represented by the bits of t. These variables are
used to describe the fact that the values computed by a circuit are correct
(according to the given truth table) on all 2n assignments to input variables.
It gives O(2nN) variables in total.

The following requirements about the circuit are written down as clauses.

1. Binary functions computed by gates belong to the basis A.
2. For all (i, k), exactly one variable cikj is true (the k-th input of the i-th

gate is connected to only one gate). It gives O(N3) 2-clauses and O(N)
O(N)-clauses.

3. For all j, only one variable oij is true (the j-th output is computed by exactly
one of the gates). It gives O(N2m) 2-clauses and O(m) O(N)-clauses.

4. For all 0 ≤ i < n and 0 ≤ t < 2n, vit is equal to the corresponding bit in t.
It gives O(n · 2n) 1-clauses.

5. For all n ≤ i < n + N and 0 ≤ t < 2n, vit is equal to the value computed
by the i-th gate in the part of a circuit described by other variables. It gives
O(N3 ·2n) 6-clauses and this is where the most significant part of all clauses
comes from. Clauses of this type are written for all n ≤ i < n+N , n ≤ j0 < i,
j0 < j1 < i, 0 ≤ i0 < 2, 0 ≤ i1 < 2, 0 ≤ r < 2n and look as follows:

¬ci0j0 ∨ ¬ci1j1 ∨ ¬(vj0r = i0) ∨ ¬(vj1r = i1) ∨ (vir = tii0i1) .

Here first two literals let us find two gates, that are inputs of the i-th gate, the
following two literals let us find the values of these gates on input assignment
r and the last literal is for checking that the value in the i-th gate is correct.

6. The outputs of a circuit are computed correctly. It gives O(N2nm) 2-clauses.
Clauses of this type are written for all 0 ≤ k < m, 0 ≤ r < 2n, n ≤ i < n+N
and look as follows:

¬oik ∨ (vir = valuekr) ,

where valuekr is the required value of the k-th output on input assignment
r, according to the given truth table.

The clauses described above completely define all the requirements on a cir-
cuit. W.l.o.g. we can assume also that the following statements are true.

1. Both inputs of every gate are computed by gates with smaller numbers (i.e.,
the gates are sorted topologically w.r.t. the used numbering).

2. For every gate its first input gate has a smaller number than the second one.
3. The gates do not compute degenerated functions.
4. At least one of the outputs is computed by the last gate.

In most interesting cases the resulting formulas turn out to be quite difficult
for modern SAT-solvers. E.g., a formula encoding the fact of existence of a circuit
consisting of, say, 12 gates is already quite hard. This is because the number of
different circuits as a function of the number of gates grows extremely fast. That



is why in some cases we used also some additional restrictions that reduce the
set of considered circuits. The main two of them are given below. Note however
that unsatisfiability of a CNF formula with at least one of these restrictions does
not imply that a circuit of a given size does not exist.

1. The out-degree of every gate is at most 2.
2. The i-th gate is fed by the (i − 1)-th gate (i.e., there is a directed path

through all the gates).

3.2 Residue Number Encodings

In the previous subsection we consider functions given by a truth table. Note
however that one can work as well with partially defined functions and, more
generally, with functions satisfying some particular properties. E.g., when search-
ing for an inductive block for a MOD-function it is not clear what is the optimal
encoding of a residue number. Thus, instead of providing a truth table of a block
one can write down the fact that this block sums up new variables with a residue
number which is encoded somehow.

Assume that we are looking for a block for MODK . Such a block sums up sev-
eral variables with a residue number modulo K whose encoding is not known in
advance. This residue number is encoded by dlog2 Ke bits. Since the encoding is
not known, we introduce new variables eij , where eij is true iff bit representation
of 0 ≤ j < 2dlog2 Ke encodes the residue number 0 ≤ i < K. Thus, a particular
residue number can be encoded by several j’s. Except for some straightforward
clauses stating that each i is encoded by some j and that each j is used for
exactly one i we add also the following statement. For each possible assignment
for inputs of a block, if the sum of input variables is s and the input residue
number is i (i.e., the corresponding eij is true), then the output residue number
cannot be j′ for all j′ such that ei′j′ is true for some i′ 6≡ i + s (mod K).

To give an example assume that we are searching for a block that takes as
input a residue number t modulo 3 which is somehow encoded by two bits (z0, z1)
and a new variable xn and outputs two bits (z′0, z

′
1) that encode in the same way

t + xn (mod 3). Then, e23 is true iff (z0, z1) = (1, 1) implies t = 2 and e11 is
true if (z0, z1) = (0, 1) implies t = 1. Now we add the following constraint:

(e23 ∧ z0 ∧ z1 ∧ xn ∧ e11) ⇒ (z′0 ∨ ¬z′1) .

These residue number encodings turned out to be quite helpful as only with
them we were able to find an efficient block implying a 5.5n+ c upper bound for
CU2(MODn

3 ). However in most cases finding a block with an unknown encoding
is a much more difficult task.

4 New Upper Bounds for MOD3

Our main theoretical results are circuits of size 3n + O(1) and 5.5n + O(1)
for MODn

3 over the bases B2 and U2, respectively. The building blocks of the



circuits (as well as their truth tables) are given in Fig. 2 and Fig. 3. The blocks
take as input the value of

∑n
i=1 xi (mod 3) encoded by a pair of bits (z1, z2)

and three respectively two new variables. The output is the pair of bits (z′1, z
′
2)

encoding the value of
∑n+3

i=1 xi (mod 3) respectively
∑n+2

i=1 xi (mod 3). The
residue number encodings for the blocks are the following:

n∑
i=1

xi (mod 3) =

 0, if (z0, z1) = (0, 0),
1, if (z0, z1) = (0, 1),
2, if z0 = 1,

and
k∑

i=1

xi (mod 3) =


0, if z0 = 0,
1, if (z0, z1) = (1, 0),
2, if (z0, z1) = (1, 1).

The upper bounds CB2(MODn
3 ) ≤ 3n + O(1) and CU2(MODn

3 ) ≤ 5.5n + O(1)
follow immediately from the existence of such blocks.

The blocks were found after a long sequence of experiments with different
restrictions on considered circuits as without restrictions the resulting formulas
cannot be handled by solvers. We still do not know whether the first block for
adding three variables is optimal and thus a 8n/3 upper bound for CB2(MODn

3 )
is not excluded.

In Table 2 we also present the sizes of optimal circuits over B2 for MODn
3,k

for different values of n and k. CB2(MOD5
3,2) ≤ 10 means that we found a circuit

of size 10, but were unable to prove unsatisfiability of the fact that there exists
a circuit (without any restrictions on its structure) of size 9. Optimal circuits
are given in Fig. 4.

n = 3 n = 4 n = 5

k = 0 3 7 ≤ 10

k = 1 4 7 ≤ 9

k = 2 4 6 ≤ 10

Table 2. Sizes of optimal circuits over B2 for MODn
3,k

5 Empirical Studies

Table 3 provides the results of experiments with several formulas. All our ex-
periments were made on a 2.40GHz AMD Opteron Processor 250 running un-
der Linux. The DIMACS hardware benchmark program dfmax r500.5 takes
7.11 seconds on the machine. We take compiled versions of best solvers from



xn+1 xn+2 xn+3z0z1

≡g1

∨g2

⊕g3

⊕g4

≡g5

∧g6

¬

≡g7

≡g8

∧g9

¬

z′
1z′

0

xn+1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

xn+2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

xn+3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

z0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

z1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

g1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

g2 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1

g3 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0

g4 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1

g5 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1

g6 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0

g7 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0

g8 0 0 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 1

g9 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1

z′
0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1

z′
1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0

Fig. 2. An inductive block for MOD3 over the basis B2 and its truth table.



xn+1 xn+2 z0 z1

∧g1

¬
∧g2 ∨g5

∨g3

¬

∧g4

¬
∨g7

¬

∧g6

¬

∧g10

¬

∧g8

¬

∧g11

¬

¬
∧g9

¬
¬

z′
0z′

1

xn+1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

xn+2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

z0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

z1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

g1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0

g2 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

g3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1

g4 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1

g5 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1

g6 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

g7 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1

g8 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

g9 0 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1

g10 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0

g11 0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0

z′
0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1

z′
1 0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0

Fig. 3. An inductive block for MOD3 over the basis U2 and its truth table.



x1 x2 x3

≡ ≡

∧

MOD3
3,0

x1 x2 x3

∧

∧
⊕

⊕

¬

MOD3
3,1

x1 x2x3

∨ ≡
≡

∧
¬

MOD3
3,2

x1 x2 x3 x4

⊕ ∧ ⊕ ∧

∨ ∨

≡

MOD4
3,0

x1 x2 x3x4

∨ ≡ ⊕∨

∧
¬

∧

≡

MOD4
3,1

x1 x2 x3x4

⊕ ≡ ⊕

∧
¬

∧

¬
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⊕

MOD4
3,2

Fig. 4. Optimal circuits for MODn
3,k for n = 3, 4
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mod3 4vars 6gates.cnf * 11m32s * * 3m16s 35m23s

mod4block 3vars 7gates.cnf * * * * * *

mod3block 3vars 9gates restr.cnf 1m27s 0m5s 0m59s 0m2s 0m18s 0m29s

mod5block 1var 7gates.cnf 0m1s 0m2s * 0m1s 0m1s 0m3s

mod4block 2vars 8gates u2.cnf * * * * 22m43s *

mod5block 2vars 12gates.cnf * * * * * *

mod4block 2vars 9gates u2.cnf * * * * * *

owp 4vars 5gates.cnf 0m0.2s 0m0.3s 2m14s 0m0.3s 0m0.1s 0m0.7s

Table 3. Statistics in real time

http://www.satcompetition.org/ and ManySAT and onespinsat from their au-
thors.

A two-hour real time limit applied to all runs of solvers (for the best of 4
solvers of the parallel solver ManySAT). It is interesting to see from experiments
that industrial solvers behave better on our benchmarks and more powerful
solvers demonstrate better performance. Below we describe the benchmarks used
in the table as well as benchmarks for which we still do not know the answer.
By N , K and L we denote the number of variables, the number of clauses and
the length (i.e., the total number of literals), respectively (however our formulas
contain some unit clauses and can be simplified).

– SAT
mod3block 3vars 9gates restr.cnf (N = 784, K = 219760, L =

1266513) expresses the fact that there exists a circuit that sums up a
residue number modulo 3 in a given encoding (0 — (0, 0), 1 — (1, 0),
2 — (1, 0), (1, 1)) with three new variables with two additional restric-
tions: there is a directed path through all the gates and the out-degree
of any gate is at most 2. The corresponding circuit is given in Fig. 2.

mod5block 1vars 7gates.cnf (N = 353, K = 50103, L = 292994) encodes
the fact that there exists an inductive block for MODn

5 adding two new
variables by 7 gates (residue number encoding is fixed).

– UNSAT
mod3 4vars 6gates.cnf (N = 289, K = 36396, L = 213400) expresses the

fact that CB2(MOD4
3,0) ≤ 6.

owp vars4 gates5.cnf (N = 267, K = 25667, L = 149802) encodes the
fact that CB2(f) ≤ 5 for a permutation f :B4 → B4 given in [15]. Un-



satisfiability of this benchmark justifies the fact that f has asymmetric
circuit complexity (CB2(f) = 6, CB2(f

−1) = 5).
– UNKNOWN

mod4block 3vars 7gates.cnf (N = 574, K = 125562, L = 742458) en-
codes the fact that there exists an inductive block for MODn

4 adding
three new variables by 7 gates (residue number encoding is fixed). Must
be unsatisfiable, as otherwise MODn

4 could be computed by circuits of
size about 7n/3.

mod4block 2vars {8,9}gates u2.cnf (N = 387/426, K = 66496/86121,
L = 389012/503636) encodes the fact that there exists an inductive
block for MODn

4 adding two new variables by {8, 9} gates in the basis
U2 (residue number encoding is fixed).

mod3block 2vars {9,10,11}gates u2 autoenc.cnf (N = 426/475/526,
K = 99345/125336/155313, L = 588054/741756/918948) encodes the
fact that there exists an inductive block for MODn

3 adding two new vari-
ables by 9 gates in the basis U2. Here the residue number encoding is
not fixed. Instead of this, benchmarks encode the fact that the required
circuit sums up several bits with a residue number modulo 3 whose en-
coding is not known in advance (details are given in Sect. 3).

mod4block 2vars {8,9,10,11}gates u2 autoenc.cnf (383 ≤ N ≤ 530,
81176 ≤ K ≤ 164070, 480856 ≤ L ≤ 965444) encodes the fact that there
exists an inductive block for MODn

4 adding two new variables by g =
8, 9, 10, 11 gates in the basis U2 (encoding is not fixed). Satisfiability of
a benchmark from this family would imply that CU2(MODn

4 ) ≤ gn/2+ c
(note that at the moment it is only known that 4n− c ≤ CU2(MODn

4 ) ≤
5n + c).

6 Further Directions

A natural further direction is to obtain more upper bounds for MODK-functions
for different values of K. Note however that even if an optimal circuit for a
MODn

K function can be constructed from inductive blocks, then these blocks
must be large for large values of K, just because one needs many bits in order to
encode a residue number modulo K. E.g., a block for summing up several new
variables with a residue number modulo K > 2t must have at least t inputs and
hence at least t gates. For t ≥ 15, even finding such circuits is a really difficult
task for modern SAT-solvers and proving that such a circuit does not exist is
much more difficult.

It would be interesting also to find efficient circuits for other important func-
tions. E.g., in [27] is is noted that it is easy to construct optimal circuits for 2×2-
matrix multiplication, while already for 3×3 this is a difficult task. It would also
be interesting to know optimal circuits for small input sizes for the well-known
CLIQUE-function which has super-polynomial complexity in the model of mono-
tone circuits [22]. Knowing optimal circuits for a function on small input sizes
could help to construct efficient circuits for all input sizes. SAT-solvers could



also apparently help to improve current upper bounds for addition and multipli-
cation. Note that the smallest known circuits and formulas for these functions
are also built from blocks [19].

Using the described reduction one can produce different unsatisfiable formu-
las (e.g., encoding the fact that there exists a circuit of size smaller than the
corresponding known lower bound). Such benchmarks turned out to be difficult
for modern solvers. One could think about complexity of such benchmarks in
different proof systems.

Another direction of further research is automatizing lower bounds proofs.
Essentially the only known method for proving lower bounds for unrestricted
circuits is gate elimination. For example, in order to prove a 2.5n−c lower bound
for MODn

4 Stockmeyer [25] proved that for any circuit computing MODn
4,k it is

possible to eliminate five gates by assigning values to two input variables. The
lower bound then follows by induction. However to prove that it is possible
to eliminate five gates one needs to consider many different cases. It would be
interesting to automate this case analysis.
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