
Lower bounds for splittings by linear combinations ∗

Dmitry Itsykson†and Dmitry Sokolov†

August 6, 2014

Abstract

A typical DPLL algorithm for the Boolean satisfiability problem splits the input
problem into two by assigning the two possible values to a variable; then it simplifies
the two resulting formulas. In this paper we consider an extension of the DPLL
paradigm. Our algorithms can split by an arbitrary linear combination of variables
modulo two. These algorithms quickly solve formulas that explicitly encode linear
systems modulo two, which were used for proving exponential lower bounds for
conventional DPLL algorithms.

We prove exponential lower bounds on the running time of DPLL with splitting
by linear combinations on 2-fold Tseitin formulas and on formulas that encode the
pigeonhole principle.

Raz and Tzameret introduced a system R(lin) which operates with disjunctions
of linear equalities with integer coefficients. We consider an extension of the resolu-
tion proof system that operates with disjunctions of linear equalities over F2; we call
this system Res-Lin. Res-Lin can be p-simulated in R(lin) but currently we do not
know any superpolynomial lower bounds in R(lin). Tree-like proofs in Res-Lin are
equivalent to the behavior of our algorithms on unsatisfiable instances. We prove
that Res-Lin is implication complete and also prove that Res-Lin is polynomially
equivalent to its semantic version. We prove a space-size tradeoff for Res-Lin proofs
of 2-fold Tseitin formulas.

1 Introduction

Splitting is the one of the most frequent methods for exact algorithms for NP-hard prob-
lems. It considers several cases and recursively executes on each of that cases. For the
CNF satisfiability problem the classical splitting algorithms are so called DPLL algo-
rithms (by authors Davis, Putnam, Logemann and Loveland) [6], [5] in which splitting
cases are values of a variable. A very natural extension of such algorithms is a splitting
by a value of some formula. In this paper we consider an extension of DPLL that al-
lows splitting by linear combinations of variables over F2. There is a polynomial time

∗The research is partially supported by the RFBR grant 14-01-00545, by the President’s grant MK-
2813.2014.1 and by the Government of the Russia (grant 14.Z50.31.0030).
†Steklov Institute of Mathematics at St. Petersburg, 27 Fontanka, St.Petersburg, 191023, Russia,

dmitrits@pdmi.ras.ru, sokolov.dmt@gmail.com.

1

algorithm that check whether a system of linear equations has a solution and whether a
system of linear equations contradicts a clause. Thus the running time of an algorithm
that solves CNF-SAT using splitting by linear combinations (in the contrast to splitting
by arbitrary functions) is at most the size of its splitting tree up to a polynomial factor.

Formulas that encode unsatisfiable systems of linear equations are hard for resolu-
tion and hence for DPLL [16], [3]. Systems of linear equations are also hard satisfiable
examples for myopic and drunken DPLL algorithms [1], [9]. Hard examples for myopic
algorithms with a cut heuristic are also based on linear systems [8]. We show that a
splitting by linear combinations helps to solve explicitly encoded linear systems over F2

in polynomial time.
For every CNF formula φ we denote by φ⊕ a CNF formula obtained from φ by sub-

stituting x1⊕x2 for each variable x. Urquhart shows that for unsatisfiable φ the running
time of any DPLL algorithm on φ⊕ is at least 2d(φ), where d(φ) is the minimal depth of
the recursion tree of DPLL algorithms running on the input φ [17]. Urquhart also gives
an example of Pebbling contradictions Peb(Gn) such that d(Peb(Gn)) = Ω(n/ log n) and
there is a DPLL algorithm that solves Peb(Gn) in O(n) steps. Thus Peb⊕(Gn) is one
more example that is hard for DPLL algorithms but easy for DPLL with splitting by
linear combinations.

The recent algorithm by Seto and Tamaki [15] solves satisfiability of formulas over
full binary basis using a splitting by linear combination of variables. The similar idea
was used by Demenkov and Kulikov in the simplified lower bound 3n − o(n) for circuit
complexity over full binary basis [7]. The common idea of [15] and [7] is that a restricting
a circuit with a linear equation may significantly reduce the size of the circuit.

Our results. We prove an exponential lower bound on the size of a splitting tree by
linear combinations for 2-fold Tseitin formulas that can be obtained from ordinary Tseitin
formulas by substituting every variable by the conjunction of two new variables. The plan
of the proof is following: let for every unsatisfiable formula φ a search problem Searchφ
be the problem of finding falsified clause given a variable assignment. We prove that it
is possible to transform a splitting tree T into a randomized communication protocol for
the problem Searchφ of depth O(log |T | log log |T |) if some variables are known by Alice
and other variables are known by Bob. And finally, we note that a lower bound on the
randomized communication complexity of the problem SearchTS2

G,c
for a 2-fold Tseitin

formula TS2
G,c follows from [10] and [2].

We also give an elementary proof of the lower bound 2
n−1
2 on the size of linear split-

ting trees of formulas PHPm
n that encode the pigeonhole principle. We also show that

the formulas PM(Kn,n+1) that code the existence of perfect mathcing in the complete
bipartite graph Kn,n+1 has polynomial size linear splitting trees while PM(Kn,n+1) are
exponentially hard for resolution[14].

It is well known that the behavior of DPLL algorithms on unsatisfiable formulas
corresponds to tree-like resolution proofs. We consider the extension of the resolution
proof system that operates with disjunctions of linear equalities. A system Res-Lin
contains the weakening rule and the resolution rule. We also consider a system Sem-
Lin that is a semantic version of Res-Lin; Sem-Lin contains semantic implication rule
with two premises instead of the resolution rule. We prove that this two systems are

2

polynomially equivalent and they are implication complete. We also show that tree-
like versions of Res-Lin and Sem-Lin are equivalent to linear splitting trees; the latter
implies that our lower bounds hold for tree-like Res-Lin and Sem-Lin. Raz and Tzameret
studied a system R(lin) which operates with disjunctions of linear equalities with integer
coefficients [12]. It is possible to p-simulate Res-Lin in R(lin) but the existence of the
simulation in the other direction is an open problem. We also prove a space-size tradeoff
for Res-Lin proofs of 2-fold Tseitin formulas.

Futher research. The main open problem is to prove a superpolynomial lower bound
in the DAG-like Res-Lin. One of the ways to prove a lower bound is to simulate the
Res-Lin system with another system for which a superpolynomial lower bound is known.
It is impossible to simulate Res-Lin with Res(k) (that extends Resolution and operate
with k-DNF instead of clauses) and in PCR (Polynomial Calculus + Resolution) over
field with char 6= 2 because there are known exponential lower bounds in Res(k) and
PCR for formulas based on systems of linear equations [13]. It is interesting whether
it is possible to simulate Res-Lin with Polynomial Calculus (or PCR) over F2 or with
the system R0(lin) which is a subsystem of R(lin) with known exponential lower bounds
based on the interpolation. Another open problem is to prove lower bounds for splitting
by linear combinations on satisfiable formulas, for example, for algorithms that arbitrary
choose a linear combination for splitting and randomly choose a value to investigate first.

2 Preliminaries

We will use the following notation: [n] = {1, 2, . . . , n}. Let X = {x1, . . . , xn} be a set of
variables that take values from F2. A linear form is a polynomial

∑n
i=1 αixi over F2.

Consider a binary tree T with edges labeled with linear equalities. For every vertex
v of T we denote by ΦT

v a system of all equalities that are written along the path from
the root of T to v. A linear splitting tree for a CNF formula φ is a binary tree T with
the following properties. Every internal node is labeled by a linear form that depends on
variables from φ. For every internal node that is labeled by a linear form f one of the
edges going to its children is labeled by f = 0 and the other edge is labeled by f = 1.
For every leaf v of the tree exactly one of the following conditions hold: 1) The system
ΦT
v does not have solutions. We call such leaf degenerate. 2) The system ΦT

v is satisfiable
but contradicts a clause C of formula φ. We say that such leaf refutes C. 3) The system
ΦT
v has exactly one solution in the variables of φ and this solution satisfies the formula

φ. We call such leaf satisfying.
A linear splitting tree may also be viewed as a recursion tree of an algorithm that

searches for satisfying assignments of a CNF formula using the following recursive pro-
cedure. It gets on the input a CNF formula φ and a system of linear equations Φ, the
goal of the algorithm is to find a satisfying assignment of φ ∧ Φ. Initially Φ = True and
on every step it somehow chooses a linear form f and a value α ∈ F2 and makes two
recursive calls: on the input (φ,Φ∧ (f = α)) and on the input (φ,Φ∧ (f = 1 + α)). The
algorithm backtracks in one of the three cases: 1) The system Φ does not have solutions
(it can be verified in polynomial time); 2) The system Φ contradicts to a clause C of
the formula φ (A system Ψ contradicts a clause (`1 ∨ `2 ∨ · · · ∨ `k) iff for all i ∈ [k] the

3

system Ψ ∧ (`i = 1) is unsatisfiable. Hence this condition may be verified in polynomial
time); 3) The system Φ has the unique solution that satisfies φ (it can also be verified
in polynomial time). Note that if it is enough to find just one satisfying assignment,
then the algorithm may stop in the first satisfying leaf. But in the case of unsatisfiable
formulas it must traverse the whole splitting tree.

Proposition 2.1. For every linear splitting tree T for a formula φ it is possible to
construct a splitting tree that has no degenerate leaves. The number of vertices in the
new tree is at most the number of vertices in T .

Proof. Let T contain vertices v (not necessary leaves) such that ΦT
v is unsatisfiable. Let

w be the one closest to the root. The vertex w differs from the root because the system in
the root is empty and therefore satisfiable. Let s be the parent of w and u is the brother
of v. The system ΦT

u is not unsatisfiable since in the opposite case ΦT
s is also unsatisfiable

that contradicts the choice of w. We construct the new tree T ′ from T by removing
a subtree with the root w and contracting the edge (s, u). T ′ is a correct splitting tree
because for all nodes v in T ′ a system ΦT ′

v is equivalent to the system in the corresponding
vertex of T . We continue applying this transformation while the tree changes.

3 Upper bounds

Proposition 3.1. Let formula φ in CNF encode an unsatisfiable system of linear equa-
tions

∧m
i=1(fi = βi) over F2. The i-th equation fi = βi is represented by a CNF formula

φi and φ =
∧m
i=1 φi. It is possible that encodings of different formulas φi have the same

clause; we assume that such clause is repeated in φ. Then there exists a splitting tree for
φ of size O(|φ|).

Proof. We will describe a binary tree T that has a path from the root to a leaf labeled
by equalities f1 = β1, f2 = β2, . . . , fm = βm; the leaf is degenerate since the system is
unsatisfiable. For all i ∈ [m] the i-th vertex on the path has the edge to the child ui
labeled by fi = βi + 1. Now we describe a subtree Tui with the root ui; it is just a
splitting tree over all variables of formula φi. Let x1, x2, . . . , xk be variables that appear
in f with nonzero coefficients. We sequentially make splittings on x1, x2, . . . xk starting
in ui. We know that ΦT

ui
contradicts φi, therefore every leaf of Tui either refutes clause

of φi or is degenerate (the system contradicts fi = 1 + βi). Tui has 2k leaves but it is well
known that every CNF representation of x1 +x2 + · · ·+xk = βi has at least 2k−1 clauses.
Therefore the size of T is at most O(|φ|).

For every graph G(V,E) we define a formula PM(G) that encode the existence of
the perfect matching in G. Every edge e ∈ E corresponds to a variable xe. For every
vertex v ∈ V the formula PM(G) contains a clause

∨
(v,u)∈E x(v,u) and for every pair of

edges (v, u) and (v, w) ∈ E it contains a clause ¬x(v,u) ∨ ¬x(v,w). The formula PM(G) is
satisfiable of and only if G has a perfect matching.

Proposition 3.2. If G(V,E) has odd number of vertices, then there exists a polynomial
size linear splitting tree for PM(G).

4

Proof. We will describe a binary tree T that has a path from the root to a leaf labeled
by equalities

∑
(v,u)∈E x(v,u) = 1 for all v ∈ V ; the leaf is degenerate since the number

of vertices is odd and hence the sum of all equalities along the path is a contradiction
0 = 1. For all i the i-th vertex on the path has the edge to the child ui labeled by∑

(vi,u)∈E x(vi,u) = 0. Now we describe a subtree Tui with the root ui; it is a splitting tree

over all variables xvi,u such that (vi, u) ∈ E. Whenever we substitute 1 for two variables
xvi,u and xvi,w, the current linear system contradicts the clause ¬x(v,u) ∨ ¬x(v,w). A leaf
` in a branch that substitutes 1 to only one of variables x(vi,u) is degenerate since Φ`

Tui
contradicts

∑
(vi,u)∈E x(vi,u) = 0. And a leaf in a branch that substitutes 0 to all variables

x(vi,u) contradicts
∨

(vi,u)∈E x(vi,u). The size of Tui is at most O(|V |2) since in every leaf

there are most two variables x(vi,u) with value 1. Hence the size of T is at most O(|V |3).

4 Lower bound for 2-fold Tseitin formulas

In this section we prove a lower bound on the size of a linear splitting tree. The proof
consists of two parts. At first we transform a splitting tree to a communication protocol
and then we prove a lower bound on the communication complexity.

Communication protocol from linear splitting tree. Let φ be an unsatisfiable
CNF formula. For every assignment of its variables there exists a clause of φ that is
falsified by the assignment. By Searchφ we denote a search problem where the instances
are variables assignments of and the solutions are clauses of φ that are falsified by the
assignment.

Let’s consider some function or search a problem f with inputs {0, 1}n; the set [n] is
split into two disjoint sets X and Y . Alice knows bits of input corresponding to X and
Bob knows bits of inputs corresponding to Y . A randomized communication protocol
with public random bits and error ε is a binary tree such that every internal node v
is labeled with a function of one of the two types: av : {0, 1}X × {0, 1}R → {0, 1} or
bv : {0, 1}Y ×{0, 1}R → {0, 1}, where R is an integer that denotes the number of random
bits used by a protocol. For every internal node one of the edges to children is labeled
with 0 and the other with 1, and leaves are labeled with strings (answers of a protocol).
Assume that Alice knows x ∈ {0, 1}X and Bob knows y ∈ {0, 1}Y ; both of them know
a random string r ∈ {0, 1}R. Alice and Bob communicate according to the protocol in
the following way: initially they put a token in the root of the tree. Every time if the
node with the token is labeled by a function of type av, then Alice computes the value of
av(x, r) and sends the result to Bob; and if the node is labeled by a function of type bv,
then Bob computes the value of bv(x, r) and sends the result to Alice. After this, both
players move the token to the child that corresponds to the sent bit. The communication
stops whenever the token moves to a leaf. The label in the leaf is the result of the
communication with a given string of random bits r. It is required that with probability
at least 1− ε over random choice of the string r ← {0, 1}R the result of the protocol is a
correct answer to the problem f . The complexity of a communication protocol is a depth
of the tree or, equivalently, the number of bits that Alice and Bob must send in the worst
case. By a randomized communication complexity with error ε of the problem f we call

5

a number Rpub
ε (f) that equals the minimal complexity of a protocol that solves f . See

[11] for more details.
Let EQ : {0, 1}2n → {0, 1}, and for all x, y ∈ {0, 1}n, EQ(x, y) = 1 iff x = y. When

we study the communication complexity of EQ we assume that Alice knows x and Bob
knows y.

Lemma 4.1 ([11]). Rpub
δ (EQ) ≤ dlog 1

δ
e+ 1.

Proof. We consider the following protocol of depth 2: Alice sends the inner product
<x, r> =

∑n
i=1 xiri mod 2, where r ∈ {0, 1}n is a random string. Bob computes the

inner product <y, r> and sends 1 if his result equals to the result of Alice and sends
0 otherwise. The result of this protocol equals to the bit sent by Bob. If x = y then
the result of the protocol is correct with probability 1. If x 6= y then by the random
subsum principle the result is correct with probability 1/2. In order to reduce the proba-
bility of error to δ, Alice sequentially sends dlog 1

δ
e inner products of x with independent

random strings r1, r2, . . . , rdlog 1
δ
e ∈ {0, 1}n. Then Bob verifies that his inner products

<y, r1>,<y, r2>, . . . , <y, rdlog 1
δ
e> equal to inner products of Alice and sends 1 if every-

thing is the same and 0 otherwise. If x = y then the result of the protocol is correct with
probability 1. If x 6= y, then by the random subsum principle the result is correct with
probability 1− 1

2dlog
1
δ
e ≥ 1− δ.

Lemma 4.2. Consider several equalities over F2. Let Alice knows values of some vari-
ables and Bob knows values of the other variables. There exists randomized public coin
communication protocol with error δ that uses O(log 1

δ
) bits of communication.

Proof. Assume that we have to verify t equalities. When we verify the j-th equality, Alice
have to compute the sum of her variables and Bob computes the sum of his variable. And
we should verify that the sum of the results of Alice and Bob equals the right hand side
of the equality αj. Let the sum of Alice variables of the j-th equality plus αi equals zj
and the sum of variables of Bob of the j-th equality equals yj. All equalities are satisfied
by π iff EQ(z1z2 . . . zt, y1y2 . . . yt) = 1. In order to compute EQ we use a protocol for EQ
from the Lemma 4.1.

Theorem 4.1. Let φ be an unsatisfiable CNF formula and T be a linear splitting tree for
φ. Then for every distribution of variables of φ between Alice and Bob, Rpub

1/3(Searchφ) =

O(log |T | log log |T |).

Proof. We construct a communication protocol from the tree T without degenerate leaves.
Alice and Bob together know an assignment π of variables of φ (Alice knows some bits of
π and Bob knows the other bits of π). The assignment π determines a path `π in T that
corresponds to edges with labels that are satisfied by π. This path contains a leaf that
refutes some clause Cπ of φ. The protocol that we are describing with high probability
returns the clause Cπ.

The protocol has O(log |T |) randomized rounds. In the analisys of the next round
we will assume that all previous rounds do not contain errors. Thus the total error may
be estimated as a sum of errors of the individual rounds. Both Alice and Bob at the
beginning of the i-th round know a tree Ti that is a connected subgraph of T ; T1 = T .
Since Ti is a connected subgraph of T , we may assume that the root of Ti is its highest

6

vertex in T . Under the assumption that all previous rounds were correct we will ensure
that Ti contains the part of the path `π that goes from the root of Ti to the leaf that
refutes Cπ. We also maintain inequality |Ti+1| ≤ 2

3
|Ti|. Thus if Ti has only one vertex it

would be the leaf of T that refutes Cπ, therefore Alice and Bob will know Cπ.
Let |Ti| > 1, then there exists such a vertex v of Ti that the size of the subtree of Ti

with the root v (we denote it by T
(v)
i) is at least 1

3
|Ti| and at most 2

3
|Ti|. The tree Ti+1

equals T
(v)
i if v belongs to the path `π and equals Ti \ T (v)

i otherwise. Alice and Bob,
using a fixed algorithm, find the vertex v; now they have to verify whether v belongs to
`π. The vertex v belongs to the path `π iff π satisfies all equalities that are written along
the path from the root of Ti to v. Alice and Bob verifies this equalities using Lemma 4.2
with δ = 1

3dlog3/2 |T |e
. Since the number of rounds is at most dlog3/2 |T |e, the total error

of the protocol is at most 1
3
. The total depth of the protocol is at most the number of

rounds dlog3/2 |T |e times the depth of the EQ protocol O(log log |T |).

Lower bound on communication complexity. A Tseitin formula TSG,c can be
constructed from an arbitrary graph G(V,E) and a function c : V → F2; variables of
TSG,c correspond to edges of G. The formula TSG,c is a conjunction of the following
conditions encoded in CNF for every vertex v: the parity of the number of edges incident
to v that have value 1 is the same as the parity of c(v). It is well known that TSG,c is
unsatisfiable if and only if

∑
v∈V c(v) = 1.

A k-fold Tseitin formula TSk(G,c) [2] can be obtained from Tseitin formula TSG,c if we

substitute every variable xi by a conjunction of k new variables (zi1 ∧ zi2 ∧ · · · ∧ zik) and
translate the resulting formula into CNF. Note that if the maximal degree of G is bounded
by a constant, then for every constant k the formula TSk(G,c) has CNF representation of

size polynomial in |V |.

Theorem 4.2. In time polynomial in n one may construct a graph G(V,E) on n vertices
with maximal degree bounded by a constant and a function c : V → F2 such that TS2

(G,c)

is unsatisfiable and Rpub
1/3(SearchTS2

(G,c)
) = Ω

(
n1/3

(log(n) log log(n))2

)
.

Corollary 4.1. In the condition of the Theorem 4.2 the size of any linear splitting tree

of TS2
(G,c) is at least Ω

(
2n

1/3/ log3(n)
)

.

Proof of Corollary 4.1. Follows from Theorem 4.2 and Theorem 4.1.

We define a function DISJn,2 : {0, 1}n × {0, 1}n → {0, 1} that for all x, y ∈ {0, 1}n
DISJn,2(x, y) = 1 iff xi ∧ yi = 0 for all i ∈ [n].

Theorem 4.3. ([2], Section 5) Let m = n1/3

log(n)
, then in time polynomial in n one may

construct a graph G(V,E) on n vertices with maximal degree bounded by a constant
and a function c : V → F2 such that TS2

(G,c) is unsatisfiable and Rpub
ε (DISJm,2) =

O
(
Rpub
ε (SearchTS2

(G,c)
) log(n)(log log(n))2

)
.

Lemma 4.3. ([10]) Rpub
1/3 (DISJn,2) = Ω(n).

7

Proof of Theorem 4.2. Let m = n1/3

log(n)
. By Lemma 4.3, Rpub

ε (DISJm,2) = Ω(m), then

by theorem 4.3 it is possible to construct G and c such that Rpub
1/3

(
SearchTS2

(G,c)

)
=

Ω
(

n1/3

(log(n) log log(n))2

)
.

5 Lower bound for Pigeonhole Principle

In this section we prove a lower bound on the size of linear splitting trees for formulas
PHPm

n that encode the pigeonhole principle. Formula PHPm
n has variables pi,j, where

i ∈ [m], j ∈ [n]; pi,j states that i-th pigeon is in the j-th hole. A formula has the two types
of clauses: 1) Long clauses that encode that every pigeon is in some hole: pi,1∨pi,2 · · ·∨pi,n
for all i ∈ [m]; 2) Short clauses that encode that every hole contains at most one pigeon:
¬pi,k ∨ ¬pj,k for all i 6= j ∈ [m] and all k ∈ [n]. If m > n then PHPm

n is unsatisfiable.
We call an assignment of values of variables pi,j acceptable if it satisfies all short

clauses. In other words in every acceptable assignment there are no holes with two or
more pigeons.

Lemma 5.1. Let a linear system Ap = b from variables p = (pi,j)i∈[m],j∈[n] have at most
n−1

2
equations and let it have an acceptable solution. Then for every i ∈ [m] this system

has an acceptable solution that satisfies the long clause pi,1 ∨ pi,2 ∨ · · · ∨ pi,n.

Proof. Note that if we change 1 to 0 in an acceptable assignment, then it remains accept-
able. Let the system have k equations; we know that k ≤ n−1

2
. We consider an acceptable

solution π of the system Ap = b with the minimum number of ones. We prove that the
number of ones in π is at most k. Let the number of ones is greater than k. Consider k+1
variables that take value 1 in π: pj1 , pj2 , . . . , pjk+1

. Since the matrix A has k rows, the
columns that correspond to variables pj1 , pj2 , . . . , pjk+1

are linearly depended. Therefore
there exists a nontrivial solution π′ of the homogeneous system Ap = 0 such that every
variable with value one in π′ is from the set {pj1 , pj2 , . . . , pjk+1

}. The assignment π′ + π
is also a solution of Ap = b and is acceptable because π′ + π can be obtained from π by
changing ones to zeros. Since π′ is nontrivial, the number of ones in π′ + π is less then
the number of ones in π and this contradicts the minimality of π.

The fact that π has at most k ones implies that π has at least n−k empty holes. From
the statement of the lemma we know that n−k ≥ k+1; we choose k+1 empty holes with
numbers `1, `2, . . . , `k+1. We fix i ∈ [m]; the columns of A that correspond to variables
pi,`1 , . . . , pi,`k+1

are linearly depended, therefore there exists a nontrivial solution τ of the
system Ap = 0 such that every variable with value 1 in τ is from the set {pi,`1 , . . . , pi,`k+1

}.
The assignment π+τ is a solution of Ap = b; π+τ is acceptable since holes with numbers
`1, `2, . . . , `k+1 are empty in π, and τ puts at most one pigeon to them (if τ puts a pigeon
in a hole, then this is the i-th pigeon). The assignment π+ τ satisfies pi,1∨ pi,2∨ · · · ∨ pi,n
because τ is nontrivial.

Theorem 5.1. For all m > n every linear splitting tree for PHPm
n has size at least 2

n−1
2 .

Proof. We say that the equality f = α is acceptably implied from a linear system Φ if
every acceptable solution of Φ satisfies f = α.

8

We consider a linear splitting tree T for PHPm
n . Remove from T all the vertices v for

which ΦT
v has no acceptable solutions. The resulting graph is a tree since if we remove a

vertex, then we should remove its subtree, and the root of T is not removed. We denote
this tree by T ′. Note that it is impossible that a leaf of T ′ is not a leaf in T . Indeed,
assume that v is labeled in T by a linear form f , then every acceptable assignment that
satisfies ΦT

v also satisfies one of the systems ΦT
v ∧ (f = 1) or ΦT

v ∧ (f = 0), so one of
the children is not removed. Hence in every leaf ` of T ′ the system ΦT

` refutes a clause
of PHPm

n . Since there exists an acceptable assignment that satisfies ΦT
` , then ΦT

` can’t
refute short clause, therefore it refutes a long clause.

Consider a vertex v of T ′ with the only child u, let the edge (u, v) be labeled by
f = α. We know that the system ΦT

v ∧ (f = 1 + α) has no acceptable solutions. Hence
the equality f = α is acceptably implied from ΦT

v ; and the sets of acceptable solutions of
ΦT ′
u and ΦT ′

v are equal.
Let T ′ contain a vertex v with the only child u; we merge u and v in one vertex and

remove the edge (u, v) with its label. We repeat this operation while the current tree
has vertices with the only child. We denote the resulting tree by T ′′. Let V ′ be the set
of vertices of T ′, and V ′′ be the set of vertices of T ′′. We define a surjective mapping
µ : V ′ → V ′′ that maps a vertex from T ′ to a vertex of T ′′ into which it was merged. We
know that for all u ∈ T ′ the sets of acceptable solutions of ΦT ′

u and ΦT ′′

µ(u) are equal.

For every leaf `′′ of T ′′ there exists a leaf `′ of T ′ such that µ(`′) = `′′, the system
ΦT ′

`′ refutes some long clause pi,1 ∨ · · · ∨ pi,n, therefore the system ΦT ′′

`′′ has no acceptable
solutions that satisfy pi,1 ∨ · · · ∨ pi,n. By construction all internal nodes of T ′′ have two
children. Lemma 5.1 implies that the depth of all leaves in T ′′ is at least n−1

2
, hence the

size of T ′′ is at least 2(n−1)/2.

6 Proof systems Res-Lin and Sem-Lin

A linear clause is a disjunction of linear equalities
∨k
i=1(fi = αi), where fi is a linear

form and αi ∈ F2. Equivalently we may rewrite a linear clause as a negation of a system
of linear equalities ¬

∧n
i=1(fi = 1 + αi). A trivial linear clause is a linear clause that is

identically true. A clause ¬
∧n
i=1(fi = αi) is trivial iff the system

∧n
i=1(fi = αi) has no

solutions.
A linear CNF formula is a conjunction of linear clauses. We say that propositional for-

mula φ is semantically implied form the set of formulas ψ1, ψ2, . . . , ψk if every assignment
that satisfies ψi for all i ∈ [k] also satisfies φ.

We define a proof system Res-Lin that can be used to prove that a linear CNF formula
is unsatisfiable. This system has two rules: 1)The weakening rule allows to derive from a
linear clause C any linear clause D such that C semantically implies D. 2)The resolution
rule allows to derive from linear clauses (f = 0) ∨D and (f = 1) ∨D′ the linear clause
D ∨D′.

A derivation of a linear clause C from a linear CNF φ in the Res-Lin system is a
sequence of linear clauses that ends with C and every clause is either a clause of φ
or it may be obtained from previous clauses by a derivation rule. The proof of the
unsatisfiability of a linear CNF is a derivation of the empty clause (contradiction). The
Sem-Lin system differs from Res-Lin by the second rule. It is replaced by a semantic rule

9

that allows to derive from linear clauses C1, C2 any linear clause C0 such that C1 and C2

semantically imply C0.
In order to verify that systems Sem-Lin and Res-Lin are proof systems in the sence

of [4] we have to ensure that it is possible to verify a correctness of a proof in polynomial
time. It is enough to verify a correctness of applications of rules. The correctness of
the resolution rule is easy to verify, and for the verification of the other rules we use the
following proposition.

Proposition 6.1. It is possible to verify in polynomial time: 1) whether a linear clause
C0 = ¬

∧
i∈I(fi = αi) is a result of the weakening rule of C1 := ¬

∧
i∈J(gi = βi); 2) whether

a linear clause C0 := ¬
∧
i∈J(gi = βi) is semantically implied from C1 := ¬

∧
i∈J(gi = βi)

and C2 = ¬
∧
i∈K(hi = γi).

Proof. 1) A linear clause C0 is a weakening of C1 iff any satisfying assignment of C1

satisfies C0. We show that C0 is a weakening of C1 iff for all j ∈ J the system
∧
i∈I(fi =

αi) ∧ (hj = βj + 1) has no solutions. Indeed, if this system has a solution, then the
solution satisfies C1 and refutes C0. Let C0 be not a weakening of C1, then there exists
an assignment that satisfies C1 and refutes C0, this assignment satisfies an equality hj =
βj + 1 for some j ∈ J , hence this assignment satisfies

∧
i∈I(fi = αi) ∧ (hj = βj + 1).

Thus to verify a correctness of a weakening rule it is enough to check that for all j ∈ J
the corresponding system has no solution.

2) Similarly to item 1) it may be shown that C0 is a semantic implication of C1 and
C2 iff for all j ∈ J and k ∈ K the system

∧
i∈I(fi = αi) ∧ (gj = βj + 1) ∧ (hk = γk + 1)

has no solution.

Proposition 6.2. The weakening rule may be simulated by a polynomial number of
applications of the following pure syntactic rules: 1) The simplification rule that allows
to derive D from D ∨ (0 = 1); 2) The syntactic weakening rule that allows to derive
D∨ (f = α) from D; 3) The addition rule that allows to derive D∨ (f1 = α1)∨ (f1 +f2 =
α1 + α2 + 1) from D ∨ (f1 = α1) ∨ (f2 = α2).

Proof. It is more convenient to represent a linear clause as the negation of a linear system.
In this representation the addition rule allows to add one from the system equality to
another and the simplification rule is just a removing the trivial equality 0 = 0.

Let a clause ¬
∧
i∈I(gi = βi) is the result of the weakening rule applied to ¬

∧
i∈J(fi =

αi).
At first we apply multiple syntactic weakening and get ¬

∧
i∈J(fi = αi)∧

∧
i∈I(gi = βi).

From the proof of Proposition 6.1 we know that every equality fi = αi is a linear
combination of equalities gj = βj. Thus we may get 0 = 0 from every fi = αi by multiple
application of the addition rule. And finally we remove all 0 = 0 by the simplification
rule.

We show that systems Sem-Lin and Res-Lin are polynomially equivalent. It means
that any proof in one system may be translated to the proof in other system in polynomial
time. Every proof in Res-Lin is also a proof in Sem-Lin; the next proposition is about
the opposite translation.

10

Proposition 6.3. Let nontrivial linear clause C0 := ¬{fi = αi}i∈I be a semantic impli-
cation of C1 := ¬{gi = βi}i∈J and C2 := ¬{hi = γi}i∈L. Then C0 can be obtained from
C1 and C2 by applications of at most one resolution rule and several weakening rules.

Before we start a proof we consider an example that shows how the linear clause
(x+y = 0) can be derived from (x = 0) and (y = 0) in Res-Lin: 1) Apply weakening rule
to (x = 0) and get (x+ y = 0)∨ (y = 1); 2) Apply resolution rule to (x+ y = 0)∨ (y = 1)
and (y = 0) and get (x+ y = 0).

We will use the following well known lemma:

Lemma 6.1. If for a matrix A ∈ Fm×n2 and a vector b ∈ Fm2 the linear system Ax = b
has no solutions, then there exists a vector y ∈ Fm2 such that yTA = 0 and yT b = 1. In
other words if a linear system over F2 is unsatisfiable then it is possible to sum several
equations and get a contradiction 0 = 1.

Proof of Proposition 6.3. Both C1 and C2 can’t be trivial since in this case C0 must be
trivial. If Ci for i ∈ {1, 2} is trivial, then C0 is a weakening of C2−i. So we assume that
C1 and C2 are not trivial.

For all j ∈ J and l ∈ L the system
∧
i∈I(fi = αi) ∧ (gj = 1 + βj) ∧ (hl = 1 + γl) is

unsatisfiable. Since the system
∧
i∈I(fi = αi) is satisfiable, one of the following holds:

1)
∧
i∈I(fi = αi) becomes unsatisfiable if we add just one equality (for example gj = 1+βj).

Then by Lemma 6.1 the negation of this equality can be obtained as a linear combination
of equalities from

∧
i∈I(fi = αi). 2) The system

∧
i∈I(fi = αi) becomes unsatisfiable

only if we add both equalities (gj = 1 + βj) ∧ (hl = 1 + γl). By Lemma 6.1 the equality
gj+hl = βj+γl+1 may be obtained as a linear combination of equalities from the system∧
i∈I(fi = αi). Note that if equalities gj = 1 + βj and hl = 1 + γl contradict each other

(i.e. gj = hl and βj = 1 + γl), then the equality gj + hl = βj + γl + 1 is just 0 = 0.
We split J into two disjoint sets J ′ and J ′′, where j ∈ J ′′ iff the system

∧
i∈I(fi =

αi)∧ (gj = βj + 1) is unsatisfiable. Similarly we define a splitting L = L′ ∪L′′. Note that
if J = J ′′, then ¬

∧
i∈I(fi = αi) is a weakening of ¬

∧
j∈J(gj = βj), similarly if L = L′′,

then ¬
∧
i∈I(fi = αi) is a weakening of ¬

∧
i∈L(hi = γi). Thus in what follows we assume

that J ′ 6= ∅ and L′ 6= ∅.
We get that C0 is a weakening of D := ¬(

∧
i∈J ′′(gi = βi) ∧

∧
i∈L′′(hi = γi) ∧∧

i∈J ′,j∈L′(gi + hj = βi + γj + 1). It remains to show that D can be obtained from
C1 and C2 by application of one resolution rule and several weakening rules.

Let j0 ∈ J ′ and l0 ∈ L′.
1) Apply the weakening rule to C1 and get D1 :=

¬
(
(gj0 = βj0) ∧

∧
i∈J ′(gi + hl0 = βi + γl0 + 1) ∧

∧
i∈J ′′(gi = βi)

)
;

2) Apply the weakening rule to C2 and get D2 :=
¬
(
(gj0 = βj0 + 1) ∧

∧
i∈L′(hi + gj0 = βj0 + γl0 + 1) ∧

∧
i∈L′′(hi = γi})

)
;

3) Apply the resolution rule to D1 and D2, and get

D3 := ¬

(∧
i∈J ′

(gi + hl0 = βi + γl0 + 1) ∧
∧
i∈L′

(hi + gj0 = βj0 + γl0 + 1)∧

∧
i∈J ′′

(gi = βi) ∧
∧
i∈L′′

(hi = γi)

)
4) Apply the weakening rule to D3 and get D.

11

6.1 Tree-like Res-Lin and linear splitting trees.

A proof in Res-Lin (or Sem-Lin) is tree-like if all clauses can be put in the nodes of a
rooted tree in such a way that 1) the empty clause is in the root; 2) the clauses of an
initial formula are in the leaves; 3) a clause in every internal node is a result of a rule of
its children.

Linear splitting trees are naturally generalized to linear CNFs.

Lemma 6.2. 1) Every linear splitting tree for an unsatisfiable linear CNF may be trans-
lated into a tree-like Res-Lin proof and the size of the resulting proof is at most twice the
size of the splitting tree. 2) Every tree-like Res-Lin proof of an unsatisfiable formula φ
may be translated to a linear splitting tree for φ without increasing the size of the tree.

Proof. 1) We start from translation of a splitting tree to a splitting tree without degen-
erate leaves described in Proposition 2.1. We denote the resulting tree by T . On every
vertex v of T we put a linear clause ¬ΦT

v . By construction every clause is a result of the
resolution rule of clauses in its children; the root contains the empty clause. In every
leaf ` the system ΦT

` refutes some linear clause C of the initial formula. Hence ¬Tv is a
weakening of C. The size of the resulting proof exeeds the size of the tree T only beacause
of weakening rules in the leaves.

2) Consider a splitting tree and contract all edges that correspond to the weakening
rule. We denote the resulting tree by T . All other edges correspond to applications
of resolution rules. Let the resolution rule be applied to clauses ¬((f = 0) ∧ D1) and
¬((f = 1) ∧D2), then we label an edge to the first of them by f = 0 and to the second
by f = 1.

We show that for every vertex v all clauses written in v contradict to the system
ΦT
v . Since every vertex may contain several clauses (since we merge weakening rules) it

is enough to prove this for the weakest clause in the vertex (i.e., to the clause that is
a premise of the resolution rule). The proof is by induction on the depth of the vertex
v. The root contains contradictory clause, hence the statement is true for the root.
Assume that we prove a statement for vertex v, now we prove it for its children u and
w. Let ¬(D1 ∧D2) be a clause in v and let it be a result of the resolution rule applied to
¬(f = 0∧D1) and ¬(f = 1∧D2). By the induction hypothesis we know that ¬(D1∧D2)
contradicts the system ΦT

v . It means that the negation of every equality in D1 contradicts
to ΦT

v . Let ¬(f = 0 ∧ D1) be in the vertex u, then ΦT
u = ΦT

v ∧ (f = 0), hence f = 1
contradicts ΦT

v ; negations of all equalities from D1 contradict ΦT
v and therefore contradict

ΦT
u . So we get that ΦT

u contradicts ¬(f = 0∧D1) and the similar is true for ¬(f = 1∧D2).
Applying the statement to leaves we get that every leaf refutes a clause of formula φ.

Corollary 6.1. 1) For all m > n every tree-like proof in Res-Lin and Sem-Lin of PHPm
n

has size 2Ω(n). 2) In the conditions of Theorem 4.2 the size of any tree-like resolution

proof in Res-Lin and Sem-Lin of TS2
(G,c) is at least Ω(2n

1
3 / log3(n)).

Proof. Follows from Lemma 6.2, Proposition 6.3, Theorem 5.1 and Theorem 4.2.

6.2 Implication completeness of Res-Lin

Now we prove that Res-Lin is implication complete. The following lemma is straightfor-
ward.

12

Lemma 6.3. 1) If a linear clause D is a weakening of a linear clause C, then for every
linear clause E the clause D ∨ E is a weakening of C ∨ E. 2) If a linear clause D is
a semantic implication of (or a result of the resolution rule applied for) C and F , then
for every linear clause E the clause D ∨ E is a semantic implication (or a result of the
resolution rule applied for) C ∨ E and F ∨ E.

Theorem 6.1. If a linear clause C0 is a semantic implication of C1, C2, . . . , Ck, then C0

may be derived from C1, C2, . . . , Ck in Res-Lin.

Proof. The plan of the proof is following: we construct a list of linear clauses D such that
the conjunction of clauses from D is unsatisfiable. Since Res-Lin is complete (Res-Lin is
complete because every linear CNF has a splitting tree with splitting over all variables),
then there exists a derivation of the empty clause from D. By Lemma 6.3 from the list
D′ := {D ∨ C0 | D ∈ D} it is possible to derive C0. After this we show that every clause
in D′ is a weakening of some clause among C1, C2, . . . , Ck.

We construct the listD step by step; initiallyD consists of clauses C1, C2, . . . , Ck. Note
that if an assignment π refutes C0, then by the statement of the theorem it also refutes one
of the clauses C1, C2, . . . , Ck, hence it refutes their conjunction. Let C1 :=

∨n
i=1(fi = αi)

and C0 :=
∨m
i=1(gi = βi) While there exists such an assignment π that satisfies C0 and

satisfies all clauses from D, we add to the list D a new clause Cπ. Since π satisfies C0,
then there exists i such that π satisfies gi = βi. Let’s denote I := {i | π satisfiesfi = αi}
and let the clause Cπ equal

∨
i∈I(fi + gi = αi + βi + 1) ∨

∨
i/∈I(fi = αi). By construction

π refutes Cπ.
Finally, for every assignment of variables there exists such a clause in the list D that is

not satisfied by the assignment. Hence the conjunction of clauses from D is unsatisfiable.
We have to show that for all D ∈ D the clause D∨C0 is a weakening of some clause among
C1, C2, . . . , Ck. If D equals one clause from C1, C2, . . . , Ck, we are done. Let D = Cπ,
then D ∨ C0 is a weakening of C1 ∨ C0 and therefore is a weakening of C1.

6.3 Simulation of Res-Lin in R(lin)

In this section we show that the system R(lin) p-simulates Res-lin. The system R(lin)
operates with linear equalities over integer coefficients and propositional variables. In
this section we use sign = for equality of integers and sign ≡

2
for equality modulo 2. An

integer linear clause is the disjunction
∨
i(
∑

j ai,jxj = bi), where ai,j and bj are integers.
Equalities in a clause are not repeated.

The proof system R(lin) contains axioms (x = 0)∨ (x = 1) for all variables x and the
following inference rules:

� The cut rule that allows to deduce clauses A ∨ B ∨ (F1 + F2 = a1 + a2) and
A ∨B ∨ (F1 − F2 = a1 − a2) from A ∨ (F1 = a1) and B ∨ (F2 = a2).

� The syntactic weakening that allows to deduce A∨(F = a) from A for every integer
linear equality F = a.

� The simplification rule that allows to deduce B from B∨(0 = c), where c is nonzero
integer.

13

By means of R(lin) one may prove that a set of integer linear clauses K =
{K1, . . . , Km} is contradictory. Namely a proof is a sequence of integer linear clauses
that ends with empty clause and every clause in this sequence is either an axiom or a
clause form K or may be obtained from previous clauses by application of an inference
rule.

An equality x1 +x2 + · · ·+xn≡
2

0 is represented by the following disjunction of integer

linear equalities: (x1 + x2 + · · · + xn = 0) ∨ (x1 + x2 + · · · + xn = 2) ∨ · · · ∨ (x1 + x2 +
· · · + xn = 2dn

2
e) and an equality x1 + x2 + · · · + xn≡

2
1 is represented by the following

disjunction of integer linear equalities: (x1 + x2 + · · · + xn = 1) ∨ (x1 + x2 + · · · + xn =
3) ∨ · · · ∨ (x1 + x2 + · · ·+ xn = 2dn−1

2
e+ 1).

Theorem 6.2. The system R(lin) p-simulates Res-Lin.

Proof. By Proposition 6.2 it is enough to p-simulate the resolution rule, the simplification
rule, the syntactic weakening and the addition rule in R(lin). The simulation of the
simplification rule and the syntactic weakening rule are straightforward. Thus we have
to p-simulate the resolution rule and the addition rule.

Lemma 6.4. It is possible to deduce A ∨B ∨
∨
i∈[k],j∈[n](Li ±Kj) from A ∨

∨k
i=1 Li and

B ∨
∨n
j=1 Kj in R(lin), where Li and Kj are equalities with integer coefficients. The

statement holds for all variants of signs ±.

Proof. We denote C :=
∨
i∈[k],j∈[n](Li ±Kj).

We apply multiple syntactic weakening rules to B ∨
∨n
j=1Kj and get A ∨ B ∨ C ∨∨n

j=1Kj. Now we will successively eliminate extra equalities starting from the end.

Assume that we have a clause A′ := A ∨B ∨ C ∨
∨`
j=1Kj, where ` ≥ 1.

We apply the cut rule to A∨
∨k
i=1 Li and A′ and get B′′ = A∨B∨C∨

∨`−1
j=1Kj∨

∨k−1
i=1 Li,

here the equality Lk±K` is contained in C, therefore we do not write it the second time.
Now we apply the cut rule toB′′ and A′ and we eliminate the last equality fromB′′. We

apply the application of the cut rule several times and finally get A′′ = A∨B∨C∨
∨`−1
j=1 Kj,

thus we reduce the number of equalities Kj with respect to A′.

The resolution rule can be simulated by the application of Lemma 6.4 and simpli-
fication rules. Indeed to apply the resolution rule to A ∨ f = 1 ∨ f = 3 ∨ . . . and
B ∨ f = 0 ∨ f = 2 ∨ . . . we apply Lemma 6.4 and get A ∨ B ∨ 0 = 1 ∨ 0 = 3 ∨ . . . , and
finally by application of simplification rules we get A ∨B.

Lemma 6.5. Let f(x) = a1x1 + a2x2 + · · · + anxn, where a1, a2, . . . , an are natural
numbers, then (f(x) = 0) ∨ · · · ∨ (f(x) =

∑
i

ai) is deducible in R(lin).

Proof. We use ai times Lemma 6.4 and get (aixi = 0) ∨ (aixi = 1) ∨ . . . (aixi = ai) from
the axiom (xi = 0) ∨ (xi = 1). Then we apply Lemma 6.4 for all i ∈ [n] and get the
desired clause.

The simulation of the addition rule in R(lin) follows from the following lemma:

Lemma 6.6. It is possible to deduce A∨ (f ≡
2
α)∨ (f +g≡

2
α+β+ 1) from A∨ (f ≡

2
α)∨

(g≡
2
β) in polynomial steps in R(lin), where α, β ∈ F2 and f =

∑
i∈I xi and g =

∑
j∈J xj

are linear forms.

14

Proof. We use Lemma 6.5 and get (f ≡
2
α)∨ (f ≡

2
α+ 1). Now we use Lemma 6.4 for this

clause and the clause from the statement of the lemma and get A∨ (f ≡
2
α)∨ (f +g≡

2
α+

β + 1). If sets I and J are disjoint then we are done.
Asume that I ∩ J 6= ∅, then the equality (f(x) + g(x) = 1 mod 2) contains variables

with coeffitient 2; we consider one such variable x`. From the axiom (x` = 0) ∨ (x` = 1)
we deduce (2x` = 0) ∨ (2x` = 2) by two applications of the cut rule; and by Lemma 6.4
we get D := A ∨ (f ≡

2
α) ∨ (f + g − 2x`≡

2
α + β + 1) ∨ (f − g − 2x` = −1). We have

to eliminate the last equality in D. In order to do it we use Lemma 6.5 for linear form
f + g − 2x` and get C. We apply the cut rule to C and D and repeat applying the cut
rule to the result and D until we get A ∨ (f ≡

2
α) ∨ (f + g − 2x`≡

2
α + β + 1). We have

to repeat the same for other common variables of f and g.

6.4 Space vs size tradeoff

We define the space complexity of Res-Lin proofs similarly to the Resolution. We assume
that a proof is realized in the working memory. And there are the following basic opera-
tions: 1) To download a clause of the formula to the memory; 2) To remove a clause from
the memory; 2) To deduce a clause form clauses in the memory using inference rules and
add it to the memory. A clause space of a proof is the maximum number of clauses in
the memory. We denote a clause space of π as CSpace(π) and the number of operations
in π as Size(π)

Remark 6.1. The protocol from Lemma 4.2 may be used to verify whether the linear
clause is satisfied by a substitution of variables one part of that known by Alice and other
part known by Bob.

Theorem 6.3. Let π be a Res-Lin proof of formula φ then Rpub
1/3(Searchφ) ≤

O(CSpace(π) log Size(π) log(CSpace(π) log Size(π))).

Proof. Let S0, S1, S2, . . . , Sk be states of the memory of the proof π, k = Size(π). Alice
and Bob using binary search will find i ∈ [k] such that all clauses in Si−1 are satisfied
and not all clauses from Si are satisfied. If such i is found and there are no errors in the
protocol, then ith operation is the uploading of a clause of φ that is not satisfied by the
substitution and it would be the answer of the protocol.

By Remark 6.1 there is a protocol that verifies whether ` linear clauses are satisfied
by the substitution with error `ε and O(` log 1

ε
) bit of communications.

The total error is at most CSpace(π)ε log Size(π) and the number of bits of communica-
tion is at most O(CSpace(π) log 1

ε
log Size(π)). Finally assume that ε = 1

3 CSpace(π) log Size(π)
.

Corollary 6.2. In the conditions of the Theorem 4.2 for all Res-Lin proof π of for-
mula TS2

(G,c) the following holds: CSpace(π) log Size(π) log(CSpace(π) log Size(π)) ≥
Ω
(

n1/3

(log(n) log log(n))2

)
.

15

Acknowledgements. The authors are grateful to Jan Kraj́ıček, Edward A. Hirsch and
Alexander Knop for fruitful discussions. The authors also thanks Jan Kraj́ıček for the
statement of the problem, Alexander Shen for the suggestion to simplify the presentation
of the first lower bound and to anonymous reviewers for multiple helpful comments.

References

[1] Michael Alekhnovich, Edward A. Hirsch, and Dmitry Itsykson. Exponential lower
bounds for the running time of DPLL algorithms on satisfiable formulas. J. Autom.
Reason., 35(1-3):51–72, 2005.

[2] Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower bounds for lovász-
schrijver systems and beyond follow from multiparty communication complexity.
SIAM Journal on Computing, 37(3):845–869, 2007.

[3] E. Ben-Sasson and A. Wigderson. Short proofs are narrow — resolution made simple.
Journal of ACM, 48(2):149–169, 2001.

[4] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional
proof systems. The Journal of Symbolic Logic, 44(1):36–50, March 1979.

[5] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

[6] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7:201–215, 1960.

[7] Evgeny Demenkov and Alexander S. Kulikov. An elementary proof of a 3n - o(n)
lower bound on the circuit complexity of affine dispersers. In MFCS, pages 256–265,
2011.

[8] D. Itsykson and D. Sokolov. The complexity of inversion of explicit Goldreichs
function by DPLL algorithms. In Proceedings of CSR 2011, volume 6651 of Lecture
Notes in Computer Science, pages 134–147. Springer, 2011.

[9] Dmitry Itsykson. Lower bound on average-case complexity of inversion of goldreich’s
function by drunken backtracking algorithms. Theory Comput. Syst., 54(2):261–276,
2014.

[10] Bala Kalyanasundaram and Georg Schintger. The probabilistic communication com-
plexity of set intersection. SIAM J. Discret. Math., 5(4):545–557, November 1992.

[11] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge Univer-
sity Press, New York, NY, USA, 1997.

[12] Ran Raz and Iddo Tzameret. Resolution over linear equations and multilinear proofs.
Ann. Pure Appl. Logic, 155(3):194–224, 2008.

[13] Alexander A. Razborov. Pseudorandom generators hard for k-dnf resolution and
polynomial calculus resolution. Technical report, 2003.

16

[14] Alexander A. Razborov. Resolution lower bounds for perfect matching principles.
Journal of Computer and System Sciences, 69(1):3–27, 2004.

[15] Kazuhisa Seto and Suguru Tamaki. A satisfiability algorithm and average-case hard-
ness for formulas over the full binary basis. Computational Complexity, 22(2):245–
274, 2013.

[16] G. S. Tseitin. On the complexity of derivation in the propositional calculus. Zapiski
nauchnykh seminarov LOMI, 8:234–259, 1968. English translation of this volume:
Consultants Bureau, N.Y., 1970, pp. 115–125.

[17] Alasdair Urquhart. The depth of resolution proofs. Studia Logica, 99(1-3):249–364,
2011.

17

