Average-case complexity of randomized computations with bounded error

Dmitry Itsykson

Steklov Institute of Mathematics at St. Petersburg

EWSCS March 2, 2009

Outline

- 1 Worst-case complexity
 - **P**, **NP**, **BPP**
 - Structural properties: time hierarchy and complete problems
- Average-case complexity
 - Distributional problems
 - Average-case tractability
 - Class AvgBPP and cryptography
- **3** Results: structural properties of **AvgBPP**.

$\boldsymbol{\mathsf{P}}, \boldsymbol{\mathsf{NP}}, \boldsymbol{\mathsf{BPP}}$

Class	Problem	Turing	Time	Error
		machine		
Р	language	deterministic	poly	no error
	L	М		$\forall x \ M(x) = L(x)$
NP	language	nondeter-	poly	no error
	L	ministic <i>M</i>		$\forall x \ M(x) = L(x)$
BPP	language	randomized	poly	bounded error
	L	М		$\forall x \Pr[M(x) = L(x)] \ge \frac{3}{4}$

Time hierarchy

- A time hierarchy theorem states that a given computational model can decide more languages if it is allowed to use more time.
- (Hartmanis and Stearns, 1965) $\mathbf{DTime}[n^a] \subsetneq \mathbf{DTime}[n^{a+\epsilon}]$.
- (Cook, 1972) **NTime** $[n^a] \subsetneq$ **NTime** $[n^{a+\epsilon}]$.
- (Karpinski and Verbeek, 1987) **BPTime** $[n^{\log n}] \subsetneq$ **BPTime** $[2^{n^{\epsilon}}]$
- Main technique: diagonalization.
 - *M* is n^a -time machine, $\exists x_M$ such that $M(x_M) \neq L(x_M)$.
 - To solve L on x_M in $n^{a+\epsilon}$ -time: simulate M and negate answer.

Complete problems

 $\mathbf{P} \stackrel{?}{=} \mathbf{NP}$ conjectured NO

 $\mathbf{P} \stackrel{?}{=} \mathbf{BPP}$ conjectured YES

Turing reduction from A to B: a polynomial-time algorithm \mathcal{R}^B that solves A with oracle access to B. B is a complete problem in the class **C** if $B \in \mathbf{C}$ and $\forall A \in \mathbf{C}$, A reduces to B.

- (Cook, Levin, 1971) NP-complete problems: Bounded Halting, Tiling, SAT, TSP,...
- Bounded Halting
 - BH = {(M, x, 1^t) |NTM M accepts x for ≤ t steps}
 - $L \in \mathbf{NP}$ is solved by NTM M in p(n)-time;
 - Reduction: oracle request $(M, x, 1^{p(n)})$.
- Complete problem for **BPP** is not known.

Structure in **BPP**

- Time hierarchies and complete problems usually require enumeration of (correct) machines in the respective computational model.
- How to enumerate machines that have bounded error?

Known facts:

- (folklore) BPP-complete language ⇒ time hierarchy for BPP;
- (Hartmanis and Hemachandra, 1986) ∃ oracle A, such that
 BPP^A doesn't have complete languages.
- (Barak, Fortnow, Santhanam, Trevisan, van Melkebeek, Pervyshev) Time hierarchy for BPP with one bit of nonuniform advice
- (Fortnow, Santhanam, 2004, Pervyshev 2007) Time hierarchy for heuristic BPP.

Distributional problems

- Distribution $D = \{D_n\}_{n=1}^{\infty}$ where $D_n : \{0,1\}^n \to \mathbb{R}_+$ such that $\sum_{a \in \{0,1\}^n} D_n(a) = 1.$
- Distributional problem (L, D), where L is a language, D is a distribution.
- Polynomial-time samplable distribution \exists polynomial time algorithm (sampler) S such that $S(1^n)$ is distributed according D_n .

Average-case tractability

Levin (1986): T(x) is working time on input x; T(x) is polynomial on the average if $\exists \epsilon > 0 : \mathsf{E}_{x \leftarrow D_n} T^{\epsilon}(x) = O(n)$ Typical situation:

- $\frac{1}{\exp}$: exponential time
- on input x; $| \bullet 1 \frac{1}{\exp}$: polynomial time

Class	Problem	Turing	Time	Error
		machine		
Р	language	deterministic	poly	no error
	L	M		$\forall x \ M(x) = L(x)$
BPP	language	randomized	poly	bounded error
	L	M		$\forall x \Pr[M(x) = L(x)] \geq \frac{3}{4}$
AvgP	distr.	deterministic	avg.	no error
	problem	M	poly	$\forall x \ M(x) = L(x)$
	(L, D)			
Avg-	distr.	randomized	avg.	bounded error
BPP	problem	M	poly	$\forall x \Pr[M(x) = L(x)] \geq \frac{3}{4}$
	(<i>L</i> , <i>D</i>)			

AvgBPP and cryptography

- If $(NP, U) \in AvgBPP$, then there are no one-way functions.
- (Hirsch, Itsykson, 2007) If there exists f, such that problem $(f^{-1}, f(U)) \notin \mathbf{FAvgBPP}$ then there exists i.o. one-way function.
- Informally **AvgBPP** is the class of problems solved by successful cryptographical adversary.

Results

- **1** Construction of distributional problem (C, R) that is complete in (AvgBPP, PSamp) under deterministic Turing reduction.
 - If $(C, R) \in AvgP$, then (AvgP, PSamp) = (AvgBPP, PSamp)
 - *R* is enough complicated samplable distribution.
 - Existence of complete problem with uniform (or uniform-like) distribution implies some derandomization.
- 2 Time hierarchy theorem for (AvgBPP, PSamp).
- 3 Proper inclusions:
 - P ⊊ AvgP ⊊ EXP;
 - **BPP** \subsetneq **AvgBPP** \subsetneq **BPEXP**

Intuition: complete problem (C, R)

Sampler $\mathcal{R}(1^n)$:

- |(M, y, r, S, l)| = n is generated at random;
- **2** $x \leftarrow S^{\leq |I|}(1^{|y|});$
- 3 n^2 times execute $M^{\leq |r|}(x)$: p answers 1, q answers 0;
- $\begin{array}{l} \textcircled{4} \ \ \mbox{If} \ \ \frac{\max\{p,q\}}{p+q} \geq 0.9 \ \ \mbox{return}, \\ (M,x,1^{|r|},S,1^{|l|}); \end{array}$

6 Else return 0ⁿ.

Algorithm $\mathcal{C}(M, x, 1^t, S, 1^s)$:

- 1 n^2 times execute $M^{\leq t}(x)$: p answers 1, q answers 0;
- 2 If $\frac{\max\{p,q\}}{p+q} \ge 0.85$, return the most frequent answer;
- S Else execute M(x) with all random sequences and return the most frequent answer.

Reduction

 $(L, D) \in AvgBPP$, M solves (L, D) in average time p(n). D is generated by sampler S in time s(n). Oracle request: $(M, x, 1^{p(n)}, S, 1^{s(n)})$.