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Abstract

We prove an exponential lower bound on the average time of inverting Goldre-
ich’s function by drunken [AHI05] backtracking algorithms; therefore we resolve the
open question stated in [CEMT09]. The Goldreich’s function [Gol00] has n binary
inputs and n binary outputs. Every output depends on d inputs and is computed
from them by the fixed predicate of arity d. Our Goldreich’s function is based
on an expander graph and on the nonliniar predicates of a special type. Drunken
algorithm is a backtracking algorithm that somehow chooses a variable for splitting
and randomly chooses the value for the variable to be investigated at first. Our
proof technique significantly simplifies the one used in [AHI05] and in [CEMT09].

1 Introduction

In 2000 Goldreich introduced the candidate one-way function based on expanders [Gol00].
The function has n binary inputs and n binary outputs. Every output depends on d inputs
and is computed from them by the fixed predicate of arity d. Goldreich suggested using
expander graphs as graphs of dependency and a random predicate of arity d. There are
many similarities between the Goldreich’s function and the pseudorandom generator by
Nisan and Wigderson [NW94].

One of the approaches for inverting of one-way function is the usage of contemporary
SAT solvers [MZ06]. Almost all SAT algorithms are based on backtracking (so called
DPLL (by names of authors Davis, Putnam, Logeman, Loveland) algorithms [DP60,
DLL62]). Backtracking algorithm is a recursive algorithm. On each recursive call it

∗Partially supported by RFBR grants 08-01-00640 and 09-01-12137-ofi m, the Fundamental research
program of the Russian Academy of Sciences, the president grants NSh-5282.2010.1 and MK-4089.2010.1
and by Federal Target Programme ”Scientific and scientific-pedagogical personnel of the innovative Rus-
sia” 2009-2013.

1



simplifies an input formula F (without affecting its satisfiability), chooses a variable v
and makes two recursive calls on the formulas F [v := 1] and F [v := 0] in some order. It
returns the result “Satisfiable” if at least one of recursive calls returns “Satisfiable” (note
that it is not necessary to make the second call if the first one was successful). Recursion
stops if the input formula becomes trivial. That is, the algorithm is only allowed to
backtrack when unsatisfiability in the current branch is proved. A backtracking algorithm
is defined by simplification rules and two heuristics: the heuristic A chooses a variable
for splitting and the heuristic B chooses a value that will be investigated first.

Lower bounds on the running time of backtracking algorithms on unsatisfiable for-
mulas follow from lower bounds on the size of resolution proofs [Tse68]. Unsatisfiable
formulas based on a pseudorandom generator by Nisan and Wigderson are used for prov-
ing lower bounds in several propositional proof systems [ABSRW00]. Note that formulas
that code the problem of inverting a one-way function are usually satisfiable. If we do
not restrict a type of heuristics of backtracking algorithms, then the exponential lower
bound on running time of backtracking algorithms implies P 6= NP (otherwise heuristic
B may compute the correct value of the variable in polynomial time).

The first unconditional lower bounds on running time of backtracking algorithms on
satisfiable formulas were proved in [AHI05] for myopic and drunken algorithms. Heuristics
in myopic algorithms are restricted in the following way: they are allowed to read only a
small fraction of the formula precisely, but they can see the rest of the formula sketchy
(for example in [AHI05] they don’t see negations but have access to the statistics of
number of positive and negative variable occurrences). Exponential lower bound on the
running time of myopic algorithms was proved on the family of formulas that actually
code the problem of inverting Goldreich’s function based on linear predicate. In drunken
algorithms heuristic A has no restriction (and actually it may be not computable), but
heuristic B selects the value just at random. For drunken algorithms hard satisfiable
formulas are based on any family of hard unsatisfiable formulas.

Goldreich’s function based on a linear predicate is not very interesting since it may be
inverted by Gaussian elimination. In the paper [CEMT09] the technique from [AHI05]
was extended for proving lower bounds for myopic algorithms on nonlinear predicates. In
particular it was proved in [CEMT09] that any myopic algorithm has exponential running
time in average case when it solves a problem of inverting Goldreich’s function based on
the predicate x1 ⊕ x2 ⊕ · · · ⊕ xd−2 ⊕ xd−1xd. The paper [CEMT09] also presents results
of experimental analysis of running time of contemporary SAT solvers on the problem
of inverting Goldreich’s function with the above predicate. Their analysis shows that
these formulas are hard for MiniSAT 2.0 [EB05, ES03]. The question of exponential
lower bound on inverting Goldreich’s function by a drunken algorithm was left open in
[CEMT09]. In this paper we give an answer on this question. In particular we prove
that the average running time of drunken algorithms on formulas that code the problem
of inverting Goldreich’s function based on a random graph and the predicate x1 ⊕ · · · ⊕
xd−k ⊕ Q(xd−k+1, . . . , xd) is exponential with high probability. Here Q is an arbitrary
predicate of arity k, k + 1 < d

4
and d is a constant large enough.

The proof strategy is as follows: at first we prove a lower bound for unsatisfiable
formulas using the technique from [BSW01], then we show that it is possible to introduce
some superstructure on drunken algorithms, which does not increase the running time
but guarantees that in the first several steps the algorithm does not backtrack. After that
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we show that with high probability Goldreich’s function has a small number of pre-images
and with high probability the algorithm with superstructure falls into an unsatisfiable
formula and we will apply a lower bound for unsatisfiable formulas. The general plan
of our proof is the same as it was in [AHI05] and [CEMT09], but the resulting proof is
substantially simpler.

We also show that drunken algorithms are powerful enough: they may solve satisfi-
able Tseitin formulas in polynomial time while unsatisfiable Tseitin formulas are hard
for all backtracking algorithms. Drunken algorithms may also simulate the pure literal
simplification rule while myopic algorithms from [CEMT09] are not allowed to use this
rule.

2 Preliminaries

Propositional variable is one that has 0/1-value, literal is either a variable or its negation.
A clause is a disjunction of literals, a CNF formula is a conjunction of clauses. A k-CNF
formula is a CNF formula in which all clauses contain at most k literals. The formula is
satisfiable if there exists substitution for its variables such that the value of the formula
becomes 1 (we call such substitution a satisfying assignment).

The set of all functions from {0, 1}n to {0, 1}n we denote as Fn. For every function
f ∈ Fn and every string b ∈ {0, 1}n the equality f(x) = b may be written as a CNF
formula with propositional variables x1, . . . , xn. We denote such formula Φf(x)=b.

In this paper G(V,E) is a bipartite graph with multi-edges. The vertices of G are
divided into two parts: X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}; the number of
vertices in each part is n. Vertices in X are inputs and vertices in Y are outputs. Every
vertex in Y has degree d.

Proposition 2.1 (Chernoff-Hoefding bounds). Independent and equally distributed ran-
dom variables X1, X2, . . . , XN , such that for every 1 ≤ i ≤ N Xi ∈ {0, 1} and E[Xi] = µ,

satisfy the following inequality: Pr{|
∑N
i=1Xi
N

− µ| ≥ ε} ≤ 2e−2ε2N .

Goldreich introduced the function g : {0, 1}n → {0, 1}n based on a bipartite graph
G(V,E) and a predicate P : {0, 1}d → {0, 1} [Gol00]. Every string from {0, 1}n defines a
value of inputs {x1, x2, . . . , xn}; the value (g(x))j (j-th symbol of g(x)) may be computed
as follows: if yj is adjacent with xj1 , xj2 , . . . , xjd , then (g(x))j = P (xj1 , xj2 , . . . , xjd). We
assume that every vertex in Y has some order on the incoming edges. Goldreich suggested
using random predicates and expanders.

The problem of inverting of function g on the string b (i.e. equation g(x) = b) may be
written as a d-CNF formula Φg(x)=b: every equality P (xj1 , xj2 , . . . , xjd) = bj we write as a
d-CNF formula of at most 2d clauses. For every set of vertices A ⊆ Y the formula ΦA

g(x)=b

denotes the subformula of Φg(x)=b that consists of all clauses corresponding to vertices in
A.

Let G be a bipartite graph, its vertices are split into two parts X = {x1, x2, . . . , xn}
and Y = {y1, y2, . . . , yn}. For A ⊆ Y we denote the set of all vertices in X that are
connected with at least one vertex in A as Γ(A) (neighbours of A); and denote the set
of all vertices in X that are connected with exactly one vertex in A by one edge as δ(A)
(boundary of A).

3



Definition 2.1. The graph G is a (r, d, c)-expander, if 1) the degree of any vertex in
Y is equal to d; 2) for any set A ⊆ Y, |A| ≤ r we have Γ(A) ≥ c|A|. The graph G is
called a (r, d, c)-boundary expander if the second condition is replaced by: 2) for any set
A ⊆ Y, |A| ≤ r we have δ(A) ≥ c|A|.

Lemma 2.1 ([AHI05], lemma 1). Every (r, d, c)-expander is also a (r, d, 2c−d)-boundary
expander.

Proof. Let A ⊆ Y , |A| ≤ r, then |Γ(A)| ≥ c|A|. The number of edges between A and
Γ(A) may be estimated: d|A| ≥ |δ(A)|+2|Γ(A)\δ(A)| = 2|Γ(A)|−|δ(A)| ≥ 2c|A|−δ(A).
Finally we get δ(A) ≥ (2c− d)|A|.

Lemma 2.2 ([HLW06], lemma 1.9). For d ≥ 32, for all big enough n a random bipartite
d-regular graph, where parts X and Y contain n vertices is a ( n

10d
, d, 5

8
d)-expander with

probability 0.9 if for every vertex in Y , d edges are chosen independently at random (with
repetitions).

Corollary 2.1. In terms of Lemma 2.2 this graph is a ( n
10d
, d, 1

4
d)-boundary expander.

Proof. Follows from Lemma 2.1.

Let f ∈ Fn be some function. The problem of finding a satisfying assignment of
Φf(x)=b and the problem of finding an element in f−1(b) are equivalent.

We consider a wide class of SAT algorithms: backtracking algorithms. A backtracking
algorithm is defined by two heuristics (procedures): 1) Procedure A maps a CNF formula
to one of its variables. (This is a variable for splitting). 2) Procedure B maps CNF
formula and its variable to {0, 1}. (This value will be investigated at first).

An algorithm may also use some syntactic simplification rules. Simplification rules
may modify the formula without affecting its satisfiability and also make substitutions
to its variables if their values can be inferred from a satisfiability of the initial formula.

The backtracking algorithm is a recursive algorithm. Its input is a formula ϕ and a
partial substitution ρ.

Algorithm 2.1. Input: formula ϕ and substitution ρ

� Simplify ϕ by means of simplification rules (assume that simplification rules change
ϕ and ρ; all variables that are substituted by ρ should be deleted from ϕ).

� If current formula is empty (that is, all its clauses are satisfied by ρ), then return
ρ. If formula contains an empty clause (unsatisfiable), then return “formula is
unsatisfiable”.

� xj := A(ϕ); c := B(ϕ, xj)

� Make a recursive call with the input (ϕ[xj := c], ρ ∪ {xj := c}), if the result
is “formula is unsatisfiable”, then make a recursive call with the input (ϕ[xj :=
1 − c], ρ ∪ {xj := 1 − c}) and return its result, otherwise return the result of the
first recursive call.
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Definition 2.2. Drunken algorithms [AHI05] are backtracking algorithms, where the
heuristic A may be arbitrary (even not computable) and the heuristic B chooses the
value of variable at random with equal probabilities. Simplification rules: 1) Unit clause
elimination: if formula contains a clause with only one literal, then make a substitution
that satisfies that clause. 2) Pure literals rule: if formula contains a variable that has only
positive or only negative occurrences, then substitute it with the corresponding value.

In Section 3 we will show that we may assume that a drunken algorithm does not use
the above simplification rules. Usages of them may be replaced by an appropriate choice
of splitting variable.

Running time of a backtracking algorithm for a given sequence of random bits is the
number of recursive calls.

3 What can we solve by drunken algorithms?

In this section we show that it is possible to modify a drunken algorithm in such a way
that it will not use pure literals and unit clause elimination rules while its running time
is increased only polynomially. We also show that there exists a drunken algorithm that
solves satisfiable Tseitin formulas in polynomial time.

Proposition 3.1. For any drunken algorithm A there exists another drunken algorithm
B, that does not use unit clause elimination rule. The running time of algorithm B (for a
given sequence of random bits) is at most the running time of A (for the same sequence
of random bits) times n, where n is the number of variables in the input formula.

Proof. If the current formula contains a unit clause, then the algorithm B makes splitting
on the variable of this unit clause. One of the branches will result in a trivially unsatisfi-
able formula, in the other branch resulting formula will be the same as after application
of unit clause elimination rule.

Proposition 3.2. For any drunken algorithm A there exists another drunken algorithm
C that does not use unit clause elimination and pure literals rules. The running time of
algorithm C is at most the running time of A times n2, where n is the number of variables
in the input formula.

Proof. Note that an application of the pure literals rule is just a removing of some clauses.
If formula is unsatisfiable, it is possible not to use pure literals rule (a heuristic A may
remove corresponding clauses by itself). There is a problem for satisfiable formulas:
it is possible that in some moment the current formula is completely simplified by an
application of a sequence of pure literals rule. Let’s consider satisfiable formula that may
be completely simplified (up to the formula with an empty set of clauses) by application
of a sequence of pure literals rules. Let the sequence of pure literals be l1, l2, . . . , lt. Let
the application of the pure literals rule (in the above order) to the literal li eliminates the
set of clauses Ci. Let m be the number of variables in the formula. By induction on t+m
we show that it is possible not to use pure literals rule. The base of induction t+m = 0
is trivial. Induction step. Consider the nonempty set of clauses Ct; let X be the set of
variables that have occurrences in clauses of Ct and are not equal to the variable of literal
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lt. We consider two cases. In the first case X = ∅, then all clauses in Ct are unit clauses
with literal lt, then we may apply unit clause elimination rules, so the number of pure
literals rules will be reduced to t − 1 and we apply induction hypothesis. In the second
case X 6= ∅, then we make a substitution to one variable in the set X (note that the
variables in X are not equal to any of variables of l1, l2, . . . , lt). After this substitution the
formula still can be simplified by an application of t pure literals rules but the number
of variables is decreased by one and we use induction hypothesis. Finally we remove all
pure literals rules and make at most n substitution in every formula, where the satisfying
assignment was obtained by multiple applications of pure literals rules. We also remove
unit clause elimination rules by application of Proposition 3.1.

Further we assume that drunken algorithms don’t use simplifications rules.
Now we show that drunken algorithms may efficiently solve Tseitin formulas. Tseitin

formula is based on a simple connected undirected graph H(V,E) with degree bounded
by a constant d. Every edge e ∈ E has the corresponding propositional variable pe. There
is a function f : V → {0, 1}; for every vertex v ∈ V we put down a formula in CNF
that codes an equality

⊕
u∈V :(u,v)∈E

p(u,v) = f(v). (⊕ denotes the summation modulo 2).

The conjunction of formulas described above is called Tseitin formula. If
⊕
v∈V

f(v) = 1,

then Tseitin formula is unsatisfiable. Indeed, if we sum (modulo 2) all equalities stated
in vertices we get 0 = 1 since every variable has exactly 2 occurrences. If

⊕
v∈V

f(v) = 0,

then Tseitin formula is satisfiable ([Urq87], Lemma 4.1).
Satisfiable Tseitin formulas may be solved in polynomial time by appropriate drunken

algorithm as follows. We assume that the substitution of a variable removes the corre-
sponding edge from the graph. While the graph contains cycles, the drunken algorithm
chooses an edge from a cycle for the substitution. Note that after each substitution the
current formula remains satisfiable Tseitin formula (if we substitute 0, the function f for
the substituted formula is the same as for the original one and if we substitute 1, the
function f for substituted formula differs from the original one in 2 ends of the edge). If
the graph becomes a tree, then it contains a vertex of degree 1, then the formula con-
tains a unit clause and the whole formula can be solved by application of unit clause
elimination rules (we may remove them by Proposition 3.1).

4 Behavior of drunken algorithms on unsatisfiable

formulas

Behavior of backtracking algorithms on unsatisfiable formulas is closely connected with
the resolution proof system. The resolution proof system is used for proving of unsat-
isfiability of CNF formulas. The proof of unsatisfiability of formula ϕ in the resolution
proof system is a sequence of clauses, every clause in this sequence is either a clause
of ϕ or a result of application of the resolution rule to two previous clauses; and the
last clause in the sequence is an empty clause (a contradiction). The resolution of
two clauses (l1 ∨ l2 ∨ · · · ∨ ln) and (l′1 ∨ l′2 ∨ · · · ∨ l′m) where l′m = ¬ln is the clause
(l1∨ · · ·∨ ln−1∨ l′1∨ · · ·∨ l′m−1). The proof is called treelike if every inferred clause is used
as the premise of the resolution rule at most once.
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The running of every drunken algorithm on the unsatisfiable formula corresponds to
the splitting tree. Vertices of the tree are marked with variables that are chosen for
splitting. There are two outgoing edges from every vertex except leaves; one of the edges
is marked with 0, the other edge is marked with 1. In every leaf at least one of clauses
of initial formula is refuted. The running time of a drunken algorithm is the size of the
splitting tree (note that if formula is unsatisfiable then the algorithm should investigate
the whole tree and it’s number of steps is the same for all random choices).

The following statement is well known.

Proposition 4.1. The running time of a drunken algorithm on unsatisfiable formula is
at least the size (number of clauses) of the shortest treelike resolution proof.

Proof. By induction of the size of the tree it is easy to show that if unsatisfiable formula
ϕ has splitting tree of size k then ϕ has resolution refutation of size k. The base of
induction is the spitting tree with only one vertex, such formula should contain an empty
clause therefore the size of resolution refutation is 1. Induction step. Note that the tree
necessarily contains two leaves u and v with the same parent w. Let xi be the splitting
variable in the vertex w, the leaf u corresponds to the assignment xi = 1 and the leaf v
corresponds to the assignment xi = 0. Two clauses that are refuted in the vertices v and
u contain the variable xi with different signs. The resolvent (the result of an application
of the resolution rule) of this two clauses C must be refuted in the vertex w. We construct
new splitting tree: cut leaves u and w and add clause C to vertex w. Now we get a correct
splitting tree for a formula that is obtained from the initial formula by adding a resolvent
of two clauses. And we apply induction hypothesis to the resulting tree (the number of
vertices is decreased by 1).

Ben-Sasson and Wigderson in [BSW01] introduced the notion of width of the proof.
The width of a clause is the number of literals in it. The width of a CNF formula is
the width of its widest clause. The width of a resolution proof is the width of its widest
clause.

Theorem 4.1 ([BSW01], corollary 3.4). The size of a treelike resolution refutation of the
formula ϕ is at least 2w−wϕ , where w is the minimum width of the resolution refutation
of ϕ and wϕ is the width of ϕ.

Let G be a boundary (r, d, c)-expander. We associate a proposition variable with
every vertex in set X. Let every vertex yj in set Y have a CNF formula that depends
on variables adjacent to yj. We denote the formula in the vertex yj as ϕj. Obviously the
width of ϕj is at most d. The conjunction of all formulas that correspond to the vertices
Y we denote Φ. For any subset A ⊆ Y the conjunction of all formulas that correspond
to the vertices in A we denote as ΦA.

We say that a variable is sensible if by changing its value we change the value of the
formula (for every assignment of values of other variables).

Theorem 4.2. Let every formula ϕj contain at most k insensible variables; ρ is a partial
assignment to variables of X such that formula Φ|ρ is unsatisfiable and for any set of
vertices A ⊆ Y , |A| < r

2
, the formula Φ|Aρ is satisfiable. Then any resolution proof of Φ|ρ

has width at least (c−k)r
4
− |ρ|.
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Proof. We consider Ben-Sason-Wigderson measure µ that is defined on the clauses of
resolution proof of Φ|ρ. µ(D) is the size of the minimal set of vertices A such that clause
D is a semantic implication of ΦA|ρ (it means that every satisfying assignment of ΦA|ρ also
satisfies D). The measure µ is semiadditive: if clause D is a resolvent of clauses C1 and
C2, then µ(D) ≤ µ(C1) + µ(C2). Since for every set A ⊆ Y such that |A| < r

2
, formula

Φ|Aρ is satisfiable, then the measure of an empty clause is at least r
2
. Semiadditivity

implies that there exists a clause C such that r
2
> µ(C) ≥ r

4
for r large enough. Let A

be the minimal set of vertices such that Φ|Aρ semantically implies C, i.e. |A| = µ(C) ≥ r
4
.

Since G is a (r, d, c)-boundary expander we have δ(A) ≥ c|A|. δ(A) is a set of variables
that have exactly one occurrence in the formulas corresponding to the set A. There are
at least (c − k)|A| variables among them that are sensible for at least one vertex of A.
There are at least (c−k)|A|− |ρ| sensible variables in the formula Φ|Aρ . Now we will show
that the clause C contains all sensible variables. Suppose for contradiction that there
is a variable xj that is sensible for a vertex v ∈ A and the clause C doesn’t contain xj.
Consider the set A \ {v}. It doesn’t semantically imply C, therefore there exists such an
assignment that satisfies all formulas for A \ {v} and doesn’t satisfy C. We may change
the value of xj in this assignment in such way that the resulting assignment satisfies all
formulas in A and doesn’t satisfy C. The later contradicts the fact that C is a semantic
implication of A.

Corollary 4.1. The size of the splitting tree of Φ|ρ is at least 2
(c−k)r

4
−|ρ|−d.

Proof. Follows from the Theorem 4.2, Theorem 4.1 and Proposition 4.1.

5 Behaviour of drunken algorithms on satisfiable for-

mulas

Let G be a bipartite boundary (r, d, c)-expander. Let c > k + 1.

Definition 5.1. Let J ⊆ X, the set of vertices I ⊆ Y is called k-closure of the set J if
there is a finite sequence of sets I1, I2, . . . , Im (we denote C` =

⋃
1≤i≤` Ii, C0 = ∅), such

that the following properties are satisfied:

� I` ⊆ Y and 0 < |I`| ≤ r
2

for all 1 ≤ ` ≤ m;

� Ii ∩ Ij = ∅ for all 1 ≤ i, j ≤ m;

� |δ(I`) \ (Γ(C`−1) ∪ J)| ≤ (1 + k)|Il|; for all 1 ≤ ` ≤ m;

� for all I ′ ⊆ Y \ Cm if 0 < |I ′| ≤ r
2
, then |δ(I ′) \ (Γ(Cm) ∪ J)| > (1 + k)|I ′|;

� I = Cm.

The set of all k-closures of the set J we denote as Clk(J).

Lemma 5.1. 1. For every set J ⊆ X there exists a k-closure. 2. Let J1 ⊆ J2, then for
every I1 ∈ Clk(J1) there exists I2 ∈ Clk(J2) such that I1 ⊆ I2
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Proof. 1. A k-closure may be obtained as a result of the following algorithm C on the
input (J, ∅).

Algorithm 5.1. Algorithm C(J, I0)

1. I := I0 (the variable I means some subset of Y )

2. While there exists I ′ ⊆ Y \ I such that 0 < |I ′| ≤ r
2
, |δ(I ′)\ (Γ(I)∪J)| ≤ (1 +k)|I ′|

� I := I ∪ I ′

3. Return I.

2. Let I1 ∈ Clk(J1), then we can get I2 ∈ Clk(J2) as a result of the algorithm C on
the input (J2, I1). The condition I1 ⊆ I2 is satisfied.

Lemma 5.2 ([AHI05]). Let |J | < (c−k−1)r
2

, then for every set I ∈ Clk(J) the inequality
|I| ≤ (c− k − 1)−1|J | is satisfied

Proof. Proof by contradiction. Let I1, I2, . . . , Im be the sequence corresponding to the
k-closure I, C` =

⋃
1≤i≤` I`. Let t be the minimal number such that the inequality

|Ct| > (c− k − 1)−1|J | is satisfied, then |Ct| ≤ (c− k − 1)−1|J |+ r
2
≤ r. Then |δ(Ct)| ≥

c|Ct| > |J |+ (k+ 1)|Ct|. By induction on ` we will show that |δ(C`) \ J | ≤ (k+ 1)(|C`|),
and it contradicts the above inequality for l = t. If l = 1 the inequality follows from
|δI1 \ J | ≤ (k + 1)|I1|. |δ(C`) \ J | ≤ |δ(I1 ∪ · · · ∪ I`−1) \ J | + |δ(I`) \ (J ∪ Γ(C`−1))| ≤
(k + 1)((|C`−1|)) + (k + 1)|I`|.

We assume that a drunken algorithm creates a splitting tree during the execution.
At the beginning it creates the root of the tree that becomes the current vertex. Each
vertex of the tree has a current formula, each edge is associated with the assignment of
one variable. The path from the root to the vertex defines a partial assignment that is a
union of all assignments along this path. The current vertex of the tree becomes a leaf if
the current formula is either already satisfied (i.e. all its clauses are satisfied) or contains
an empty clause (i.e. a contradiction). In the first case the algorithm prints a satisfying
assignment and stops. In the second case the algorithm looks for the closest backtrack
point along the path to the root and considers the vertex with that backtrack point as
current (in this case we say that the algorithm backtracks). If there are no vertices with
a backtrack point, then the algorithm stops and returns “formula is unsatisfiable”. If the
current formula is not trivially unsatisfiable or satisfiable, then the algorithm chooses the
variable for splitting and the value for splitting according to heuristics A and B, puts a
backtrack point in the vertex and creates a descendant that corresponds to the assignment
that was chosen; this descendant becomes the current vertex. If the current vertex
has a backtrack point, then the algorithm removes this point and creates a descendant
corresponding to the assignment that was not investigated in that vertex.

Now we describe a superstructure of drunken algorithms that slightly modifies their
behavior on the formula Φg(x)=b for several first steps. After this the superstructure
finishes its work and the algorithm continues its normal work without modification. We
claim that the running time of the algorithm with the superstructure is not increased.
(The last statement is not very clear since our algorithm uses random bits. In our case
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it should be understood in the following way: the original algorithm uses p random bits
and the algorithm with the superstructure uses q bits where q ≤ p, and for every string
of random bits r of length q there are 2p−q strings of random bits of length p such that
the running time of the original algorithm on those strings is at least the running time of
the algorithm with the superstructure on the string r. The above correspondence covers
all strings of length p.)

The superstructure has a partial assignment π. If π assigns some value to the variable
x, then we call x forced. If a drunken algorithm tries to make an assignment to a forced
variable that differs from the value in π, then the superstructure doesn’t allow this. In
other words, the superstructure cuts off a subtree but we guarantee that the cut subtree
is unsatisfiable (it does not contain a satisfying assignment). We also guarantee that
while the superstructure is working there are no backtrackings (all backtrackings are left
in the cut subtrees).

Let’s formally describe the superstructure. Let drunken algorithm A get as input a
satisfiable formula Φg(x)=b, where G is a (r, d, c)-boundary expander, k is the number of
insensible variables of the predicate P and k + 1 < c.

1. J := ∅, I := ∅, ρ := ∅ (current substitution)

2. π := ∅ (initially there are no forced variables).

3. While |J | < r(c−k−1)
16d

and |ρ| < n do

(a) If algorithm A is ready to finish its work or it wants to backtrack, then break.

(b) Let A choose a variable xj for the splitting.

(c) If variable xj is forced and π contains assignment xj := a, then ρ := ρ∪{xj :=
a}. In the splitting tree we add one decender and we do not put a backtracking
point.

(d) Otherwise the variable xj is not forced, then

� Let A chooses value a, then J := J ∪ {xj}, ρ := ρ ∪ {xj := a}. We put
backtrack point in the current vertex.

� We extend I to the element of Clk(J) (it is possible by the item (2) of
Lemma 5.1).

� For all variables xj from Γ(I) and a ∈ {0, 1}, if the value xj = a is
a semantic implication of formula ΦI

g(x)=b|ρ, then π := π ∪ {xj := a}.
(Formally it is possible that the formula ΦI

g(x)=b|ρ implies both xj = 0 and
xj = 1. In this case we add to π only one of them; later we show that this
case is impossible).

� Create a descendant in the tree that corresponds to the made assignment,
this descendant becomes the current vertex.

4. Simulate A without changes on the formula Φg(x)=b|ρ in the current vertex of the
tree.

Let the loop at the 3rd step of the superstructure be executed (up to the end) t times.
For 0 ≤ i ≤ t we denote as Ji, Ii, ρi the values of the variables J, I, ρ before the (i+ 1)-th
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iteration of the loop at the 3rd step. (It, Jt, ρt are the values after t-th iteration of the
loop).

The following Lemma implies that during the work of the superstructure the algorithm
does not backtrack.

Lemma 5.3. For every 0 ≤ i ≤ t and for any subset A ⊆ Y , such that |A| ≤ r
2
, the

formula ΦA
g(x)=b|ρi is satisfiable and Ii = Clk(Ji).

Proof. Proof by induction on i. Let’s verify the condition for i = 0, ρ0 = ∅. Proof
by contradiction. We consider the smallest set A ⊂ Y , |A| ≤ r

2
such that the formula

ΦA
g(x)=b is unsatisfiable. Since G is a boundary expander, then |δ(A)| ≥ c|A|, and therefore

there are at least (c− k)|A| sensible boundary variables for formulas from the set A. By
changing of the value of the boundary variable we may change the value of some formula
from A, that is this formula (and a vertex) may be removed from A; the latest contradicts
to the minimality of A.

The induction step. Proof by contradiction. Consider the minimum set A ⊆ Y ,
|A| ≤ r

2
such that the formula ΦA

g(x)=b|ρi+1
is unsatisfiable. Let A1 = A∩Ii+1, A2 = A\Ii+1.

If A2 is not empty, then the definition 5.1 implies |δ(A2) \ (Γ(Ii+1) ∪ J)| > (k + 1)|A2|,
therefore we may remove at least one vertex from A2 since one of the formulas in A2 may
be satisfied by a sensible boundary variable (a sensible boundary variable exists since
each vertex has at most k insensible variables) that contradicts to the minimality of A.
Therefore A2 = ∅ and A ⊆ Ii+1.

We split A on A′ = A∩Ii and A′′ = A\Ii. Let A′′ = ∅. By the induction hypothesis the
formula ΦA′

g(x)=b|ρi is satisfiable since |A′| ≤ |A| ≤ r
2
. The formula ΦA′

g(x)=b|ρi+1
is satisfiable

since ρi+1 differs from ρi in only one assignment and the variables are forced by the
substitution π only if their values are semantic implications of the formula ΦIi

g(x)=b|ρi .
The latest means that it is impossible for the algorithm A (on the (i + 1)-the iteration
of the loop) to make ΦIi

g(x)=b|ρi unsatisfiable by one assignment.

Let A′′ 6= ∅. |A′′| ≤ r
2

and A′′ ∩ Ii = ∅ imply |δ(A′′) \ (Γ(Ii) ∪ J)| > (k + 1)|A′′|,
that is the set A′′ contains at least two sensible boundary variables (that are not in
Γ(Ii)∪J), therefore after one assignment there is at least one sensible boundary variable.
We can remove at least one vertex from A′′ with ΦA

g(x)=b|ρi+1
remaining unsatisfiable. This

contradicts the minimality of A.

Now we show that the algorithm can’t find the satisfying assignment during the work
of the superstructure. During the work of the superstructure for every 0 ≤ i ≤ t the
inequality |Ji| ≤ r(c−k−1)

16d
is satisfied. Lemma 5.2 implies |Ii| ≤ r

16d
, hence |Γ(Ii)| ≤ r

16
.

The number of variables that were assigned during the work of the superstructure is at
most |Γ(It)| ∪ |Jt| ≤ r

8
(|Jt| ≤ r

16
since c ≤ d in the (r, d, c)-boundary expander). This is

not enough to satisfy the formula, since any subset A ⊆ Y of size r contains at least r
sensible variables. To satisfy the formula we should assign a value to all sensible variables.

Lemma 5.4. Let g be the Goldreich’s function based on the (r, d, c)-boundary expander
G and the predicate P , which has at most k insensible variables and c > k + 1. Let b

be the n-th bit string such that the equation g(x) = b has at most 2
r(c−k−1)

64d solutions.
Then with probability 1−2−Ω(r) the running time of a drunken algorithm on the formula
Φg(x)=b is 2Ω(r) (in asymptotic notations c, k and d are considered to be constants).
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Proof. Since the superstructure doesn’t increase the running time it is sufficient to esti-
mate the running time of the algorithm with the superstructure. Since the superstructure
works until |J | ≤ r(c−k−1)

16d
and |I| ∈ Clk(J) we have that Lemma 5.2 implies |I| ≤ r

16d
.

Therefore |Γ(I)| ≤ r
16

. Hence during the work of the superstructure the number of as-
signments made is at most |Γ(I)| + |J | ≤ r

8
. The set J corresponds to splittings (to

assignments that put a backtrack point). The first substituted values are chosen at ran-
dom. The substitution of one variable xj := a is lucky for a formula ϕ if it agrees with
at least half of satisfying assignments of ϕ and unlucky otherwise.

During the work of the superstructure a drunken algorithm makes r(c−k−1)
16d

assignments
choosing the values at random. With probability 1

2
the chosen value is unlucky, that is,

the number of satisfying assignments decreases at least by half. Chernoff bound implies
that with probability 1 − 2−Ω(r) there are at least r(c−k−1)

64d
unlucky assignments. Thus

with probability 1 − 2−Ω(r) after the work of the superstructure the current formula is
unsatisfiable; the size of substitution ρ is at most r

8
. The statement of the Lemma follows

from Corollary 4.1, where we’ve proved the lower bound for unsatisfiable formulas.

Theorem 5.1 (cf. [CEMT09], theorem 4.1). Let Pd(x1, x2, . . . , xd) = x1 ⊕ x2 ⊕ · · · ⊕
xd−k ⊕ Q(xd−k+1, . . . , xd), where Q is an arbitrary predicate of arity k and k + 1 < d

4
.

The graph G is obtained randomly in the following way: for every vertex in Y we choose
independently at random d edges to X (repetitions are allowed). Then E[#(x, y) | g(x) =

g(y)] = 2(1+2−Ω(d))n, where g is a Goldreich’s function based on G and the predicate Pd.

Proof. See appendix A.

Now we prove the main theorem:

Theorem 5.2. Let Pd(x1, x2, . . . , xd) = x1 ⊕ . . . xd−k ⊕ Q(xd−k+1, . . . , xd), where Q is
an arbitrary predicate of arity k and k + 1 < d

4
. For all d large enough and all n large

enough the random graph G with probability at least 0.85 has the following property. For
every drunken algorithm A, Pry←Un{Pr{tAΦg(x)=g(y)

> 2Ω(n)} > 1− 2−Ω(n)} > 0.9, where tAΦ
denotes the running time of the algorithm A on the formula Φ.

Proof. By the corollary 2.1 the random graph with probability 0.9 is a ( n
10d
, d, 1

4
d)-

boundary expander. Theorem 5.1 implies that the average number of pairs x and y
that g(x) = g(y) is 2(1+2−Ω(d))n, where the averaging is on random graphs. The Markov
inequality implies that with probability at least 0.95 for the random graph the number
of pairs x and y such that g(x) = g(y) is 2(1+2−Ω(d))n (the constant is hidden in Ω(d)).
Therefore with probability at least 0.85 the random graph is a boundary expander and
the upper bound on the number of pairs with equal values of g holds. We fix such graph
G. The Markov inequality implies that for at least 0.9 fraction of strings y ∈ {0, 1}n the

following inequality |g−1(g(y))| < 22−Ω(d)n is satisfied. The predicate P contains at most
k insensible variables (insensible variables are among xd−k+1, . . . , xd), then Lemma 5.4
implies that the running time of any drunken algorithm on the formula Φg(x)=g(y) is at
least 2Ω(n) with probability 1− 2−Ω(n).
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A The bound on the number of solutions

In this section we estimate the number of pre-images of Goldreich’s function based on
the predicate Pd(x1, x2, . . . , xd) = x1⊕x2⊕· · ·⊕xd−k⊕Q(xd−k+1, . . . , xd), where Q is an
arbitrary predicate of arity k and k + 1 < d

4
.

Theorem A.1 (cf. [CEMT09], theorem 4.1). Let Pd(x1, x2, . . . , xd) = x1 ⊕ x2 ⊕ · · · ⊕
xd−k ⊕ Q(xd−k+1, . . . , xd), where Q is an arbitrary predicate of arity k and k + 1 < d

4
.

The graph G is obtained randomly in the following way: for every vertex in Y we choose
independently at random d edges to X (repetitions are allowed). Then E[#(x, y) | g(x) =

g(y)] = 2(1+2−Ω(d))n, where g is a Goldreich’s function based on G and the predicate Pd.

Proof. E[#(x, y) | g(x) = g(y)] =
∑

x,y∈{0,1}n Pr{g(x) = g(y)}.
Let M ⊆ {1, 2, . . . , n} be the set positions where x and y are different, we denote

m = |M |. Since for every vertex in Y the edges of G are chosen independently, then
Pr{g(x) = g(y){= (Pr{(g(x))1 = (g(y))1})n.

Pr{(g(x))1 = (g(y))1} = Pr{Pd(xi1 , xi2 , . . . , xid) = Pd(yi1 , yi2 , . . . , yid)}, where
i1, i2, . . . , id are independent random values that range between 1 and n with equal prob-
ability.

Since a predicate Q is unknown, we put down: Pr{Pd(xi1 , xi2 , . . . , xid) =
Pd(yi1 , yi2 , . . . , yid)} = Pr{Pd(xi1 , xi2 , . . . , xid) = Pd(yi1 , yi2 , . . . , yid) |
Q(xid−k+1

, . . . , xid) = Q(yid−k+1
, . . . , yid)} · q + Pr{Pd(xi1 , xi2 , . . . , xid) =

Pd(yi1 , yi2 , . . . , yid) | Q(xid−k+1
, . . . , xid) 6= Q(yid−k+1

, . . . , yid)} · (1 − q), where
q = Pr{Q(xid−k+1

, . . . , xid) = Q(yid−k+1
, . . . , yid}. Now we estimate each condi-

tional probability separately. In the first case we estimate the probablity of the following
event: the number of i1, i2, . . . , id−k that belongs to M is even. In the second case the last
number should be odd. Consider a sequence pj, where pj is the probability that the num-
ber of i1, i2, . . . , ij that belongs to M is even. The following recurrence relation follows
from the independence of random variables: pj+1 = α(1−pj)+(1−α)pj = α+(1−2α)pj,

where α = m
n

, p0 = 1. The solution of this recurrence relation is pj = 1+(1−2α)j

2
, hence

1− pj = 1−(1−2α)j

2
. Finally Pr{f(x) = f(y)} ≤

(
1+|1−2α|d−k

2

)n
.

E[#(x, y) | f(x) = f(y)] =
∑

x∈{0,1}n

n∑
m=1

∑
y: δ(x,y)=m

Pr{f(x) = f(y)}

≤ 2n
∑
k

Cm
n

(
1 + |1− 2 k

n
|d−k

2

)n

≤ n · max
0≤α≤ 1

2

2H(α)n(1 + (1− 2α)d−k)n,

where δ(x, y) is the number of positions where x differs from y, H(α) = −α logα− (1−
α) log(1− α) is a binary entropy, log is a binary logarithm.

Lemma A.1 ([CEMT09], from the proof of theorem 4.1). There exists ε > 0 such that
for all α ∈ [0, 1

2
] and all big enough d the following inequality is satisfied H(α) + log2(1 +

(1− 2α)d−k) ≤ 1 + 2−εd, where k + 1 < d
4
.

Proof. We consider 4 cases depending on the α. We will choose values for the constants
ε1, ε2, ε3, ε4 further in the proof.
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Case 1: α > ε1. H(α) + log2(1 + (1− 2α)d−k)
ln(1+x)≤x
≤ 1 + (1− 2ε1)

3d
4 / ln 2 ≤ 1 + 2−εd,

if ε < −3
4

log(1− 2ε1) and d is big enough.
In the other cases H(α) is small. The following inequality follows from the Teylor

decomposition of lnx in the point 2: ln(1 + x) ≤ ln 2 + x−1
2

. Then we may estimate:

log(1 + (1− 2α)d−k) ≤ 1 +
(1− 2α)d−k − 1

2 ln 2
1+x≤ex
≤ 1 +

e−2α(d−k) − 1

2 ln 2
≤ 1 +

e−3α·d/2 − 1

2 ln 2

Case 2: ε1 ≥ α > ε2/d.

H(α) + log(1 + (1− 2α)d−k) ≤ H(ε1) + 1 +
e−3ε2/2 − 1

2 ln 2
≤ 1,

if we chose such a small ε1 that H(ε1) < 1−e−3ε2/2

2 ln 2
.

If 0 ≤ α ≤ 1
2
, then the inequality (α−1) log(1−α) ≤ 2α is satisfied because for α = 0

the inequality becomes an equality, and the derivative of the difference between the left
and the right sides is positive. We may estimate: H(α) ≤ α log 1

α
+ 2α.

For the remaining cases (where α ≤ ε2/d) we choose ε2 = 1
3
, then 3

2
αd ≤ 1

2
. For

−1
2
≤ x ≤ 0 the inequality ex − 1 ≤ x

2
is satisfied (it can be verified by considering a

derivative). Now we may estimate:

H(α) + 1 + e−
3
2αd−1
2 ln 2

≤ (α log 1
α

+ 2α) + 1− 3αd
8 ln 2

= 1 + α(log 1
α
− 3

8 ln 2
· d+ 2)

Case 3: ε2/d ≥ α > 2−ε3d. For ε3 <
3

8 ln 2
and big enough d: (log 1

α
− 3

8 ln 2
· d+ 2) < 0.

Case 4: 2−ε3d ≥ α. For ε < ε3 and big enough d the following is satisfied: α log 1
α
≤

ε3d2−ε3d ≤ 2−εd.

The statement of the theorem follows from the Lemma A.1.
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