An infinitely-often one-way function based on an average-case assumption

Edward A. Hirsch and Dmitry Itsykson

Steklov Institute of Mathematics at St. Petersburg

WoLLIC July 4, 2008

Intuition

Function f is one-way if

- it is easy to compute f;
- it is hard to invert *f*.

Examples

- (RSA function): f(x) = x^d mod N, where N = pq, p, q are big prime numbers, d is integer.
- 2 Discrete logarithm: $f(x) = g^x$, where g is a primitive root of $\mathbb{Z}/p\mathbb{Z}$, p is big prime.

Intuition

Function f is one-way if

- it is easy to compute f;
- it is hard to invert *f* .

Examples

- (RSA function): $f(x) = x^d \mod N$, where N = pq, p, q are big prime numbers, d is integer.
- 2 Discrete logarithm: $f(x) = g^x$, where g is a primitive root of $\mathbb{Z}/p\mathbb{Z}$, p is big prime.

Intuition

Function f is one-way if

- it is easy to compute f;
- it is hard to invert *f* .

Examples

- (RSA function): $f(x) = x^d \mod N$, where N = pq, p, q are big prime numbers, d is integer.
- 2 Discrete logarithm: $f(x) = g^x$, where g is a primitive root of $\mathbb{Z}/p\mathbb{Z}$, p is big prime.

Cryptography vs. average-case complexity

Cryptography	Average-case complexity
Adversary that fails only on	Algorithm that works exponential
$\frac{1}{poly}$ inputs is successful	time on $\frac{1}{poly}$ inputs is not
	polynomial on average
Successful break:	Solution
infinitely many lengths	almost all lengths
Samplable distribution on inputs	Samplable distribution on outputs

- it is easy to compute;
- it is hard to invert.

- it is easy to compute;
- it is hard to invert.

- it is computable in polynomial time;
- it is hard to invert.

- it is computable in polynomial time;
- it is hard to invert.

- it is computable in polynomial time;
- hard to invert:
 - worst-case hardness;
 - cryptographic hardness;
 - average-case hardness;

- it is computable in polynomial time;
- hard to invert:
 - worst-case hardness;
 - cryptographic hardness;
 - average-case hardness;

- it is computable in polynomial time;
- hard to invert:
 - $f^{-1} \notin \mathbf{FP}$
 - cryptographic hardness;
 - average-case hardness;

- f is one-way if
 - it is computable in polynomial time;

Ξ

- hard to invert:
 - $f^{-1} \notin \mathbf{FP}$

w.-c. o.w.f.
$$\iff \mathbf{P} \neq \mathbf{NP}$$

- cryptographic hardness;
- average-case hardness;

- it is computable in polynomial time;
- hard to invert:
 - worst-case hardness;
 - cryptographic hardness;
 - average-case hardness;

f is computable in polynomial time, honest

f is computable in polynomial time, honest Strong hardness: $\forall c \forall$ randomized poly-time \mathcal{B} \forall big enough n $\Pr{\mathcal{B}(f(x)) \in f^{-1}(f(x))} < \frac{1}{n^c}$

Theorem (folklore). \exists strong o.w.f. $\Leftrightarrow \exists$ weak o.w.f. There is no reasonable complexity assumption that implies existense of o.w.f.

- it is computable in polynomial time;
- hard to invert:
 - worst-case hardness;
 - cryptographic hardness;
 - average-case hardness.

Average-case tractability

Distribution $D = \{D_n\}_{n=1}^{\infty}$ where $D_n : \{0,1\}^n \to \mathbb{R}_+$ such that $\sum_{a \in \{0,1\}^n} D_n(a) = 1.$

on the average if $| \bullet A(x, \delta)$ is $poly(\frac{|x|}{\delta})$ -time; $\exists \epsilon > 0 : \mathsf{E}_{\mathsf{x} \leftarrow D_n} T^{\epsilon}(\mathsf{x}) = O(n) \mid \bullet A(\mathsf{x}, \delta) \in \{ \mathsf{correct answer}, \bot \};$

• $\Pr_{x \leftarrow D_n} \{ A(x, \delta) \text{ returns } \bot \} < \delta.$

Average-case tractability

Distribution $D = \{D_n\}_{n=1}^{\infty}$ where	$D_n:\{0,1\}^n o \mathbb{R}_+$ such that
$\sum_{a \in \{0,1\}^n} D_n(a) = 1.$	
Levin (1986):	Impagliazzo (1995):
T(x) is working time	The problem is solvable
on input <i>x</i> ;	in polynomial on the average time
T(x) is polynomial	if \exists algorithm $A(x, \delta)$:
on the average if	• $A(x, \delta)$ is <i>poly</i> $(\frac{ x }{\delta})$ -time;
$\exists \epsilon > 0 : E_{x \leftarrow D_n} T^{\epsilon}(x) = O(n)$	• $A(x, \delta) \in \{$ correct answer, $\perp\};$
	• $\Pr_{x \leftarrow D_n} \{ A(x, \delta) \text{ returns } \bot \} < \delta$

Impagliazzo and Levin definitions are equivalent.

Average-case tractability

Distribution $D = \{D_n\}_{n=1}^{\infty}$ where	$D_n: \{0,1\}^n o \mathbb{R}_+$ such that
$\sum_{a \in \{0,1\}^n} D_n(a) = 1.$	
Levin (1986):	Impagliazzo (1995):
T(x) is working time	The problem is solvable
on input <i>x</i> ;	in polynomial on the average time
T(x) is polynomial	if \exists algorithm $A(x, \delta)$:
on the average if	• $A(x, \delta)$ is <i>poly</i> $(\frac{ x }{\delta})$ -time;
$\exists \epsilon > 0 : E_{x \leftarrow D_n} T^{\epsilon}(x) = O(n)$	• $A(x, \delta) \in \{$ correct answer, $\perp\};$
	• $Pr_{x\leftarrow D_n}\{A(x,\delta) \text{ returns } \bot\} < \delta$

Impagliazzo and Levin definitions are equivalent.

f is computable in polynomial time, honest

f is computable in polynomial time, honest Average-case one-way f^{-1} with samplable distribution on inputs is not computable by randomized polynomial on the average algorithm

f is computable in polynomial time, honestAverage-case one-wayAverage-case f^{-1} with samplable distribution f^{-1} withon inputs is not computableon outputby randomized polynomialby randomon the average algorithmon the average

Average-case hard problem f^{-1} with samplable distribution on outputs is not computable by randomized polynomial on the average algorithm

f is computable in polynomial time, honestAverage-case one-wayAverage-case f^{-1} with samplable distribution f^{-1} withon inputs is not computableon outputby randomized polynomialby randomon the average algorithmon the average

Average-case hard problem f^{-1} with samplable distribution on outputs is not computable by randomized polynomial on the average algorithm

 \exists average-case hard problem $\iff |(NP, PSamp) \not\subseteq AvgBPP|$

∃ cryptographic one-way function

Our result:

 \exists average-case o.w.f. \implies \exists infinitely-often crypt. o.w.f.

Infinitely-often one-way

f is computable in polynomial time, honest

Infinitely-often one-way

$\begin{array}{l} f \text{ is computable in polynomial time, honest} \\ \hline \text{Weak one-way} \\ \exists c \forall \text{ randomized poly-time } \mathcal{B} \\ \forall \text{ big enough } n \\ \Pr\{\mathcal{B}(f(x)) \notin f^{-1}(f(x))\} \geq \frac{1}{n^c} \end{array}$

Infinitely-often one-way

f is computable in polynomial time, honest

Weak one-way $\exists c \forall$ randomized poly-time \mathcal{B}

 \forall big enough *n*

Infinitely-often weak one-way $\exists c \forall$ randomized poly-time \mathcal{B} for infinitely many *n* $\Pr\{\mathcal{B}(f(x)) \notin f^{-1}(f(x))\} \ge \frac{1}{r^c} \quad \Pr\{\mathcal{B}(f(x)) \notin f^{-1}(f(x))\} \ge \frac{1}{r^c}$ Why average-case o.w.f is not trivially cryptographic i.o.-o.w.f.?

Suppose that:

- f is invertible in O(n) steps on $(1-2^{-\sqrt{n}})$ fraction of inputs.
- f is invertible in $\Omega(2^n)$ steps on $2^{-\sqrt{n}}$ fraction of inputs.
- **①** E $\mathcal{T}^{\epsilon}(x) = \Omega(2^{n\epsilon \sqrt{n}})$, then it is average-case hard to invert f.
- 2 *f* is not i.o. cryptographic weak one-way.

Why average-case o.w.f is not trivially cryptographic i.o.-o.w.f.?

Suppose that:

- f is invertible in O(n) steps on $(1-2^{-\sqrt{n}})$ fraction of inputs.
- f is invertible in $\Omega(2^n)$ steps on $2^{-\sqrt{n}}$ fraction of inputs.

1 E $T^{\epsilon}(x) = \Omega(2^{n\epsilon - \sqrt{n}})$, then it is average-case hard to invert f.

f is not i.o. cryptographic weak one-way.

Why average-case o.w.f is not trivially cryptographic i.o.-o.w.f.?

Suppose that:

- f is invertible in O(n) steps on $(1-2^{-\sqrt{n}})$ fraction of inputs.
- f is invertible in $\Omega(2^n)$ steps on $2^{-\sqrt{n}}$ fraction of inputs.

1 E $T^{\epsilon}(x) = \Omega(2^{n\epsilon - \sqrt{n}})$, then it is average-case hard to invert f.

2 f is not i.o. cryptographic weak one-way.

Main idea

$$\begin{array}{ll} \{0,1\}^n \ni x & \stackrel{\mathsf{padding}}{\longrightarrow} & x' \in \{0,1\}^{n+\frac{1}{\delta}} \\ \text{error probability} & \text{error probability} \\ \frac{1}{n} & \frac{1}{n+\frac{1}{\delta}} < \delta \end{array}$$

$f: \{0,1\}^* \to \{0,1\}^*$:

- length-preserving
- average-case one-way with uniform distribution on the inputs.

$f_p:(x,y)\mapsto (f(x),1^{|y|}).$

- $|x| = n, n = n_1 n_2 \dots n_l$, we encode (x, y) into $n_1 n_1 n_2 n_2 \dots n_l n_l 0 1 x y$.
- To encode pair we need only log extra bits
- *f_p* is also average-case one-way with uniform distribution on the inputs.
- *f_p* is weak i.o.-one-way

- length-preserving
- average-case one-way with uniform distribution on the inputs.
- $f_p:(x,y)\mapsto (f(x),1^{|y|}).$
 - $|x| = n, n = n_1 n_2 \dots n_l$, we encode (x, y) into $n_1 n_1 n_2 n_2 \dots n_l n_l 01 xy$.
 - To encode pair we need only log extra bits
 - *f_p* is also average-case one-way with uniform distribution on the inputs.
 - *f_p* is weak i.o.-one-way

- length-preserving
- average-case one-way with uniform distribution on the inputs.

$$f_p:(x,y)\mapsto (f(x),1^{|y|}).$$

- |x| = n, $n = n_1 n_2 \dots n_l$, we encode (x, y) into $n_1 n_1 n_2 n_2 \dots n_l n_l 0 1 x y$.
- To encode pair we need only log extra bits
- *f_p* is also average-case one-way with uniform distribution on the inputs.
- *f_p* is weak i.o.-one-way

- length-preserving
- average-case one-way with uniform distribution on the inputs.

$$f_p:(x,y)\mapsto (f(x),1^{|y|}).$$

- |x| = n, $n = n_1 n_2 \dots n_l$, we encode (x, y) into $n_1 n_1 n_2 n_2 \dots n_l n_l 0 1 x y$.
- To encode pair we need only log extra bits
- *f_p* is also average-case one-way with uniform distribution on the inputs.
- *f_p* is weak i.o.-one-way

- length-preserving
- average-case one-way with uniform distribution on the inputs.

$$f_p:(x,y)\mapsto (f(x),1^{|y|}).$$

- |x| = n, $n = n_1 n_2 \dots n_l$, we encode (x, y) into $n_1 n_1 n_2 n_2 \dots n_l n_l 0 1 x y$.
- To encode pair we need only log extra bits
- *f_p* is also average-case one-way with uniform distribution on the inputs.
- *f_p* is weak i.o.-one-way

- length-preserving
- average-case one-way with uniform distribution on the inputs.

$$f_p:(x,y)\mapsto (f(x),1^{|y|}).$$

- |x| = n, $n = n_1 n_2 \dots n_l$, we encode (x, y) into $n_1 n_1 n_2 n_2 \dots n_l n_l 0 1 x y$.
- To encode pair we need only log extra bits
- *f_p* is also average-case one-way with uniform distribution on the inputs.
- *f_p* is weak i.o.-one-way

fp is weak i.o.-one-way

Suppose the algorithm B inverts f_p :

$$\Pr_{x \leftarrow U_n} \{ B(f_p(x)) \in f_p^{-1}(f_p(x)) \} \ge 1 - \frac{1}{n}$$

• B outputs \perp instead of incorrect answer

• $A(x,\delta)1^{\lceil \frac{1}{\delta} \rceil} = B(x1^{\lceil \frac{1}{\delta} \rceil})$

$$\Pr_{x \leftarrow U_n} \{ A(x, \delta) = \bot \} =$$
$$\Pr_{x \leftarrow U_{n+\lceil \frac{1}{\delta} \rceil}} \{ B(x \mathbb{1}^{\lceil \frac{1}{\delta} \rceil}) \text{ mistakes} \} <$$

 f_p is weak i.o.-one-way

Suppose the algorithm B inverts f_p :

$$\Pr_{x \leftarrow U_n} \{ B(f_p(x)) \in f_p^{-1}(f_p(x)) \} \ge 1 - \frac{1}{n}$$

- B outputs \perp instead of incorrect answer
- $A(x,\delta)1^{\lceil \frac{1}{\delta} \rceil} = B(x1^{\lceil \frac{1}{\delta} \rceil})$

$$\Pr_{x \leftarrow U_n} \{ A(x, \delta) = \bot \} = \Pr_{x \leftarrow U_{n+\lceil \frac{1}{\delta} \rceil}} \{ B(x1^{\lceil \frac{1}{\delta} \rceil}) \text{ mistakes} \} < \frac{1}{n + \lceil \frac{1}{\delta} \rceil}$$

 f_p is weak i.o.-one-way

Suppose the algorithm B inverts f_p :

$$\Pr_{x \leftarrow U_n} \{ B(f_p(x)) \in f_p^{-1}(f_p(x)) \} \ge 1 - \frac{1}{n}$$

- B outputs \perp instead of incorrect answer
- $A(x,\delta)1^{\lceil \frac{1}{\delta} \rceil} = B(x1^{\lceil \frac{1}{\delta} \rceil})$

$$\Pr_{x \leftarrow U_n} \{ A(x, \delta) = \bot \} = \Pr_{x \leftarrow U_{n+\lceil \frac{1}{\delta} \rceil}} \{ B(x1^{\lceil \frac{1}{\delta} \rceil}) \text{ mistakes} \} < \frac{1}{n+\lceil \frac{1}{\delta} \rceil}$$

 f_p is weak i.o.-one-way

Suppose the algorithm B inverts f_p :

$$\Pr_{x \leftarrow U_n} \{B(f_p(x)) \in f_p^{-1}(f_p(x))\} \ge 1 - \frac{1}{n}$$

- B outputs \perp instead of incorrect answer
- $A(x,\delta)1^{\lceil \frac{1}{\delta} \rceil} = B(x1^{\lceil \frac{1}{\delta} \rceil})$

$$\Pr_{x \leftarrow U_n} \{ A(x, \delta) = \bot \} = \prod_{\substack{x \leftarrow U_{n+\lceil \frac{1}{\delta} \rceil}}} \{ B(x1^{\lceil \frac{1}{\delta} \rceil}) \text{ mistakes} \} < \frac{1}{n + \lceil \frac{1}{\delta} \rceil} < \mathbb{E}$$

δ

Open questions

Open questions

Open questions

