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One-way functions

Intuition
Function f is one-way if
• it is easy to compute f ;
• it is hard to invert f .

Examples

1 (RSA function): f (x) = xd mod N, where N = pq, p, q are
big prime numbers, d is integer.

2 Discrete logarithm: f (x) = g x , where g is a primitive root of
Z/pZ, p is big prime.
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Cryptography vs. average-case complexity

Cryptography Average-case complexity
Adversary that fails only on Algorithm that works exponential

1
poly inputs is successful time on 1

poly inputs is not
polynomial on average

Successful break: Solution
in�nitely many lengths almost all lengths
Samplable distribution on inputs Samplable distribution on outputs
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Cryptographic one-way

f is computable in polynomial time, honest

Theorem. ∃ strong o.w.f. ⇐⇒ ∃ weak o.w.f.
There is no reasonable complexity assumption that implies existense
of o.w.f.
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One-way function
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Average-case tractability

Distribution D = {Dn}∞n=1 where Dn : {0, 1}n → R+ such that∑
a∈{0,1}n Dn(a) = 1.

Levin (1986): Impagliazzo (1995):
T (x) is working time The problem is solvable

on input x ; in polynomial on the average time
T (x) is polynomial if ∃ algorithm A(x , δ):

on the average if • A(x , δ) is poly( |x |δ )-time;
∃ε > 0 : Ex←Dn T ε(x) = O(n) • A(x , δ) ∈ {correct answer,⊥};

• Prx←Dn{A(x , δ) returns ⊥} < δ.

Impagliazzo and Levin de�nitions are equivalent.
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f is computable in polynomial time, honest

∃ average-case hard problem ⇐⇒ (NP,PSamp) 6⊆ AvgBPP
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Relations

∃ cryptographic one-way function ⇐

Our result:

∃ average-case o.w.f. =⇒ ∃ in�nitely-often crypt. o.w.f.
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In�nitely-often one-way

f is computable in polynomial time, honest
Weak one-way In�nitely-often weak one-way
∃c∀ randomized poly-time B ∃c∀ randomized poly-time B
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Why average-case o.w.f is not trivially
cryptographic i.o.-o.w.f.?

Suppose that:
• f is invertible in O(n) steps on (1− 2−

√
n) fraction of inputs.

• f is invertible in Ω(2n) steps on 2−
√

n fraction of inputs.

1 E T ε(x) = Ω(2nε−
√

n), then it is average-case hard to invert f .
2 f is not i.o. cryptographic weak one-way.
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Main idea

{0, 1}n 3 x
padding−→ x ′ ∈ {0, 1}n+ 1

δ

error probability error probability
1
n

1
n+ 1

δ

< δ
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i.o. weak one-way from average-case
one-way

f : {0, 1}∗ → {0, 1}∗:
• length-preserving
• average-case one-way with uniform distribution on the inputs.

fp : (x , y) 7→ (f (x), 1|y |).
• |x | = n, n = n1n2 . . . nl , we encode (x , y) into

n1n1n2n2 . . . nlnl01xy .
• To encode pair we need only log extra bits
• fp is also average-case one-way with uniform distribution on
the inputs.

• fp is weak i.o.-one-way
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fp is weak i.o.-one-way

Suppose the algorithm B inverts fp:

Pr
x←Un

{B(fp(x)) ∈ f −1
p (fp(x))} ≥ 1− 1

n

• B outputs ⊥ instead of incorrect answer
• A(x , δ)1d

1
δ
e = B(x1d

1
δ
e)

Pr
x←Un

{A(x , δ) =⊥} =

Pr
x←U

n+d 1
δ
e

{B(x1d
1
δ
e) mistakes} <

1

n + d1
δ e

< δ
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Open questions

1 (NP,PSamp) 6⊆ AvgBPP
?

=⇒
?

∃ aver.-case o.w.f.

2 ∃ aver.-case o.w.f. ?
=⇒

?
∃ crypt. o.w.f.

3 ∃ almost everywhere aver.-case o.w.f. ?
=⇒

?
∃ crypt. o.w.f.
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