Structural complexity of AvgBPP

Dmitry Itsykson

Steklov Institute of Mathematics at St. Petersburg

CSR 2009 Novosibirsk August 21, 2009

Outline

- (1) Worst-case complexity
 - BPP
 - Structural properties: time hierarchy and complete problems
- (2) Average-case complexity
 - Distributional problems
 - Average-case tractability
- (3) Results: structural properties of AvgBPP.

Randomized algorithms with bounded error

- [Gill 1977] Class **BPP** contains languages L decidable by randomized polynomial-time Turing machine M with bounded error: $\forall x \Pr\{M(x) = L(x)\} \ge \frac{3}{4}$
- [Solovay, Strassen 1977] PRIMES∈ **BPP**.
- [Agraval, Kayal, Saxena 2002] PRIMES∈ P.
- Main example: polynomial identity testing.
- [Nisan, Wigderson 1994; ...; Umans 2003] hardness vs randomness tradeoff: $\mathbf{P} = \mathbf{BPP}$ under believable hardness assumption.

Time hierarchy

- A time hierarchy theorem states that a given computational model can decide more languages if it is allowed to use more time.
- [Hartmanis and Stearns 1965] **DTime** $[n^a] \subseteq \mathbf{DTime}[n^{a+\epsilon}].$
- [Cook 1972] **NTime** $[n^a] \subseteq \mathbf{NTime}[n^{a+\epsilon}].$
- [Karpinski and Verbeek 1987] **BPTime**[$n^{\log n}$] \subseteq **BPTime**[$2^{n^{\epsilon}}$].
- [Barak 2002; Fortnow, Santhanam 2004; van Melkebeek, Pervyshev 2007] Time hierarchy for BPP/1.
- [Fortnow, Santhanam 2004; Pervyshev 2007] Time hierarchy for heuristic BPP.
- We can't prove that $BPTime[n] \neq BPP$

Complete problems

B is a complete problem for the class \mathbf{C} if $B \in \mathbf{C}$ and $\forall A \in \mathbf{C}$, A reduces to B.

- [Cook, Levin, 1971] **NP**-complete problems: Bounded Halting, Tiling, SAT, TSP,...
- Complete problem for BPP is not known.
- BPP-complete language \implies time hierarchy for BPP.
- [Hartmanis, Hemachandra 1986] ∃ oracle A, such that BPP^A doesn't have complete languages.
- $P = BPP \implies BPP$ has complete language.
- Time hierarchies and complete problems usually require enumeration of (correct) machines in the respective computational model. We don't know how to enumerate machines that have bounded error.

Average-case tractability

- Distribution $D=\{D_n\}_{n=1}^\infty$ where $D_n:\{0,1\}^n \to \mathbb{R}_+$ such that $\sum_{a\in\{0,1\}^n} D_n(a)=1.$
- Distributional problem (L, D), where L is a language, D is a distribution.
- Polynomial-time samplable distribution \exists polynomial time randimized algorithm (sampler) S such that $S(1^n)$ is distributed according D_n .

Levin (1986): $T(x) \text{ is runing time} \\ \text{on input } x;$ $T(x) \text{ is polynomial} \\ \text{on the average if} \\ \exists \epsilon > 0 : \mathsf{E}_{x \leftarrow D_n} \ T^\epsilon(x) = O(n)$

Typical situation:

- $\frac{1}{\exp}$ exponential time
- $1 \frac{1}{\exp}$: polynomial time

AvgP, AvgBPP

Class	Problem	Turing	Time	Error
		machine		
Р	language	deterministic	poly	no error
	L	M		$\forall x \ M(x) = L(x)$
BPP	language	randomized	poly	bounded error
	L	M		$\forall x \Pr[M(x) = L(x)] \ge \frac{3}{4}$
AvgP	distr.	deterministic	avg.	no error
	problem	M	poly	$\forall x \ M(x) = L(x)$
	(L,D)			
Avg-	distr.	randomized	avg.	bounded error
BPP	problem	M	poly	$\forall x \Pr[M(x) = L(x)] \ge \frac{3}{4}$
	(L,D)			, , , , , , , , , , , , , , , ,

Results

- Proper inclusions:
 - P ⊂ AvgP ⊂ EXP;
 - BPP ⊆ AvgBPP ⊆ BPEXP.
- 2 Time hierarchy theorem for (AvgBPP, PSamp).
- 3 Construction of distributional problem (C, R) that is complete in (AvgBPP, PSamp) under deterministic Turing reduction.
 - If $(C, R) \in AvgP$, then (AvgP, PSamp) = (AvgBPP, PSamp)
 - R is enough complicated samplable distribution.
 - Existence of complete problem with uniform (or uniform-like) distribution implies some derandomization (BPEXP

 AvgEXP).

Why do we fail with **BPP**-complete problem?

- $X = \{(M, x, 1^t) \mid M \text{ is a bounded error randomized TM,}$ $\Pr[M^{\leq t}(x) = 1] \geq \frac{3}{4}\}$
- Let L be solvable in **BPP** by TM M in n^c steps.
- $x \in L \iff (M, x, 1^{n^c}) \in X$.
- X is **BPP** hard, X is probably not decidable.
- $Y = \{(M, x, 1^t) \mid M \text{ is a randomized TM,}$ $\Pr[M^{\leq t}(x) = 1] > \frac{1}{2}\}$
- Y is **BPP**-hard, decidable, $Y \stackrel{?}{\in} \mathbf{BPP}$.

Idea of AvgBPP complete problem

- $Y = \{(M, x, 1^m) \mid M \text{ is a rand. TM, } \Pr[M^{\leq t}(x) = 1] > \frac{1}{2}\}$
- freq $M^{\leq t}(x)$ is the most frequent answer of $M^{\leq t}(x)$. prob $M^{\leq t}(x) = \Pr[M^{\leq t}(x) = \operatorname{freq} M^{\leq t}(x)]$

Good	Intermediate	Bad
$(M, x, 1^t)$:	$(M, x, 1^t)$:	$(M, x, 1^t)$:
prob $M^{\leq t}(x) \geq \frac{3}{4}$	$\frac{3}{4}$ > prob $M^{\leq t}(x) \geq \frac{3}{5}$	prob $M^{\leq t}(x) < \frac{3}{5}$

- If $(M, x, 1^t)$ is good or intermediate, then there is poly-time randomized test that checks $\Pr[M^{\leq t}(x) = 1] > \frac{1}{2}$.
- Just repeat executions many times and output the most frequent answer.
- If prob $M^{\leq t}(x) \approx \frac{1}{2}$, then we have to go through all sequences of random bits.

Distributional problem

• Idea: to construct such samplable distribution R that bad $(M, x, 1^t)$ will have R-mesure $2^{-\Omega(n^2)}$.

Sampler $\mathcal{R}(1^n)$

- **1** Generate: $(M, x, t), |(M, x, 1^t)| = n.$
- Run Test
 - Run $M^{\leq t}(x)$ for n^2 times.
 - If at least 0.7 fraction of executions output the same value, then return (M, x, t).
 - Return 0ⁿ.
- R-measure of all bad $(M, x, 1^t)$ is bounded by $2^{-\Omega(n^2)}$.
- R-measure of good $(M, x, 1^t)$ is $\approx 2^{-|M|-|x|-\log t}$

$$(Y,R) \in AvgBPP$$

- 1 Run $M^{\leq t}(x)$ for n^2 times.
- 2 If at least 0.65 fraction of executions output the same value, then return it's value.
- **3** Otherwise w.h.p. R-measure of $(M, x, 1^t)$ is $2^{-\Omega(n^2)}$. We just go through all sequences of random bits and compute the answer deterministically.
- Y is **BPP**-hard.
- $(Y,R) \in AvgBPP$.

Open questions

- Time hierarchy theorem and complete problem for AvgRP.
- To classify properties that we can prove in average case and can't prove in worst case.