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SATSAT
Given a Boolean Formula in CNF 

1 2 1 2 1 3 4[ , ,..., ] ( ) ( ) ...nlike F x x x x x x x x= ∨ ∧ ∨ ∨ ∧

decide whether 1 2, ,..., {0,1}nb b b∃ ∈
such that 1 1 2 2[ , ,..., ] 1n nF x b x b x b← ← ← =

== ⇔Exists polynomial-time algorithm 
for SAT

=co-

⇔All unsatisfiable formulas have 
short refutations

Known results: exponential lower bounds 
for specific proof systems



Motivation

• most classical algorithms originating from Davis, Putnam, 
Logemann, Loveland, 1960-62,

• almost all deterministic SAT solvers use DPLL

• satisfiable formulas are much easier for solvers

• known lower bounds for resolution imply bounds for 
DPLL on unsatisfiable formulas only. 

exponential lower bound for 
satisfiable formulas

GOAL:



DPLL – general scheme

• Heuristic A: chose 
variable x,

• Heuristic B: choose 
brunch to be examined 
first,

• Simplification rules.

Divide and conquer:
F

0x = 1x =

[ 0]F x ← [ 1]F x ←

1F 2F

simplifications

Specific algorithm:

Dead ends: trivial formulas.



Examples
A:

B:

choose the most frequent variable,

choose a variable from the shortest clause, …

choose the most frequent sign, …

Simplifications:

unit clause elimination: x G∧ [ 1]G x ←

pure literal rule: does not appear inx F

F [ 1]F x ←



Known facts
• exponential lower bounds for resolution refutations of 

unsatisfiable formulas translate to DPLL 
[Tseytin, 1968],…,[Puldak, Impagliazzo, 2000]

• exponential lower bounds on satisfiable formulas for 
specific DPLL algorithms:
[Nikolenko, 2002]: Greedy+Unit Clause+Randomization
[Achilioptas, Beame, Molloy, 2003]: Greedy+Unit Clause, Ordered 
DLL (conditional bounds)
[Achilioptas, Beame, Molloy, 2004]: Ordered DLL: exponential time 
with constant probability

Ultimate goal: Every DPLL algorithm takes 
exponential time with prob.               on 
satisfiable 

( )1 2 n− Ω−
1 2, ,..., ,...nF F F



Generalized myopic algorithms

A, B : read             clauses,

read other clauses without negations,

query the number of occurrence of a literal

Simplifications: unit clauses, pure literals.

Drunk algorithms

A : any ! 

Simplifications: unit clauses, pure literals, subsumption.

B : random  50 : 50 .

1n ε−



( )

sequenceof (polynomial-size)satisfiablesformulas

( ., )such that polynomial-timerandomize generalized

myopic( ., )algorithmerrs

Theore

withprobability1 2 .

m:

n n

n

F resp G

resp drunk −Ω

∃
∀

−

Proof strategy: show that w.h.p. a DPLL 
algorithm obtain a hard unsatisfiable formula:

satisfiable

satisfiableunsatisfiable

“wrong move”

large
subtree



Construction for drunk algorithms

Take any hard unsatisfiable F

[ 0] remains hardiF x ←

1 2( ) ( ) ... ( )nF x F x F x G∨ ∧ ∨ ∧ ∧ ∨ =
1

first moveiswrongwithprobability .
2

Take n renamed copies
(1) (2) ( )... nG G G∧ ∧ ∧

1
wrongmovewithprobability 1 .

2n
−



Construction for generalized myopic 
algorithms

1) construct n n 0/1- matrix A that 
• is non-degenerate,

• has 3 nonzero entries per row,

• has certain expansion properties.

(solution: take a larger matrix at random, select n linearly 
independent rows)

2) take 0/1 vector b at random

3) convert Ax=b into 3-CNF (with unique satisfying 
assignment)

1 ( ) ( ) ( ) ( )x y z x y z x y z x y z x y z+ + = ⇔ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨



Myopic: idea of the proof

wrong

wrong

wrong

One wrong move 
and you are lost!

A
x

0
1
0

assigned values

=
b

1
1
0

revealed bits

If b and b’ are similar solution may differ much. 



Open question:

Generalize the model !

• myopic simplifications rule,

• oracle access to the input.


