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One-way functions
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One-way functions

Intuition
Function f is one-way if

e it is easy to compute f;

e it is hard to invert f.

Examples

® (RSA function): f(x) = x? mod N, where N = pg, p, g are
big prime numbers, d is integer.

@® Discrete logarithm: f(x) = g*, where g is a primitive root of
Z/pZ, p is big prime.
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Cryptography vs. average-case complexity

Cryptography

Average-case complexity

Adversary that fails only on
1

Algorithm that works exponential
1

Soly INputs is successful time on o~ inputs is not
polynomial on average
Successful break: Solution

infinitely many lengths

almost all lengths

Samplable distribution on inputs

Samplable distribution on outputs
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Cryptographic one-way

f is computable in polynomial time, honest

Strong hardness: Weak hardness:
V¢V randomized poly-time B 3¢V randomized poly-time B
V big enough n V big enough n

Pr{B(f(x)) € f1(f(x))} <L Pr{B(f(x)) e fHf(x)}<1-%

nC

o @

Theorem (folklore). |3 strong o.w.f.‘ =

There is no reasonable complexity assumption that implies existense
of o.w.f.
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One-way function

f is one-way if
e it is computable in polynomial time;
e hard to invert:

e worst-case hardness;
e cryptographic hardness;
e average-case hardness.
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Average-case tractability

Distribution D = {D,}°°; where D, : {0,1}" — R, such that
236{0,1}" Dn(a) = 1
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Average-case tractability

Distribution D = {D,}°°; where D, : {0,1}" — R, such that

2 ac(oyn Dnla) = 1.
Levin (1986):
T(x) is working time
on input x;
T(x) is polynomial
on the average if
Jde > 0: Exp, T(x) = O(n)

Impagliazzo (1995):

The problem is solvable

in polynomial on the average time
if 3 algorithm A(x, ¢):

o A(x,9) is po/y(%)—time;

o A(x,9) € {correct answer, L };

e Pro.p {A(x,9) returns L} <.
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Average-case tractability

Distribution D = {D,}°°; where D, : {0,1}" — R, such that
236{071}" Dn(a) = 1

Levin (1986): Impagliazzo (1995):
T(x) is working time The problem is solvable

on input x; | in polynomial on the average time
T(x) is polynomial if 3 algorithm A(x, ¢):

x|

on the average if | o A(x,0) is poly('5 )-time;
Je > 0: Exp, T¢(x) = O(n) | ® A(x,d) € {correct answer, 1 };
e Pro.p {A(x,9) returns L} <.

Impagliazzo and Levin definitions are equivalent.
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Average-case one-way

f is computable in polynomial time, honest

Average-case one-way Average-case hard problem
f~1 with samplable distribution  f~1 with samplable distribution
on inputs is not computable on outputs is not computable
by randomized polynomial by randomized polynomial
on the average algorithm on the average algorithm
f f

— —

— —

— —}.

3 average-case hard problem‘ = ’(NP, PSamp) Z AvgBPP‘
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Relations

Swcowf] « [PZNP
i)

72
’3 cryptographic one-way function ‘ «:: ’(NP, PSamp) ¢ AvgBPP‘
U
’El average-case o.w.f.‘ = ’EI a.-c. hard problem‘
fr

3 a.-c. hard problem (=1, U) with length-preserving f

Our result:

’3 average-case o.w.f.‘ == ’3 infinitely-often crypt. o.w.f.
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Weak one-way
3¢V randomized poly-time B
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Infinitely-often one-way

f is computable in polynomial time, honest
Weak one-way Infinitely-often weak one-way

3¢V randomized poly-time B 3¢V randomized poly-time B
v big enough n for infinitely many n
1

Pr{B(f(x)) ¢ fFH(FO)} = e Pr{B(F(x)) & FH(F())} = 5

nC
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Why average-case o.w.f is not trivially
cryptographic i.0.-o.w.f.?

Suppose that:
o f is invertible in O(n) steps on (1 — 2~V fraction of inputs.
o fis invertible in Q(2") steps on 2~V™ fraction of inputs.
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Why average-case o.w.f is not trivially
cryptographic i.0.-o.w.f.?

Suppose that:
o f is invertible in O(n) steps on (1 — 2~V fraction of inputs.
o fis invertible in Q(2") steps on 2~V™ fraction of inputs.

® E T¢(x) = Q(2"V7"), then it is average-case hard to invert f.

@® f is not i.o. cryptographic weak one-way.
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Main idea

ddi
(0,1}75x PEE® e 0,11
error probability error probability

1 1<

n n_i_g
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I.0. weak one-way from average-case
one-way

f:{0,1}* — {0,1}*

e length-preserving

e average-case one-way with uniform distribution on the inputs.
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f, is weak i.0.-one-way

Suppose the algorithm B inverts f,:

XEL,,{B('[”(X)) < fp_l(fp(x))} >1- %
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fp is weak i.0.-one-way

Suppose the algorithm B inverts f,:

XE[/n{B(fp(X)) < fp_l(fp(x))} >1- %

e B outputs L instead of incorrect answer
o Alx,8)1151 = B(x1131)

Pr {A(x,d) =1} =

x—U,

Pr {B(xl(%w) mistakes} <

x<—Un+’%.‘

<4

=
pa—

n+[
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Open questions

(1] ’(NP, PSamp) £ AvgBPP‘ ::> ’EI aver.-case o.w.f.‘

(2] ’EI aver.-case o.w.f. ‘ %

(3] ’El almost everywhere aver.-case o.w.f. ‘ ::> ’EI crypt. o.w.f. ‘
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