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Abstract. The main criticism of known algebraic distributional NP
(DistNP) complete problems is based on the fact that they contain too
many specific relations to simulate a Turing machine. In this paper we
present a construction of the semigroup with very few relations and word
problem that is DistNP complete. Our construction follows Tseitin ideas
[Tseb6]. We modify original construction to work with words in stan-
dard binary presentation and arbitrary semigroups without any special
conditions on its relations.

The study of average case complexity (i.e. complexity of algorithms for problems
with probability distribution on instances) is hard and interesting from many
points of view. For example, in industry, it is interesting to understand the
behavior of programs on most common inputs, or in cryptography, hardness of
a cipher in the worst case is not too interesting.

In [Lev86] Levin defined a notion of distributional NP-complete problem
(DistNP-complete) where decision problem component belongs to NP and ev-
ery distributional problem consisting of an NP problem and a polynomial-time
computable distribution is reducible to it. The quest for usable and natural
DistNP-complete problem is not finished, although a lot of work were done in
this direction. Matrix transformation [BG95], matrix representability [VR92],
word problem for semigroups [WB95] and word problem for groups [Wan99]
have been shown to be DistNP-complete. From another side many important
questions are still open. For example, no construction of the simplest crypto-
graphic primitive such as one-way function from DistNP-complete problem is
known [Lev03]. For further information on average case complexity we refer the
reader to surveys [Gur91,Wan97,BT06].

In this work we propose a new simple construction of DistNP-complete prob-
lem that is based on the one of the most compact (in the overall representation)
undecidable algebraic problem, the word problem for Tseitin semigroup [Tse56].
The main idea of original construction is the following: given a semigroup G
with alphabet of 2 symbols a and b (where a codes a separator), with hard word
problem, we code all relations in G as a prefix in the alphabet of ¢,d (where ¢
codes a and d codes b) and use an additional symbol e to extract relations from
the prefix to simulate derivation in G.



To fit the word problem for Tseitin semigroup in the framework of average-
case complexity we have made two modifications in the construction. The first
one is that we work with semigroup G where a is not the separator. To present
symbol a in the prefix we use word d and to present b we use dd. Symbol ¢ works
as separator as before. The second modification is the following: in the original
construction semigroup G has in all relations an empty word at the right side.
Only one known construction of such semigroup follows from the group with a
hard word problem, i.e. Boone-Novikov construction. It is hard in it to check the
equivalence of two very special words: (zkz ')t and t(zkz~1). Since this word
problem is not natural at all, we modify the Tseitin construction such that it
works with any semigroup in “standard” representation: < a,b | Ky < Ly, t =
1..m >, where K, L; are not empty.

All known DistNP-complete problems have two parts: one is random word
and the second one is encoding of random Turing Machine. The probability of
random instance to code some Turing Machine is a constant, but very small
constant [Mya07]. In our construction any prefix in {¢, d}* that does not contain
word ddd and use ¢*,k > 3 as separator between rules codes some Turing Ma-
chine. So if we extend the semigroup with relation ddd = dd, then any random
prefix will code a Turing Machine. We can also use strings in binary alphabet
with uniform distribution as inputs for our problem: if we get a string X, then
transform first O(log|X|) bits to the encoding S of some semigroup (using sub-
stitution {0 <« ¢,1 « d} and writing constant number of ccc) and additional
words and use other symbols in X as z.

The paper is organized as follows. Sect. 1 contains the necessary definitions.
The proof of the main result follows [Wan99,AD00] and is presented in Sect. 2.

1 Preliminaries

In this section we recall basic definitions and results of average-case complexity
that we will use.

Let X denote some alphabet. A real-valued function p : X* — [0, 1] is prob-
ability distribution (or just distribution) iff Y . p(x) = 1. We assume that
u(A) = 0, where A is an empty string. We call the pair (A, u) a distributional
problem, where A is a decision problem and p is a distribution over inputs for A.
For distributions p and v, p is dominated by v (u < v), if there is a polynomial
p such that, for all z, u(x) < p(|z|)v(z).

Definition 1. We say that distributional problem (A, i) is polynomial time re-
ducible to distributional problem (B,v) if there is a polynomial time computable
function f (we call it reduction) such that x € A < f(x) € B and p is dom-
inated by v with respect to f, i.e. there is a distribution p; on A such that

p=pand v(y) =32 )=, 1 ().

(A, ) is in DistNP if A is in NP, and p is polynomial-time computable.
If a semigroup G has alphabet a1, ..., a, and relation set K1 < Lq,..., K,, <
L,, we will write G =< ai,...,a, | K1 < Li,..., Ky < Ly, >. We will also



write A «» B if words A, B are equivalent in G. If moreover A = UK,V and
B =UL;V for some i = 1..m we will call A < B elementary transformation.

To prove our completeness result we will use the following important lemma,
formulated in [WB95].

Lemma 1 (Distribution controlling lemma). Let p be a polynomial-time
computable distribution. Then there is a total polynomial-time computable and
polynomial-time invertible one to one function « : X* — X* such that for all x,
p(x) < 427 le@l

Also, if there is a polynomial p such that for all x, u(x) > 2-PU=1) | then there
1s a total polynomial-time computable and polynomial-time invertible one to one
function B : £ — 5*, such that for all x 4 - 2718 < p(x) < 20-2~18@),

2 Word Problem for Modified Tseitin semigroup

Definition 2. The distributional word problem for Tseitin semigroup is the
following decision problem:
Given a semigroup

Ts = <a,b,c,d,e | ac = ca,ad = da,bc = ¢b, db = bd, ccc = ecce,

ccee = cec, acdec = ecde, cdce = cedca, beddec = ecdde, cddce = ceddch >

where z,h € {a,b}*, S € {¢,d}* and a natural number n is in unary notation. Is
it possible to obtain Sh from Sx in Ts in at most n elementary transformations?

The distribution is the following: randomly uniformly and independently se-
lect number n and strings x,h € {a,b}*, S € {c,d}*. It is proportional to

9—(la|+15|+IA])
(nfz|[R]S])* -

Theorem 1. The distributional word problem for Tseitin semigroup is DistNP-
complete.

Proof. We follow the proof of undecidability of Tseitin semigroup presented in
[Tse56,AD00]. The main difference is that we use another definition of prefix
presenting a semigroup with hard word problem.

Let (D, ) be a distributional problem in DistNP. From distribution control-
ling lemma, there is a total polynomial-time computable and polynomial-time
invertible one to one function « : {0,1}* — {0, 1}* such that u(z) < 2~ 1@,

Lemma 2 ([WB95,Wan99]). There is a semigroup G with alphabet {0,1} and
|G| = O(log(|z|)) such that x € D <= sla(x)$ < h in G < sla(z)$ < h
using polynomial in |x| number of elementary transformations in G, where s, §
and h are words in G with length 2log(x) + O(1).

Let a semigroup G be the semigroup from Lemma 2 and the following finite
presentation:
< a,b | Kj > Lj, j =1.m >, Kj,LJ‘ 75 A.



Definition 3. We define the mapping T by induction on length of X in G:
7(A) = A, 7(Xa) = 7(X)ed, 7(Xb) = 7(X)edd.

For nonempty word X we will use the notation (X] to denote a word obtained
from X by removing the first symbol of X. Note, that for any nonempty word
X € {a,b}* it is true that

7(X) = e(r(X)].

We will use a word S to code all relations in G:
S = cer(Ky)er(Ly)eer(Ka)er(La) . .. em(Ly,)cece.
Also we need the following notation for reversing string in alphabet {c,d}:
A=A Xc=cX,Xd=dX.
Lemma 3. For any words P,Q € {a,b}*
P~ Q@ inG< SP < SQ in Ts,

moreover number of elementary transformations in both derivations are polyno-
mially dependent.

Proof. =>: Let
P=UL,V,Q =UK.,V.

It is easy to check that:

SQ = Sycer(Ki)er(Li)eceSaU LV — S1Ucer (K )eLy(Li)eceSaV
— S1Ucer(Ky)eLym(Ly)eceeSaV — S1Ucce(T(Ky)|cer(Ly)ceeS2V
— S1Uccce(r(Ky)|cKym(Le)cceSaV — S1Ucer (K )cKym (L )ceeSeV
— Sycer(Ky)er(Ly)ceeSsUKV = SP

To prove the reverse direction we need the following functions:

1. projections P, ;(X) and P, 4(X) of word X on alphabets {a,b} and {c,d}
respectively, i.e. take a word X and remove all symbols different from a,b
and c, d respectively;

2. function 7/, almost reverse to 7:

X, MEPea(X) = Uce,
(X)) = T (Pap(X)Uc)T (), iff P, 4(X) = Uer(a),
T'(VU)T (), iff P, ¢(X)=Ur(a) and P, ,(X) =Va,

is not defined,

where o € {a, b}.



3. extractor ¢ of the word in G from the word in Ts: £(U) = P, ,(U),

& (U)V), iff P.q(U) = Siccer(K)c or
§(UeV) = _ Pea(U) = Siceer(K)er(L) and Py y(U) = Ui L
E(UT (Vicece)W), otherwise,

where V' = VicecW is a word in Ts, U, V; are words in T's without e and
P, 4(UV) = S. Informally, we take a word in Ts and remove all e by moving
them to ccc in one virtual step, after that we project the word without e to

{a,b}*.
To finish the proof of the lemma we need the following fact:

Lemma 4. For words P € {a,b}* and X < SP in Ts the following holds in
semigroup G':
&(X) < P.

Proof. Let P be a word in the alphabet {a, b} and assume that X can be obtained
by the following sequence of elemental transformations in T's:

SP=Xy— X1 ... X, o X1 =X

It is easy to see that for all X, j =0..k+ 1 holds P 4(X;) = S.

We prove by induction on j. The base is true since {(SP) = P. Assume that
the lemma statement is proved for X. We need to show that £(Xj) = &(Xk+1)-
Consider the following cases:

1. X; =UaBV, X;11 =UBaV, for a € {a,b}, € {cd}:
If U = UycecUy and V' = VicecVs, where Us and Vi do not contain e, then
we can remove all e in Uy, V5 and

g(Xj) = Pa,b(UaﬁV) = Pa,b(Uﬁav> = f(X]+1)

Otherwise after a number of applications of 7/ to both sides, the difference
between £(X;) and £(X41) will disappear. Function 7/ is independent to an
application of the current rule, i.e. 7/(UafV) = 7'(UBaV).

2. X; =Uar(a)ecV, Xj11 = Uer(a)cV, for a € {a, b}:
Consider the case when P, 4(U) = Uiccer(K)er(L), P,y,(U) # UL and
V = ViceeW:

£(X;) =&Uar(a)ecVicceW)
= (Uar(a)('(cccV 1e))W) = E(U (1! (cecV 1¢)T(a) o) W)
= &(U (7' (cccVier ()W) = E(Uer(a)cViceeW) = €(Xj41),

otherwise:

§(X;) = EUar(a)ecV) = {(7'(Uar(a))cV)

X
(' (Uc)r(a)eV) = E(Ucer(a)cV) = §(Xj11).



3. X; =Ucr(a)eV, X111 = Ucer(a)aV, for a € {a,b}:
in this case P, 4(U) = Uyccer(K)e:

§(X;) = EUer(a)eV) = (7' (Uer(a))V)
=T (Ue)t(a)aV) = E(Ucer(a)aV) = &(Xj41).

4. Xj =UccceV, Xji1 = UcccV:

(X;) =E&WUccceV) = (7' (Uece)V) = E(UcecV) = £(Xj41)-

5. Xj =UecccV, Xj11 =UcccV:
Consider the case when P, 4(U) = Uyccer(K)er(L), Py p(U) # UL L:

§(X;) = EUecceV) = E(UT' (ece)V) = §(UeeeV) = {(UcceV) = §(X11),

otherwise (in the case with P, ,(U) = ZcccUs L, Us is a word without cce
and e) note that G contains rule K « L:

E(X;) =EUecceV) = (7' (U)eeeV) = E(ZeecUs K Pe q(U)UscecV )
— &(ZeecUs LP, q(U)UscecV) = (7' (U)eecV) = E(UcecV)E(Xj41).
O

<=: Assume that SP < SQ in Ts and use Lemma 4:

P =¢&(SP) « £(5Q) = Q.

From Lemma 2 and Lemma 3 we have the following:

Corollary 1. There is a word S € {c,d}* with length at most O(log(n)) such
that * € D <= Ssba(x)$ < Sh in Ts < Ssba(x)$ — Sh using polyno-
mial in |z| number of elementary transformations in Ts, where s, $ and h are
words in {a,b} with length 2log(xz) + O(1), string a(x) is obtained from a(x) by
substitution {0 <« a,1 < b}.

Now we are ready to finish the proof of Theorem 1. We define a reduction f as
follows:

f(@) = (8, sba()$, h).

The probability distribution of f(x), that is proportional to

o= (IS|+]sba(z)$|+|hl) 1
> 9~ la(@)
(O()[S][sba(x)8||])* — p(lz)
where p is a polynomial, dominates p(x). O
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