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SAT

Given aBoolean Formulain CNF B
like F[%,, Xy, ..., X.] = (%, 0%,) O(x Ox, 0x,) O...
decide whether [Db,b,,...,0, {01}
suchthat F[x «b,% < b,..% < b]=1
7): _/\/’7) R Exists polynomial-time algorithm
for SAT

_ All unsatisfiable formulas have
— - e
N 7) CO N 7) short refutations

Known results. exponential lower bounds
for specific proof systems



M otivation

 most classical agorithms originating from Davis, Putnam,
Logemann, Loveland, 1960-62,

e admost dl deterministic SAT solvers use DPLL
e satisfiable formulas are much easier for solvers

for resolution imply bounds for
DPLL on formulas only.

GOAL: exponential lower bound for
satisfiable formulas



DPLL — general scheme

Divide and conquer: Specific algorithm:
y = @ v =1 . Hel_JristicA: chose
/ variable x,
e Heuristic : choose
Flx 0] Flx 1] brunch to be examined

@ simplifications @ first,
@ @ o Simplification rules.

Dead ends: trivial formulas.



Examples

A choose the most frequent variable,

choose a variable from the shortest clause, ...

choose the most frequent sign, ...
Simplifications:
unit clause eimination: X [1G 1) G[x « 1]

pureliteral rule X does not appear in F =
F 1) F[x<]]



Known facts

o exponential lower bounds for resolution refutations of
unsatisfiable formulas translate to DPLL
[ Tseytin, 1968],...,[Puldak, Impagliazzo, 2000]

o exponential lower bounds on satisfiable formulas for

specific DPLL algorithms:;

[ Nikolenko, 2002]: Greedy+Unit Clauset+Randomization
[Achilioptas, Beame, Molloy, 2003]: Greedy+Unit Clause, Ordered
DLL (conditional bounds)

|Achilioptas, Beame, Molloy, 2004]. Ordered DLL: exponential time
with constant probability

Ultimate goal: Every DPLL algorithm takes
exponential time with prob.1-2"%™ on
satisfiable F.F,....F,..



Generalized myopic agorithms

A, read MY dauses
read other clauses without negations,

guery the number of occurrence of alitera

Simplifications:. unit clauses, pure literals.
Drunk algorithms

A any !
random 50: 50.

Simplifications:. unit clauses, pure literals, subsumption.



Theorem: sequenceof (polynomial-size) satisfiablesformulas
F_(resp., G,)such that [J polynomial-timerandomize generalized

myopic (resp., drunk) algorithmerrswith probability 1— 27,

Proof strategy: show that w.h.p. aDPLL
algorithm obtain a hard unsatisfiable formula:

_ satisfiable

“wrong :?V N
unsatisfiable Isfiable
large
subtree




Construction for drunk algorithms
Take any hard unsatisfiable F

F[x ~ O] remans hard
(FOx)O(F Ox,)0...0(FOx)=G

first moveiswrong with probability %
Take n renamed copies
G®Y oGc®? O...oG"

= wrong movewith probability 1- 1

n n



Construction for generalized myopic

algorithms

1) construct nxn 0/1- matrix A that
* ISnon-degenerate,

e has 3 nonzero entries per row,
* has certain expansion properties.

(solution: take alarger matrix at random, select n linearly

Independent rows)
2) take 0/1 vector b at random

3) convert Ax=Db into 3-CNF (with unique satisfying
assignment)

x+y+z=1< (xOyO2)O(xOyOz) O(xOyOz) O(xOyO2)



Myopic: idea of the proof

One wrong move
wron
and you are |ost!
wrong
wro assigned values

__— reveded bits

>< o r O

O orr

A

If band b’ are ssmilar solution may differ much.



Open guestion:

Generalize the model !
* myopic ssimplificationsrule,
 oracle accessto the input.



