Average-case complexity of randomized
computations with bounded error

Dmitry Itsykson
Steklov Institute of Mathematics at St. Petersburg

EWSCS
March 2, 2009

1/12



Outline

@ Worst-case complexity

« P,NP,BPP

e Structural properties: time hierarchy and complete problems
® Average-case complexity

e Distributional problems
o Average-case tractability
e Class AvgBPP and cryptography

© Results: structural properties of AvgBPP.



P,NP,BPP

Class | Problem Turing Time Error
machine
P language | deterministic | poly no error

L M Vx M(x) = L(x)
NP | language | nondeter- poly no error

L ministic M Vx M(x) = L(x)
BPP | language | randomized | poly bounded error

L M Vx PriM(x) = L(x)] > 3
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Time hierarchy

A time hierarchy theorem states that a given computational
model can decide more languages if it is allowed to use more
time.

(Hartmanis and Stearns, 1965) DTime[n?] C DTime[n€].
(Cook, 1972) NTime[n?] C NTime[n?"¢].

(Karpinski and Verbeek, 1987)

BPTime[n'°¢"] C BPTime[2""]

Main technique: diagonalization.

e M is n®-time machine, Ixps such that M(xp) # L(xum).
e To solve L on xp in n®¢-time: simulate M and negate answer.
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Complete problems

P=NP P=BPP
conjecfured NO conjec;cured YES

Turing reduction from A to B: a polynomial-time algorithm RB
that solves A with oracle access to B.

B is a complete problem in the class Cif Be Cand VA C, A
reduces to B.

e (Cook, Levin, 1971) NP-complete problems: Bounded Halting,
Tiling, SAT, TSP,...

e Bounded Halting

o BH ={(M,x,1*)INTM M accepts x for < t steps}
e L € NP is solved by NTM M in p(n)-time;
e Reduction: oracle request (M, x, 1P(")).

e Complete problem for BPP is not known.

5/12



Structure in BPP

e Time hierarchies and complete problems usually require
enumeration of (correct) machines in the respective
computational model.

e How to enumerate machines that have bounded error?

Known facts:
® (folklore) BPP-complete language == time hierarchy for
BPP;
® (Hartmanis and Hemachandra, 1986) 3 oracle A, such that
BPPA doesn’t have complete languages.

©® (Barak, Fortnow, Santhanam, Trevisan, van Melkebeek,
Pervyshev) Time hierarchy for BPP with one bit of
nonuniform advice

O (Fortnow, Santhanam, 2004 , Pervyshev 2007) Time hierarchy
for heuristic BPP.
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Distributional problems

e Distribution D = {D,}%°; where D, : {0,1}" — R such that
Zae{o,l}" Dn(a) = 1.

e Distributional problem (L, D), where L is a language, D is a
distribution.

e Polynomial-time samplable distribution 9 polynomial time
algorithm (sampler) S such that S(17) is distributed according
D,.
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Average-case tractability

Levin (1986): Typical situation:

T(x) is working time o %: exponential time

oninput x; | e1— glp: polynomial time
T(x) is polynomial
on the average if

Je > 0:Eyxp, T(x) = O(n)
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AvgP., AvgBPP

Class | Problem Turing Time Error
machine
P language | deterministic | poly no error
L M Vx M(x) = L(x)
BPP | language | randomized | poly bounded error
L M Vx Pr[M(x) = L(x)] > 3
AvgP distr. deterministic | avg. no error
problem M poly Vx M(x) = L(x)
(L, D)
Avg- distr. randomized | avg. bounded error
BPP | problem M poly | VxPr[M(x) = L(x)] > 3
(L, D)
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AvgBPP and cryptography

o If (NP, U) € AvgBPP, then there are no one-way functions.

e (Hirsch, Itsykson, 2007) If there exists f, such that problem
(f~1,f(U)) ¢ FAvgBPP then there exists i.0. one-way
function.

e Informally AvgBPP is the class of problems solved by
succsessful cryptographical adversary.
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Results

@ Construction of distributional problem (C, R) that is complete
in (AvgBPP, PSamp) under deterministic Turing reduction.
e If (C,R) € AvgP, then
(AvgP,PSamp) = (AvgBPP, PSamp)
e R is enough complicated samplable distribution.
o Existence of complete problem with uniform (or uniform-like)
distribution implies some derandomization.

® Time hierarchy theorem for (AvgBPP, PSamp).
® Proper inclusions:

o P C AvgP C EXP;
e BPP C AvgBPP C BPEXP.
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Intuition: complete problem (C, R)

Sampler R(1"): Algorithm C(M, x, 1%, S, 1%):

® [(M,y,r,S,l)[=nis ® n? times execute M<t(x): p
generated at random; answers 1, g answers 0;

@ x — S=(M); @ If m{rat > .85 return

2 4 <|r| . ptq -

© n® times execute M=I"l(x): the most frequent answer;
p answers 1, g answers 0; © Else execute M(x) with all

o If % > 0.9 return, random sequences and
(M, x, 1l s 11y, return the most frequent

® Else return 0". answer.

Reduction

(L,D) € AvgBPP, M solves (L, D) in average time p(n). D is
generated by sampler S in time s(n).

Oracle request: (M, x,1P("M S 15(n),
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