
Hard satisfiable formulas for splittings by linear
combinations ?

Dmitry Itsykson and Alexander Knop

Steklov Institute of Mathematics at St.Petersburg
dmitrits@pdmi.ras.ru, aaknop@gmail.com

Abstract. Itsykson and Sokolov in 2014 introduced the class of
DPLL(⊕) algorithms that solve Boolean satisfiability problem using the
splitting by linear combinations of variables modulo 2. This class ex-
tends the class of DPLL algorithms that split by variables. DPLL(⊕)
algorithms solve in polynomial time systems of linear equations mod-
ulo 2 that are hard for DPLL, PPSZ and CDCL algorithms. Itsykson
and Sokolov have proved first exponential lower bounds for DPLL(⊕)
algorithms on unsatisfiable formulas.
In this paper we consider a subclass of DPLL(⊕) algorithms that ar-
bitrary choose a linear form for splitting and randomly (with equal
probabilities) choose a value to investigate first; we call such algorithms
drunken DPLL(⊕). We give a construction of a family of satisfiable CNF
formulas Ψn of size poly(n) such that any drunken DPLL(⊕) algorithm
with probability at least 1− 2−Ω(n) runs at least 2Ω(n) steps on Ψn; thus
we solve an open question stated in the paper [12]. This lower bound
extends the result of Alekhnovich, Hirsch and Itsykson [1] from drunken
DPLL to drunken DPLL(⊕).

1 Introduction

The Boolean satisfiability problem (SAT) is one of the most popular NP-
complete problems. However, SAT solvers have different behaviors on satisfiable
and unsatisfiable formulas. The protocol of a SAT solver on an unsatisfiable
formula φ may be considered as a proof of unsatisfiability of φ. Therefore, the
study of propositional proof systems is connected with the study of SAT solvers.
It is well known that protocols of DPLL solvers on an unsatisfiable formula are
equivalent to tree-like resolution proofs of this formula and protocols of CDCL
solvers correspond to dag-like resolution proofs [3]. Thus lower bounds on the
running time of DPLL and CDCL solvers on unsatisfiable instances follow from
lower bounds on the size of tree-like and dag-like resolution proofs.

Satisfiable formulas are usually simpler for SAT solvers rather than unsat-
isfiable ones. Also, satisfiable instances are of much interest in the case where
we reduce some NP search problem (for example, the factorization) to SAT.

? The research is partially supported by the Government of the Russia (grant
14.Z50.31.0030).



DPLL [8, 7] algorithm is a recursive algorithm. On each recursive call, it simpli-
fies an input formula F (without affecting its satisfiability), chooses a variable
v and makes two recursive calls on the formulas F [v := 1] and F [v := 0] in
some order. Every DPLL algorithm is determined by a heuristic A that chooses
a variable for splitting and by a heuristic B that chooses a value that should be
investigated at first. If P = NP, then DPLL can solve all satisfiable instances
in polynomial time: a heuristic B always chooses a correct value of a variable.
Alekhnovich, Hirsch, and Itsykson [1] proved exponential lower bounds on sat-
isfiable instances for two wide classes of DPLL algorithms: for myopic DPLL
algorithms and drunken DPLL algorithms. In myopic DPLL the both heuristics
have the following restrictions: they can see only the skeleton of the formula
where all negation signs are erased, they also have access to the number of posi-
tive and negative occurrences of every variable and they are allowed to read n1−ε

of clauses precisely. Drunken algorithms have no restrictions on the heuristic A
that chooses the variable, but the heuristic B chooses a value at random with
equal probabilities. There are also known lower bounds on the complexity of
the inversion of Goldreich’s one-way function candidate by myopic and drunken
DPLL algorithms [5, 10, 11].

Itsykson and Sokolov [12] introduced a generalization of DPLL algorithms
that split by the value of linear combinations of variables modulo 2; we call them
DPLL(⊕) algorithms. DPLL(⊕) algorithms quickly solves formulas that encode
linear systems over GF(2) (unsatisfiable linear systems are hard for resolution
[19] and even for bounded-depth Frege [2]; satisfiable linear systems are hard
for drunken and myopic DPLL [1, 10] and PPSZ [18, 16]) and perfect matching
principles for graphs with odd number of vertices (these formulas are hard for
resolution [17] and bounded-depth Frege [4]).

It is well known that the tree-like resolution complexity (and hence the run-
ning time of DPLL) of the pigeonhole principle PHPn+1

n is 2Θ(n logn) [6]. Itsykson
and Sokolov [12] proved a lower bound 2Ω(n) and Oparin recently proved an up-
per bound 2O(n) [14] on the running time of DPLL(⊕) algorithms on PHPn+1

n .
There are three other families of formulas that are hard for DPLL(⊕) algo-
rithms proposed by Itsykson and Sokolov [12], Krajiček [13], and Garĺık and
Ko lodziejczyk [9].

Our results. Itsykson and Sokolov [12] formulated the following open question:
to prove a lower bound on satisfiable formulas for drunken DPLL(⊕) algorithms
that arbitrary choose a linear combination and randomly with equal probabilities
chooses a value that would be investigated at first. In this paper we answer to
the question and give a construction of a family of satisfiable formulas Ψn in
CNF of size poly(n) such that any drunken DPLL(⊕) algorithm with probability
1− 2−Ω(n) runs at least 2Ω(n) steps on Ψn.

In order to construct Ψn we take the pigeonhole principle PHPn+1
n and man-

ually add one satisfying assignment to it. We prove that with high probability
a drunken DPLL(⊕) algorithm will make incorrect linear assumption and the
algorithm will have to investigate a large subtree without satisfying assignments.



To show that this subtree is indeed large we extend the technique that was used
for PHPn+1

n [12].

Further research. The constructed family Ψn has clauses with large width. It
would be interesting to prove lower bounds for formulas in O(1)-CNF. It is also
interesting to prove a lower bound for myopic DPLL(⊕) algorithms.

2 DPLL(⊕) and parity decision trees

DPLL(⊕) algorithms are parameterized by two heuristics: A and B. The heuris-
tic A takes a CNF formula and a system of linear equations and returns a linear
combination (a DPLL(⊕) algorithm will use this linear combination for split-
ting). The heuristic B takes a CNF formula, a system of linear equations, and
a linear combination and returns a value from {0, 1} (this value would be con-
sidered at first by a DPLL(⊕) algorithm). The set of DPLL(⊕) algorithms is
the set of algorithms DA,B for all heuristics A and B that are defined below.
An algorithm DA,B takes on the input a CNF formula Φ and a system of linear
equations F (we may omit the second argument if the system F is empty) and
works as follows:

1. If the system F does not have solutions (it can be verified in polynomial
time), then return “Unsatisfiable”.

2. If the system F contradicts to a clause C of the formula Φ (a system G
contradicts a clause `1 ∨ . . . ∨ `k iff for all i ∈ [k] the system G ∧ (`i = 1) is
unsatisfiable, hence this condition may be verified in polynomial time), then
return “Unsatisfiable”.

3. If the system F has the unique solution τ (in variables of Φ) and this solution
satisfies Φ (it can also be verified in polynomial time), then return τ .

4. f := A(Φ,F ).
5. α := B(Φ,F, f).
6. If DA,B(Φ,F ∧ (f = α)) returns an assignment, then return it.
7. Return the result of DA,B(Φ,F ∧ (f = 1− α)).

The class of drunken DPLL(⊕) consists of all algorithms DA,rand , where A
is an arbitrary heuristic and rand always returns a random element from {0, 1}
with equal probabilities.

A parity decision tree for (Φ,F ) is a rooted binary tree such that all its
internal nodes are labeled with linear combinations of variables of Φ, for every
internal node labeled with a linear form f one of its outgoing edge is labeled
with f = 0 and the other one with f = 1. Let l be a leaf l of the tree, we denote
by Dl the system of linear equations written on the edges of the path from the
root to l. There are three kinds of leaves:

degenerate leaf: F ∧Dl does not have a solution;
satisfying leaf: F ∧ Dl has the only solution in the variables of Φ and this

solution satisfies Φ;
contradiction: F ∧Dl contradicts to a clause C of Φ.



If Φ ∧ F is unsatisfiable, then the recursion tree of DA,B(Φ,F ) is a parity de-
cision tree for (Φ,F ) that does not contain satisfying leaves. Additionally the
minimal size of a decision tree for (Φ,F ) is a lower bound on the running time
of DA,B(Φ,F ). If Φ ∧ F is satisfiable then the recursion tree of DA,B(Φ,F ) is a
part of a parity decision tree since the execution stops when the algorithm DA,B
finds a satisfying assignment.

3 Lower bound

In this section we construct a satisfiable formula that is hard for all drunken
DPLL(⊕) algorithms. Our hard example is based on the pigeonhole principle.
The pigeonhole principle (PHPmn ) states that it is possible to put m pigeons into
n holes such that every pigeon is in at least one hole and every hole contains
at most one pigeon. For every pigeon i ∈ [m] and hole j ∈ [n] we introduce a
variable pi,j ; pi,j = 1 iff i-th pigeon is in the j-th hole. The formula PHPmn is
the conjunction of the following clauses:

short clauses: ¬pi,k ∨ ¬pj,k for all i 6= j ∈ [m] and k ∈ [n];

long clauses:
n∨
k=1

pi,k for all i ∈ [m].

The formula PHPmn is unsatisfiable iff m > n. Let Pm,n denote the set of
variables {pi,j | i ∈ [m], j ∈ [n]}.

Let σ be a substitution to the variables x1, . . . , xn and Φ be a CNF formula
on the variables x1, . . . , xn. We denote by Φ+ σ a CNF obtained from Φ in the
following manner: for every clause C of Φ and variable xi, the formula Φ + σ

contains a clause C ∨xσ(xi)
i , where for every propositional variable x, x0 denotes

¬x and x1 denotes x. Note that it is possible that C ∨ xσ(xi)
i is a trivial clause.

Proposition 1. If Φ is unsatisfiable, then Φ+ σ has the only satisfying assign-
ment σ.

Proof. It is straightforward that σ satisfies Φ+ σ. Assume that τ satisfies Φ+ σ
and τ 6= σ. Consider i ∈ [n] such that τ(xi) 6= σ(xi). Let for every CNF formula
φ, variable x, and α ∈ {0, 1} φ[x := α] denote the result of the substitution
x := α applied to φ. Note that the formula (Φ + σ)[xi := τ(xi)] contains all
clauses of Φ[xi := τ(xi)], but Φ is unsatisfiable, hence (Φ + σ)[xi := τ(xi)] is
unsatisfiable and τ can not satisfy Φ+ σ. ut

We call an assignment σ to the variables Pm,n proper if it satisfies all short
clauses of PHPmn , that is there are no two pigeons in one hole in σ.

Let f1, f2,. . . , fk, and g be linear equations in variables Pm,n. We say that
f1, f2,. . . , fk properly implies g iff every proper assignment that satisfies all f1,
f2,. . . , fk also satisfies g.

Let F be a linear system in variables Pm,n. A proper rank of the system F is
the size of the minimal set of equations from F such that linear equations from
this set properly implies all other equations from F .



Notice that if F does not have a proper solutions, then its proper rank is the
size of the minimal subsystem of F that has no proper solutions.

Proposition 2. Let F and G be two linear systems in variables Pm,n. Then the
proper rank of F ∧G is at most the sum of the proper ranks of F and G.

Proof. Let F ′ and G′ be the minimal subsystems of F and G such that F ′

properly implies all equations from F and G′ properly implies all equation from
G. Hence F ′ ∪G′ properly implies all equations from F ∧G.

Remark 1. In contrast to the case of the common rank it is possible that a
linear system F does not properly implies linear equation f but the proper rank
of F ∧ f does not exceed the proper rank of F . For example, p1,3 + p2,3 = 1 does
not properly implies p2,3 = 1 but the proper rank of (p1,3 +p2,3 = 1)∧ (p2,3 = 1)
equals 1 since p2,3 = 1 properly implies p1,3 + p2,3 = 1.

Our goal is to prove the following theorem:

Theorem 1. For every m > n > 0 and every proper assignment σ to the vari-
ables Pm,n the running time of any drunken DPLL(⊕) algorithm DA,rand on the

formula PHPmn + σ is at least 2
n−1
4 with probability at least 1− 2−

n−1
4 .

In what follows we assume that m > n.
We use the following Lemma that was proposed in the paper of Itsykson and

Sokolov [12]. We give its proof for the sake of completeness.

Lemma 1 ([12]). Let us assume that a linear system Ap = b in the variables
Pm,n has at most n−1

2 equations and it has a proper solution. Then for every i ∈
[m] this system has a proper solution that satisfies the long clause pi,1∨ . . .∨pi,n.

Proof. Note that if we change 1 to 0 in a proper assignment, then it remains
proper. Let the system have k equations; we know that k ≤ n−1

2 . We consider a
proper solution π of the system Ap = b with the minimum number of ones. We
prove that the number of ones in π is at most k. Let the number of ones is greater
than k. Consider k+ 1 variables that take value 1 in π: pr1 , pr2 , . . . , prk+1

. Since
the matrix A has k rows, the columns that correspond to the variables pr1 , pr2 ,
. . . , prk+1

are linearly depended. Therefore, there exists a nontrivial solution π′

of the homogeneous system Ap = 0 such that every variable with the value 1 in
π′ is from the set {pr1 , pr2 , . . . , prk+1

}. The assignment π′ + π is also a solution
of Ap = b and is proper because π′ + π can be obtained from π by changing
ones to zeros. Since π′ is nontrivial, the number of ones in π′+π is less than the
number of ones in π and this statement contradicts the minimality of π.

The fact that π has at most k ones implies that π has at least n− k empty
holes. From the statement of the Lemma we know that n− k ≥ k+ 1; we choose
k+1 empty holes with numbers l1, l2, . . . , lk+1. We fix i ∈ [m]; the columns of A
that correspond to the variables pi,l1 , . . . , pi,lk+1

are linearly depended, therefore,
there exists a nontrivial solution τ of the system Ap = 0 such that every variable



with value 1 in τ is from the set {pi,l1 , . . . , pi,lk+1
}. The assignment π + τ is a

solution of Ap = b; π + τ is proper since holes with numbers l1, l2, . . . , lk+1 are
empty in π, and τ puts at most one pigeon to them (if τ puts a pigeon in a hole,
then this is the i-th pigeon). The assignment π+ τ satisfies pi,1 ∨ pi,2 ∨ . . .∨ pi,n
because τ is nontrivial. ut

Corollary 1. If a linear system F in variables Pm,n has a proper solution and
the proper rank of F is at most n−1

2 then for every i ∈ [m] the system F has a
proper solution that satisfies the long clause pi,1 ∨ . . . ∨ pi,n.

Proof. Let F ′ be the minimal subsystem of F that properly implies all equations
from F . The number of equations in F ′ is the proper rank of F that is at most
n−1
2 . F ′ also has a proper solution since it is a subsystem of F . Thus by Lemma 1

F ′ has a proper solution that satisfies pi,1 ∨ . . . ∨ pi,n. This solution should also
be a solution of F by the choice of F ′. ut

Corollary 2. Assume that a linear system Ap = b in the variables Pm,n has a
proper solution and its proper rank is at most n−1

2 , then this system has at least
two proper solutions.

Proof. Let σ be a solution of Ap = b. Since PHPmn is unsatisfiable there is a long
clause C such that σ falsify this clause. Though, by Corollary 1 for any clause
there is a proper solution τ of Ap = b that satisfies the clause C. Hence τ 6= σ,
thus τ and σ are different proper solutions of Ap = b. ut

Lemma 2. Let a system of linear equations Ap = b in the variables Pm,n have
a proper solution and let its proper rank be at most n−1

4 . Then the size of any

parity decision tree for (PHPmn , Ap = b) is at least 2
n−1
4 .

Corollary 3. Let a system Ap = b of linear equations in the variables Pm,n
have a proper solution and let its proper rank be at most n−1

4 . Let σ be a proper
assignment to variables Pm,n that does not satisfy Ap = b. Then the size of any

parity decision tree for (PHPmn + σ,Ap = b) is at least 2
n−1
4 .

Proof (Proof of Corollary 3). Consider a parity decision tree T for
(PHPmn + σ,Ap = b). Since σ is the only satisfying assignment of PHPmn + σ
and it does not satisfy Ap = b, there are no satisfying leaves in T . We claim that
the tree T may be also considered as a parity decision tree for (PHPmn , Ap = b),

and thus the size of T is at least 2
n−1
4 by Lemma 2.

Consider any leaf of T . If this leaf corresponds to the situation where the
system F contradicts to a clause C of PHPmn + σ, then it also contradicts to
some clause C ′ of PHPmn since every clause of PHPmn + σ is a superclause of a
some clause of PHPmn Thus, tree T also may be considered as a parity decision
tree for (PHPmn , Ap = b). ut

In order to prove Lemma 2 we generalize Prover–Delayer games introduced
by Pudlak and Impagliazzo [15].



Consider the following game with two players: Prover and Delayer. They are
given a CNF formula Φ and a system of linear equations F such that formula
Φ∧F is unsatisfiable. On each step Prover chooses a linear form f that depends
on variables of formula Φ, then Delayer may choose a value α ∈ {0, 1} of f
or return ∗. If Delayer returns ∗, then Prover chooses a value α ∈ {0, 1} of f
by himself. We add the equality f = α in the system F . The game ends if the
current linear system F is inconsistent or refutes some clause of Φ. Delayer earns
a coin for every ∗. The goal of Delayer is to earn the maximum number of coins
and the goal of Prover is to minimize the number of coins earned by Delayer.

Lemma 3 (similar to [15]). Consider some CNF formula Φ and linear system
F such that Φ ∧ F is unsatisfiable. Assume that there is a strategy for Delayer
that allows Delayer to earn t coins, then the size of any parity decision tree for
(Φ,F ) is at least 2t.

Proof. Consider some parity decision tree T for (Φ,F ). We construct a proba-
bilistic distribution on the leaves of T that corresponds to the strategy of Delayer
and the following randomized strategy of Prover. Prover uses the tree T , initially
he asks the question for the linear form in the root, if Delayer returns ∗, Prover
chooses a value at random with equal probabilities and go to the next vertex
along an edge labeled with the chosen value. By the statement of the Lemma
the probability that the game will finish in every particular leaf is at most 2−t.
Since with probability 1 the game will finish in a leaf, the number of leaves of T
is at least 2t. ut

Proof (Proof of Lemma 2). Let us construct a strategy for Delayer that will
guarantee that Delayer earns at least n−1

4 coins. Let G be the current linear
system that consists of all equations that are already made by Prover or Delayer
in the game and equations from the system Ap = b. At the beginning G equals
Ap = b. The strategy of the Delayer the following: assume that Prover chooses a
linear form f , then if G properly implies f = α for some α ∈ {0, 1}, then Delayer
returns α, otherwise Delayer returns ∗.

We prove by induction on the number of steps that the following invariant
holds: the system G always has a proper solution. Basis case is true since Ap = b
has a proper solution. Assume that Prover chooses a linear form f . If G has a
proper solution, then either G ∧ (f = 0) or G ∧ (f = 1) has the same proper
solution. Assume that for some α ∈ {0, 1}, G ∧ (f = α) does not have proper
solutions. In this case G properly implies f = 1 − α hence Delayer chooses the
value 1 − α and F ∧ G ∧ (f = 1 − α) has a proper solution. Consider three
situations at the end of the game.

– The system G becomes unsatisfiable. This situation is impossible since G
has a proper solution.

– The system G contradicts a short clause. This situation is also impossible
since G has a proper solution.

– The system G contradicts a long clause pi,1∨. . .∨pi,n. Let G′ be a subsystem
of G that corresponds to answers ∗ of Delayer. By the construction every



equation from G is properly implied from (Ap = b)∧G′. Hence, (Ap = b)∧G′
does not have proper solutions that satisfy pi,1∨. . .∨pi,n. Corollary 1 implies
that the proper rank of the system (Ap = b) ∧ G′ is greater than n−1

2 . By
Proposition 2 the rank of G′ is greater than n−1

4 , hence G′ contains more
than n−1

4 equations. Note that Delayer earns a coin for every equation in
G′, hence Delayer earns more than n−1

4 coins. Hence by Lemma 3 the size

of any parity decision tree for (PHPmn , Ap = b) is at least 2
n−1
4 .

ut

Now we are ready to prove Theorem 1.

Proof (Proof of Theorem 1). We may assume that a heuristic A does not use
random bits. Indeed otherwise we may prove the lower bound for fixed random
bits of heuristic A and then apply the averaging principle to handle the case of
randomized A. If A is deterministic we may consider the whole parity decision
tree T of the algorithm DA,B on the input PHPmn + σ that corresponds to all
possible answers of heuristic B. For every execution of the algorithm DA,B , this
algorithm bypasses only a part of the tree T until it finds a satisfying assignment.
Tree T contains exactly one branch that correspond to the satisfying assignment
σ; we call this branch a satisfying path. We prove that with high probability the
algorithm will deviate from the satisfying path and will fall in a hard unsatisfiable
subtree.

Assume that algorithm is in the state in the accepting path, that is the
current linear system F is satisfied by σ. There are two possibilities to deviate
from the satisfying path:

1. The algorithm chooses an equation f = α such that the system F ∧ (f = α)
has no proper solutions. In this case f = 1 − α is properly implied by F .
Thus the adding of f = 1− α to F does not increase the proper rank.

2. The algorithm chooses an equation f = α and the system F ∧ (f = α) has
proper solutions but σ is not a solution of F ∧ (f = α). In this case the
proper rank of F ∧ (f = α) may be larger by one then the proper rank of F
(but it is also possible that the proper rank of F ∧ (f = α) does not exceed
the proper rank of F , see Remark 1). If the proper rank of F ∧ (f = α) is at
most n−1

4 , then by Corollary 3 the algorithm falls in an unsatisfiable subtree

of size at least 2(n−1)/4.

Consider the leaf of the satisfying path; the linear system F in this leaf has
the only solution σ. Hence by Corollary 2 the proper rank of F is greater than
n−1
2 . The value of the proper rank of F in the root is zero, the rank of F increases

along the satisfying path. Consider the first nodes of the path when the proper
rank equals 1, 2, . . . , n−14 . The algorithm should visit this nodes, hence it should
visit the predecessors of these nodes. In every of these predecessors algorithm
have chance 1

2 to deviate from the acceptance path. And since the proper rank
increases, all this deviations correspond to the case 2 of the above. Thus, with

probability at least 1− 2−
n−1
4 the algorithm goes to an unsatisfiable subtree of

size at least 2
n−1
4 . ut



Acknowledgements. The authors are grateful to Dmitry Sokolov for fruitful dis-
cussions.

References

1. Michael Alekhnovich, Edward A. Hirsch, and Dmitry Itsykson. Exponential Lower
Bounds for the Running Time of DPLL Algorithms on Satisfiable Formulas. J.
Autom. Reason., 35(1-3):51–72, 2005.

2. Boaz Barak. A Probabilistic-Time Hierarchy Theorem for ”Slightly Non-uniform”
Algorithms. In RANDOM ’02: Proceedings of the 6th International Workshop on
Randomization and Approximation Techniques, pages 194–208, London, UK, 2002.
Springer-Verlag.

3. Paul Beame, Henry A Kautz, and Ashish Sabharwal. Towards Understanding
and Harnessing the Potential of Clause Learning. J. Artif. Intell. Res. (JAIR),
22:319–351, 2004.

4. Paul Beame and Toniann Pitassi. An Exponential Separation Between the Par-
ity Principle and the Pigeonhole Principle. Annals of Pure and Applied Logic,
80(3):195–228, 1996.

5. James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldreich’s One-
Way Function Candidate and Myopic Backtracking Algorithms. In Omer Rein-
gold, editor, Theory of Cryptography, 6th Theory of Cryptography Conference, TCC
2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings, volume 5444 of
Lecture Notes in Computer Science, pages 521–538. Springer, 2009.

6. Stefan S. Dantchev and Søren Riis. Tree Resolution Proofs of the Weak Pigeon-
Hole Principle. In Proceedings of the 16th Annual IEEE Conference on Computa-
tional Complexity, Chicago, Illinois, USA, June 18-21, 2001, pages 69–75. IEEE
Computer Society, 2001.

7. Martin Davis, George Logemann, and Donald W Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

8. Martin Davis and Hilary Putnam. A Computing Procedure for Quantification
Theory. Journal of the ACM, 7(3):201–215, 1960.

9. Michal Garĺık and Leszek A Ko lodziejczyk. Some subsystems of constant-depth
Frege with parity. Preprint, 2017.

10. Dmitry Itsykson. Lower Bound on Average-Case Complexity of Inversion of Gol-
dreich’s Function by Drunken Backtracking Algorithms. Theory of Computing
Systems, 54(2):261–276, 2014.

11. Dmitry Itsykson and Dmitry Sokolov. The complexity of inverting explicit Goldre-
ich’s function by DPLL algorithms. Journal of Mathematical Sciences, 188(1):47–
58, 2013.

12. Dmitry Itsykson and Dmitry Sokolov. Lower Bounds for Splittings by Linear
Combinations. In Mathematical Foundations of Computer Science 2014 - 39th
International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014.
Proceedings, Part II, pages 372–383, 2014.

13. Jan Krajiček. Randomized feasible interpolation and monotone circuits with a
local oracle. CoRR, abs/1611.0, 2016.

14. Vsevolod Oparin. Tight Upper Bound on Splitting by Linear Combinations for
Pigeonhole Principle. In Nadia Creignou and Daniel Le Berre, editors, Theory and
Applications of Satisfiability Testing - SAT 2016 - 19th International Conference,
Bordeaux, France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in
Computer Science, pages 77–84. Springer, 2016.



15. Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for
k-SAT (preliminary version). In Proceedings of the Eleventh Annual ACM-SIAM
Symposium on Discrete Algorithms, January 9-11, 2000, San Francisco, CA, USA.,
pages 128–136, 2000.

16. Pavel Pudlák, Dominik Scheder, and Navid Talebanfard. Tighter Hard Instances
for PPSZ. CoRR, abs/1611.0, 2016.

17. Alexander A Razborov. Resolution lower bounds for perfect matching principles.
Journal of Computer and System Sciences, 69(1):3–27, 2004.

18. Dominik Scheder, Bangsheng Tang, Shiteng Chen, and Navid Talebanfard. Expo-
nential Lower Bounds for the PPSZ k-SAT Algorithm. In Sanjeev Khanna, editor,
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages
1253–1263. SIAM, 2013.

19. Alasdair Urquhart. Hard Examples for Resolution. Journal of the ACM, 34(1):209–
219, 1987.


