Graph expansion, Tseitin formulas and
resolution proofs for CSP

Dmitry Itsykson'* and Vsevolod Oparin?**

! Steklov Institute of Mathematics at St.Petersburg
dmitrits@pdmi.ras.ru
2 St.Petersburg Academic University of Russian Academy of Sciences
oparin.vsevolod@gmail.com

Abstract. We study the resolution complexity of Tseitin formulas over
arbitrary rings in terms of combinatorial properties of graphs. We give
some evidence that an expansion of a graph is a good characterization
of the resolution complexity of Tseitin formulas. We extend the method
of Ben-Sasson and Wigderson of proving lower bound for the size of
resolution proofs to constraint satisfaction problems under an arbitrary
finite alphabet. For Tseitin formulas under the alphabet of cardinality d
we provide a lower bound d*(“)=* for the tree-like resolution complexity
that is stronger than the one that can be obtained by the Ben-Sasson
and Wigderson method. Here k is an upper bound on the degree of the
graph and e(G) is the graph expansion that is equal to the minimal cut
such that both its parts are no more than twice bigger than each other.
We give a formal argument why a large graph expansion is necessary
for lower bounds. Let G = (V, E) be the dependency graph of the CSP,
vertices of G correspond to constraints; two constraints are connected by

an edge for every common variable. We prove that the tree-like resolution
e(H)logs |V

complexity of the CSP is at most d for some subgraph H of

G.

1 Introduction

Backtracking algorithms are the most popular approach to solving NP-hard
problems. The running of backtracking algorithms for SAT on unsatisfiable for-
mulas is closely connected with the tree-like resolution proof system. Lower
bounds on the complexity of resolution proofs imply the same lower bounds
on the running time of backtracking algorithms. First superpolynomial lower
bound for resolutions was proved by Tseitin [Tse68]; Tseitin used formulas that
coded the following simple fact: in every graph the number of vertices with odd

* partially supported by the grants MK-4108.2012.1 from the President of RF, by
RFBR grant 12-01-31239-mol-a, by the Programme of Fundamental Research of
RAS and by The Ministry of education and science of Russian Federation, project
8216.

** partially supported by RFBR grant 12-01-31239-mol-a, by Réseau STIC franco-russe
and ANR NAFIT 008-01.

degree is even. First exponential lower bound was proved by Urghart [Urq87].
The strongest known lower bounds were proved using the methods introduced
by Ben-Sasson and Wigderson in [BSWO01]. From practical point of view it is
more interesting to have lower bound for backtracking algorithms on satisfi-
able formulas; there are several lower bounds on satisfiable formulas [AHIO05],
[CEMTO09], [Its10], [IS12] under various restrictions on heuristics that choose a
variable for splitting and a value that would be investigated at first. However
all known lower bounds on satisfiable formulas are proved by reduction to lower
bounds on unsatisfiable ones.

Baker [Bak95] introduced very natural extension of resolution proof system
for constraint satisfaction problems (CSP) and defined the system NG-RES.
Baker studied different backtracking algorithms for CSP; Baker introduced the
notion of width of CSP and proved that there exists resolution proofs of size
exponential only in the width and polynomial in other parameters. Baker also
gave a hard distribution for backtracking algorithms for CSP and proved a su-
per polynomial lower bound for NG-RES. Mitchell [Mit02b] introduced the proof
system C-RES that was more powerful than NG-RES and proved an exponential
lower bound for random CSP in C-RES. Mitchell [Mit03] proved a superpoly-
nomial separation between C-RES and NG-RES and Hwang [Hwa04] proved an
exponential separation.

The paper [IPS97] proves that linear lower bound on the proof degree in
Polynomial Calculus implies the exponential lower bound on the proof size in
Polynomial Calculus under fields. The paper [BGIP99] presents a linear lower
bound on the degree of proofs of Tseitin formulas in Polynomial Calculus under
fields and rings. This lower bounds are proved only for alphabets of cardinality
p™ for prime p; and this result is not claimed to be optimal.

In this paper we are interested in the precise complexity of backtracking
algorithms (or tree-like resolution) on Tseitin formulas under an arbitrary finite
alphabet. In the propositional case the strongest lower bound for T'seitin formulas
follows from the paper of Ben-Sasson and Wigderson. Namely every tree-like
resolution proof of Tseitin formula based on a graph with maximal degree at
most & has the size at least 2°()=% where e(G) is an expansion of the graph that
is equal to the size of minimal cut such that such that both its parts are no more
than twice bigger than each other. Method of Ben-Sasson and Wigderson consists
of the two steps: first stage is an establishing of a relationship between the proof
size and the width of the proof; the second step is an establishing of a relationship
between the width of the proof and the expansion of the CSP. Mitchell in [Mit02a]
generalizes the relationship between size and width of the proof to a nonbinary
case. The trivial case of such a generalization to the alphabet of size d implies the
lower bound 2¢4(%)=* for the tree-like resolution complexity of Tseitin formulas,
where e is the size of the minimal cut such that both its parts are no more than
d times bigger than each other. Generally speaking e;(G) may be much smaller
than e(G) = e2(G).

For arbitrary CSP ¢ the results of [Mit02a] implies the following generaliza-
tion of [BSWO1]:

1 Sp(g) > 20k
2. S(¢) > exp (Q (M)))

where St(¢) and S(¢) are tree-like and general resolution complexity of ¢, e(¢)
is the expansion of CSP ¢.

The latter implies lower bound 2¢(4)=%~1 on the tree-like resolution complex-
ity of Tseitin formulas. By means of more a specific analysis for Tseitin formulas
we improve this lower bound and get d(¢(G)=F).

It is well known that lower bound proofs for Tseitin formulas use the graph
with a high expansion. We study the question whether a high expansion is indeed
necessary for lower bounds or not. We give the answer for arbitrary CSP: let G =
(V, E) be the dependency graph of CSP; vertices of G correspond to constraints;
two constraints are connected by an edge for every common variable. We prove
that the tree-like resolution complexity of the CSP is at most de(H)'log% vl for
some subgraph H of G. Thus for Tseitin formula ¢ based on the graph G =

(V, E) we have that there is a subgraph H of G such that d*F)=F < Sp(¢) <
geH)logg IV

In Section 2 we give definitions of basic concepts. In Section 3 we provide
the relationship between width of the proof and the expansion of the CSP. In
Section 4 we prove the stronger lower bound for the tree-like resolution complex-
ity of Tseitin formulas. In Section 5 we prove the upper bound on the tree-like
resolution complexity of the CSP in terms of the expansion of the dependency
graph.

2 Preliminaries

2.1 Constraint satisfaction problem (CSP)

Let X = {1,22,...,2,} be a finite set of variables that take values from a finite
set D, and S be a set of constraints; every constraint defines a subset of variables
X’ and a set of possible values that variables of X’ can take at the same time.
A triplet (X, D, S) is called a constraint satisfaction problem (CSP). If every
constraint restricts at most k variables than we call such problem k-CSP.

A partial substitution is a mapping p : X — D U {x}, where ‘*’ means an
unspecified value; a support of a substitution is the set p~*(D). A substitution
is complete if its support equals to X.

A partial substitution p satisfies a constraint R € S if after the substitution
of values of variables from the support of p the constraint R is satisfied indepen-
dently of values of the other variables. A substitution p satisfies CSP (X, D, S)
if p satisfies every constraint R € S. CSP ¢ is satisfiable if there exists at least
one substitution that satisfies ¢.

We call a constraint of the type —(z1 = a1 A -+ A xx = ai) the nogood,
where z1,...,zx € X, aq,...,ax € D. The notion of a nogood is an extension of
the notion of a clause in the propositional case (D = {0,1}). For example the
nogood —(z; = 0 A ze = 1) is equivalent to the clause (1 V Ts).

In what follows we consider only k-CSP and denote |D| = d. Every restriction
in k-CSP may be written as a conjunction of at most d* nogoods.

2.2 Backtracking algorithms

Now we define backtracking algorithms for CSP.

A backtracking algorithm is parametrized by two heuristics B and C and a
simplification procedure S. A heuristic B takes CSP ¢ and returns a variable x
for splitting. A heuristic C takes a pair (¢, x) and returns an order on D (this
is an order in which an algorithm substitutes values from D for the variable z).

The simplification procedure S(¢,z := a) removes from the @[z := a] all
constraints that have been already satisfied.

A backtracking algorithm A(¢) is defined as follows

— If ¢ does not contain constraints, return SATISFIABLE.

— If ¢ contains already falsified constraint, return UNSATISFIABLE.

— Pick a variable z := B(¢). According to the order given by C(¢,), for all
a € D make a recursive call A(S(¢,z := a)). If one of recursive call re-
turns SATISFTABLE, immediately return SATISFIABLE, otherwise return
UNSATISFIABLE.

The running time of the backtracking algorithm is the size of the recursion
tree. We ignore the computational complexity of heuristics B and C.

2.3 Resolution proof system

We consider only unsatisfiable instances of CSP.

We define a resolution proof system that generalizes a well known system in
the propositional case. This definition is due to [Bak95].

The resolution proof system is a way to show that a given CSP is unsatisfiable.
We assume that all constraints are represented as a set of nogoods.

Let {N,}aep be a set of nogoods such that N, = —(z = a A a,) for every
a € D. A nogood =(A,cp) is a resolvent of {N,}aep-

Definition 1. A sequence of nogoods m = {N;} is a resolution proof for CSP ¢
if

— every nogood N; is either a nogood of ¢ or a resolvent of d nogoods that
precede Ni: Ny, ,...,N;,, where ji,...,7Jq <i;
— the last nogood in the 7 is an empty nogood —() (i.e. contradiction).

Every resolution proof may be represented as a directed acyclic graph with
nogoods as vertices, there is an arc between INV; and N; if N; is in the premise
of the resolution rule that produced N;. The proof is called tree-like if its graph
is a tree. A tree-like resolution proof system accepts only tree-like proofs.

Similarly to the propositional case, the running of backtracking algorithms
on unsatisfiable CSPs and tree-like resolution proofs are equivalent.

Proposition 1 ([Bak95][Hwa04]). The size of the smallest tree-like resolution
refutation is exactly the same as the size of the minimal recursion tree of the
backtracking algorithm.

Thus upper and lower bounds on the size of tree-like resolution proofs pro-
vide the same upper and lower bounds on the running time of backtracking
algorithms.

2.4 Tseitin formulas and expansion

The paper [BGIP99] generalizes Tseitin formulas [Tse68] to the nonbinary case.
Consider a graph G = (V, E) and a function f : V — Z,. We associate every
edge e € F with a variable z.. For every vertex u we have a constraint of type

Z V(u,v) * T(uw)eE = f(u) mod d
(u,v)

where 7,y € {+1, —1}. Every edge (u,v) corresponds to a variable z, ,) and
two values v,y and 7(y,u) that satisfy v(u,») + V(w,u) = 0. Note that z(, ,) and
T(y,u) denote the same variable.

The following lemma is very similar to the propositional case.

Lemma 1. Tseitin formula ¢(G, f) based on a connected graph G is satisfiable
if and only if 3, f(v) = 0.

Definition 2. The expansion of a graph G = (V,E) is e(G) =
minycy, 1vi<ia<zivi [E(4, A

Further we will see the relationship between the expansion of a graph and
the sizes of resolution proofs of Tseitin formulas.

3 Resolution width and expansion

The paper [BSW01] introduced a technique of proving lower bounds in the propo-
sitional resolution proof system, that are quite strong. We generalize that result
to CSP.

Let us consider a k-CSP ¢ = (X, D, S) that is represented by a set of nogoods.

A width of a nogood is the number of variables that appear in it. If 7 is a
resolution proof of ¢, then a width of 7 is the maximal width of a nogood in 7;
we denote it by W(r). A width of refutation of CSP ¢ is the minimal width of
all resolution proofs of ¢; we denote it by W (¢ I 0).

Theorem 1 ([Mit02a]). For every k-CSP ¢ the following inequalities are sat-
isfied
Sr(g) = 2V o0k,

5(6) 2 ex (2 (WO)"“))) |

n

where St (¢) is the minimal size of a tree-like resolution proof of ¢ and Sy is the
minimal size of a resolution proof of ¢.

Let’s consider CSP ¢; let S be the set of constraints of ¢ (it is not necessary
that all constraints are nogoods). Let F' be some subset of the set of constraints
S; we denote by OF the set of variables x such that there is exactly one constraint
in F' that depends on z. The expansion of ¢ is defined as follows

e(9) = min |OF],

where the minimum is over all F' C S such that |5| < |F| < 2[S].

Definition 3. Let ¢ be an unsatisfiable CSP. We say that ¢ is minimally un-
satisfiable if ¢ becomes satisfiable after removing any of its constraints.

Theorem 2. Let ¢ be a minimally unsatisfiable CSP and S be a constraint set
of ¢. Let ¢ satisfy the following property:

— for every constraint f € S every two substitutions that violate f differ in at
least two variables.

Then W(¢pF 0) > e(p) — 1.

Proof. We say that a nogood N is semantically implied from F' C S, if every
substitution that satisfies F' also satisfies N. We denote this implication by
F = N. We define Ben-Sasson-Wigderson measure on the set of all nogoods.

For a nogood N we define u(N) = min{|F| | F C S,F E N}. The following
properties are straightforward:

— u(N) <1 for every nogood N from ¢;

= w(=0) = 15};
— If N is the resolvent of {N,}aep, then u(N) <> . p p(Ng).

Lemma 2. Let F' be a minimal set of constraints that semantically tmplies N.
Then the size of N is at least |OF|.

Proof. Note that for every constraint f € F there is the substitution p; that
refutes NV and f, but py satisfies every other constraint g € F. Otherwise we
may remove such constraint from F' and this contradicts to the minimality of F'.

For x € OF let f € F be the constraint depended on x. Then there exists
such a € D that changing a value of variable z in py to a makes it satisfy f and
therefore satisfy N. Thus N depends on zx. ad

In the propositional case we may finish the proof since the properties of a
measure g imply that every resolution proof contains a nogood N with a measure
in [£|S], 2|5|]. Lemma 2 implies that N contains at least e(¢) variables. However
for arbitrary d we can’t guarantee that such nogood N exists. We choose another
way.

Any resolution proof of the formula ¢ contains the nogood N such that it is
the resolvent of nogoods N, on a variable z, a € D, pu(N) > £|S| and for every
premise N, the inequality pu(N,) < %|S| holds.

Let F, be the minimal subset of constraints such that F, = N,. Since |F,| <
% |5, we can choose D' C D in such a way that for F’ defined as |J,.p Fu
we have - [S| < |F'| < 2-[S|. Thus [0F'| > e(¢), and by Lemma 2 for every
variable y € OF” there exists a nogood N, (a € D’) that depends on y. Therefore
(OF"\{z}) C Vars(N), hence |Vars(N)| > e(A) — 1, where Vars(N) is a set of
variables from the nogood N. O

Corollary 1. If a Tseitin formula ¢(G, f) is unsatisfiable, then W(o(G, f)
0) >e(G)—-1

Proof. Follows from Theorem 2 and Lemma 1. ad

Finally if the degree of all vertices in a graph G is at most k£ and Tseitin
formula ¢(G, f) is unsatisfiable, then Corollary 1 and Theorem 1 imply the
following lower bounds:

1. ST(¢) > 2e(G)—I<c—17
2. S(¢) > exp (Q (M))v

Note that we have 2 in the base of the exponent in the tree-like case as it
was for a binary alphabet. But it is more natural to have number d in the base
of the exponent since every node of the tree has d children. In the next section
we give more accurate analysis for Tseitin formulas and prove a lower bound
d(@)=F for tree-like resolution.

4 Lower bound for Tseitin formulas

In this section we prove the lower bound for the size of tree-like resolution proofs
of Tseitin formulas that is stronger than the lower bound from the previous
section. Consider a graph G = (V, E) and the unsatisfiable Tseitin formula ¢
based on it. Let the maximal degree of G be at most k. We assume that the
domain D equals Zg. We prove that Sp(¢) > d*(“)=* where St is the size of
the minimal tree-like resolution proof of ¢.

4.1 Reduced splitting tree

Let G = (V, E) be a connected graph with the maximal degree of vertices at
most k. We consider a protocol of a backtracking algorithm and define the notion
of the complexity of the graph G. It equals the minimal size of resolution proofs
of ¢(G, f). For a connected graph G we define

(L iV =1
cl6) = {mineeE T(G\ e) + 1, otherwise,

where T(G) is defined for all G with at most two connected components in the
following way:

7(G) = d-C(G), if G is connected;
T 1 (d—1)-C(G1) + C(G2), otherwise,

where G and G5 are two connected components of graph G and C(G1) < C(G2).

Lemma 3. The minimal running time of a backtracking algorithm on an unsat-
isfiable Tseitin formula ¢(G, f) based on a connected graph G does not depend
on the function f and equals C(QG).

Proof. We prove it by induction on the number of edges. The base of induction is
trivial. Consider now an arbitrary graph G = (V, E) and a function f : V — Z,.

Let optimal backtracking algorithm start with a splitting on a variable z.. In
the first case G'\ e is connected. Then we have to solve d subproblems of the type
#(G \ e, f!), where the function f/ differs from f at the ends of the edge e. By
the induction hypothesis the minimal running time of a backtracking algorithm,
on the formula ¢(G \ e, f7) is equal to C(G \ e). Therefore the total number of
steps of the optimal backtracking algorithm is d - C(G \ e).

In the second case the edge e is the bridge of the graph G. Let G; and
G2 be the two connected components of G \ e. After the substitution z. := a,
the formula ¢(G, f) splits into two independent subformulas ¢; and ¢2, that
correspond to graphs G, G2 and to functions fi 4, fa,, respectively.

We show that there is exactly one value of x, that makes the formula ¢; satis-
fiable for 4 = 1, 2. The inductive hypothesis implies that the minimal complexity
of a backtracking algorithm is (d — 1) - C(G1) + C(G2) + 1.

Let an edge e connect vertices u and v and the vertex v belong to G;. Note
that values of functions f;, and f on the vertices of the graph G; can differ
only at vertex v. Lemma 1 implies that if we fix f; ,-values for all vertices in G
except v, then there exists exactly one value of f1 ,(v) that makes ¢ satisfiable.

O

Lemma 3 allows to present a protocol of a backtracking algorithm in an
economical way. We define a rooted tree; nodes of this tree are marked with
connected graphs. For the Tseitin formula ¢(G, f) our tree T looks as follows:

— The root of the tree is marked by G.

— Every leaf of the tree is marked by a graph with one vertex.

— Every node of the tree has either one or two children.

— Let node v be marked by a graph G,. If v has only one child then it is
marked by G, \ e for some edge e. If v has two children then each of them is
marked by the corresponding connected component of G, \ e for some bridge
ein G,.

We call such a tree a reduced splitting tree.

We define a function f on the nodes of a reduced splitting tree.

1, if v is a leaf;
f(w)=<¢ d- f(u)+1, if u is a unique child of v;
(d—1)- f(u1) + f(uz2) + 1, where uy, ug are children of v and f(uy) < f(ug);

For a reduced splitting tree T we define F'(T') = f(r), where r is a root of T'.
It is easy to see that
C(G) = mjin F(T),

where the minimum is over all reduced splitting trees for a given graph G.

4.2 Lower bound

We define the notion of the width of the reduced splitting tree.

Let G = (V, E) be a connected graph and ¢ be an unsatisfiable CSP based
on G. Let T be a reduced splitting tree for ¢. We consider a node v marked with
Gy = (V,, Ey). Let Eeyy = {(x,y) € Elx € VVy € V,} be a number of edges
that has at least one end in the set V,,. We define a value w(v) = |Egyt \ Ey| that
is the number of removed edges that are incident to some vertices from V. A
width of the tree is W(T') = max, w(v), where the maximum is over all nodes
of T.

Lemma 4. For every connected graph G = (V, E) with the expansion e(G) and
for every reduced splitting tree of an unsatisfiable formula ¢(G, f) the inequality
W(T) > e(G) holds.

Proof. Let T be a reduced splitting tree. T contains a node v marked by G, =
(Vi, E,) such that

— Vol > 2 V];
— v has two children;
— if w is a child of v, then |V, | < % V.

There exists the node u, that is a child of v and |V,| is between £|V| and
2|V|. Thus by the definition of the expansion w(u) > e(G). O

Lemma 5. Let T be the reduced splitting tree for Tseitin formula ¢(G), then
there exists a reduced splitting tree T for ¢(G) such that W(T") < k+log, F(T).

Proof. By induction on the number of nodes in the tree T we show that if
F(T) < d°, then there exists a tree T' for ¢(G) that W(T") < k + b. The base
of induction is obvious.

Let the root r of T have only the one child v. Let T}, be a subtree of T' with
the root v. If F(T) < d°, then F(T,) < d’~'. By the induction hypothesis we
have a tree T, such that W(T") < b— 1+ k. We attach the tree T) to r and get
a tree T such that W(T") < (b—1+4+k)+1=0b+ k.

Let r have two children v; and ve. Let 77 and 75 be subtrees with roots in
v1 and vy respectively; G; and G5 are labels of v; and vy respectively. By the
definition of F’

F(T)=(d-1)-F(Th) + F(T») + 1,

We know that d - F(Ty) < F(T). Thus if F(T) < d°, then F(Ty) < d*~! and
F(Ty) < d°. Therefore by the induction hypothesis there exist reduced splitting
trees T7 and T3 for G and G respectively, such that W(T7) < k+b — 1 and
W (T3) < k+b. We show that T] and T4 may be used in the construction of such
a reduced splitting tree T' for ¢(G) that W(T') < k + b.

Let the root r of the tree be marked by G and children v; and vy be marked
by connected components of G \ e. Let an edge e connect a vertex z from G
with a vertex y from Gs. We construct T” as follows.

We modify the tree T4: to every label that contains the vertex y we attach a
copy of the graph G; to y by the edge e. The original tree T4 contains a leaf that
is marked with the graph with only one vertex y; after the modification this leaf
is marked with y with G; attached by means of the edge e. We make a splitting
in this leaf on the variable x.. We get a leaf that is marked with z and a leaf w
that is marked with G;. We attach a tree T} to w. So we get a reduced splitting
tree T" for ¢(G) such that W(T") < max{W (Ty),W(T]) + 1,k} < k +b. 0

Corollary 2. ¢(G) < k +log, C(G).
Finally we prove the following theorem:

Theorem 3. If degrees of all vertices of a graph G are at most k, then the size

of the tree-like resolution proof of unsatisfiable Tseitin formula ¢(G, f) is at least
de(G)fk'

5 Upper bound for CSP

We consider an arbitrary unsatisfiable CSP ¢ = (X, D, S). Let |D| = d. For
every constraint C' € S we denote by Vars(C') the set of variables = such that C
depends on .

We construct a dependency graph G = (V, E) of CSP ¢. Vertices of this graph
correspond to constraints from S. Two constraints C; and C; are connected with
[Vars(C;) N Vars(C;)| edges, every edge is labelled with a common variable of C;
and Cj.

Note that a dependency graph of a Tseitin formula based on a graph H is
isomorphic to H.

Theorem 4. In the dependency graph G = (V. E) of an unsatisfiable CSP ¢
there is a subgraph H with the expansion e(H) > %, where St(¢) is a
2

size of a minimal tree-like resolution refutation of ¢.

Proof. We consider the following backtracking algorithm A(¢)

It constructs a dependency graph G = (V, E) of ¢.

— It finds a minimal cut U C V such that § - [V| < |[U| < 2-|V].

— For all variables that correspond to edges that connect U with its comple-
ment, algorithm A chooses them for splitting one by one.

— Now graph contains several connected components. The algorithm chooses

an unsatisfiable component and makes a recursive call on it

Let TWme be a running time of the algorithm A; it equals to the size of some
tree-like resolution proof of ¢.

The execution protocol of A may be represented by a tree T' with weighted
edges (edges correspond to cuts and weights correspond to sizes of cuts). Vertices
of the tree T are labelled with CSPs, that are passed in the recursive calls. Let
the vertex v contain a formula ¢ and let the algorithm A find a cut U in the
dependency graph of ¢.

Let X4 be the set of variables corresponding to edges in this cut. The
weight of the edge that corresponds to this cut is | X4 |- A weighted height of
the T is the maximal weight of the path from the root of T to a leaf. Let us
denote the weighted height of 7' by k. Note that Time < d”.

The number of vertices in the dependency graph of CSP in the child of T is
at least % times smaller than the number of vertices in the parent. Let a vertex
u be the parent of a vertex v. Then the number of vertices in the dependency
graph of the CSP in the vertex w is at least % times the number of vertices in
the dependency graph of the CSP in the vertex v

Let us denote the unweighted height of T' by h,; then h,, is at most log 2 [V].

log,; Time
log g vi-

Hence there exists an edge (v, u) with the weight at least o8 :IV\ >
2

Let CSP in v correspond to a dependency graph H. Therefore: e(H)
log,; Time
logg [V

o v

Corollary 3. Time < gty VI

Corollary 4. For an unsatisfiable Tseitin formula ¢ over the domain D = Zq4
based on a graph G = (V, E) with degrees of its vertices at most k, there exists

a subgraph H of G such that St(¢) < g esg V1

Proof. The dependency graph of ¢ is isomorphic to G. Therefore by the Theo-
rem 4 there is a subgraph H in G such that St(¢) < de(H)'lOg% ‘Vl. m|
Thus the minimal running time of a backtracking algorithm on a Tseitin

formula based on a graph G satisfies inequalities d*(%)—* < Time < de(H)'log% vl

for some subgraph H of G.

6 Open questions

— To prove (or refute) that there exists ¢ > 1 such that the size of a dag-like
resolution proof of a Tseitin formula based on a graph G is at least ¢¢(%).

Such a lower bound exists if e(G) = 2(n). This is also true for doubled
graphs where every edge has a parallel copy.
— To reduce the gap between the upper and lower bounds.

Acknowledgements

The authors are grateful to Alexander Shen for drawing attention to the case of
arbitrary alphabets and to anonymous referees for comments that improved the
readability of the paper.

References

[AHIO5] Michael Alekhnovich, Edward A. Hirsch, and Dmitry Itsykson. Exponen-
tial lower bounds for the running time of DPLL algorithms on satisfiable
formulas. J. Autom. Reason., 35(1-3):51-72, 2005.

[Bak95] Andrew B. Baker. Intelligent backtracking on constraint satisfaction prob-
lems: Experimental and theoretical results, 1995.

[BGIP99] Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Lin-
ear gaps between degrees for the polynomial calculus modulo distinct
primes. In Journal of Computer and System Sciences, pages 547-556, 1999.

[BSW01] E. Ben-Sasson and A. Wigderson. Short proofs are narrow — resolution

made simple. Journal of ACM, 48(2):149-169, 2001.

[CEMT09] James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldre-

[Hwa04]

[IPS97]

[1S12]

[Its10]

[Mit02a]

[Mit02b]

[Mit03]

[Tse68]

[Urq87]

ich’s one-way function candidate and myopic backtracking algorithms. In
Proceedings of TCC, pages 521-538. Springer-Verlag, 2009.

Cho Yee Joey Hwang. A Theoretical Comparison of Resolution Proof Sys-
tems for CSP Algorithms. Master’s thesis, Simon Fraser University, 2004.
Russell Impagliazzo, Pavel Pudlak, and Jiri Sgall. Lower bounds for the
polynomial calculus and the grobner basis algorithm. Computational Com-
plexity, 8:127-144, 1997.

D. Itsykson and D. Sokolov. The complexity of inversion of explicit Gol-
dreichs function by DPLL algorithms. Zapiski nauchnyh seminarov POMI,
399:88-109, 2012.

D. Itsykson. Lower bound on average-case complexity of inversion of Gol-
dreich function by drunken backtracking algorithms. In Proceedings of 111
International Computer Science Symposium in Russia, volume 6072 of Lec-
ture Notes in Computer Science, pages 204—215. Springer, 2010.

David G. Mitchell. The resolution complexity of constraint satisfaction,
2002.

David G. Mitchell. Resolution complexity of random constraints. In Pro-
ceedings of the 8th International Conference on Principles and Practice of
Constraint Programming, CP ’02, pages 295-309, London, UK, UK, 2002.
Springer-Verlag.

David G. Mitchell. Resolution and constraint satisfaction. In In Proceedings
CP03, pages 555-569. Springer, 2003.

G. S. Tseitin. On the complexity of derivation in the propositional calculus.
Zapiski nauchnykh seminarov LOMI, 8:234-259, 1968. English translation
of this volume: Consultants Bureau, N.Y., 1970, pp. 115-125.

A. Urquhart. Hard examples for resolution. JACM, 34(1):209-219, 1987.

