
Average-case complexity of randomized

computations with bounded error

Dmitry Itsykson

Steklov Institute of Mathematics at St. Petersburg

EWSCS
March 2, 2009

1 / 12

Outline

1 Worst-case complexity
• P,NP,BPP
• Structural properties: time hierarchy and complete problems

2 Average-case complexity
• Distributional problems
• Average-case tractability
• Class AvgBPP and cryptography

3 Results: structural properties of AvgBPP.

2 / 12

P,NP,BPP

Class Problem Turing Time Error
machine

P language deterministic poly no error
L M ∀x M(x) = L(x)

NP language nondeter- poly no error
L ministic M ∀x M(x) = L(x)

BPP language randomized poly bounded error
L M ∀x Pr[M(x) = L(x)] ≥ 3

4

3 / 12

Time hierarchy

• A time hierarchy theorem states that a given computational
model can decide more languages if it is allowed to use more
time.

• (Hartmanis and Stearns, 1965) DTime[na] (DTime[na+ε].

• (Cook, 1972) NTime[na] (NTime[na+ε].

• (Karpinski and Verbeek, 1987)
BPTime[nlog n] (BPTime[2nε

]

• Main technique: diagonalization.
• M is na-time machine, ∃xM such that M(xM) 6= L(xM).
• To solve L on xM in na+ε-time: simulate M and negate answer.

4 / 12

Complete problems

P
?
=
?

NP P
?
=
?

BPP

conjectured NO conjectured YES

Turing reduction from A to B: a polynomial-time algorithm RB

that solves A with oracle access to B.
B is a complete problem in the class C if B ∈ C and ∀A ∈ C, A
reduces to B.

• (Cook, Levin, 1971) NP-complete problems: Bounded Halting,
Tiling, SAT, TSP,...

• Bounded Halting
• BH = {(M, x , 1t)|NTM M accepts x for ≤ t steps}
• L ∈ NP is solved by NTM M in p(n)-time;
• Reduction: oracle request (M, x , 1p(n)).

• Complete problem for BPP is not known.

5 / 12

Structure in BPP

• Time hierarchies and complete problems usually require
enumeration of (correct) machines in the respective
computational model.

• How to enumerate machines that have bounded error?

Known facts:

1 (folklore) BPP-complete language =⇒ time hierarchy for
BPP;

2 (Hartmanis and Hemachandra, 1986) ∃ oracle A, such that
BPPA doesn't have complete languages.

3 (Barak, Fortnow, Santhanam, Trevisan, van Melkebeek,
Pervyshev) Time hierarchy for BPP with one bit of
nonuniform advice

4 (Fortnow, Santhanam, 2004 , Pervyshev 2007) Time hierarchy
for heuristic BPP.

6 / 12

Distributional problems

• Distribution D = {Dn}∞n=1 where Dn : {0, 1}n → R+ such that∑
a∈{0,1}n Dn(a) = 1.

• Distributional problem (L,D), where L is a language, D is a
distribution.

• Polynomial-time samplable distribution ∃ polynomial time
algorithm (sampler) S such that S(1n) is distributed according
Dn.

7 / 12

Average-case tractability

Levin (1986):
T (x) is working time

on input x ;
T (x) is polynomial

on the average if
∃ε > 0 : Ex←Dn T ε(x) = O(n)

Typical situation:
• 1

exp : exponential time

• 1− 1
exp : polynomial time

8 / 12

AvgP,AvgBPP

Class Problem Turing Time Error
machine

P language deterministic poly no error
L M ∀x M(x) = L(x)

BPP language randomized poly bounded error
L M ∀x Pr[M(x) = L(x)] ≥ 3

4

AvgP distr. deterministic avg. no error
problem M poly ∀x M(x) = L(x)
(L,D)

Avg- distr. randomized avg. bounded error
BPP problem M poly ∀x Pr[M(x) = L(x)] ≥ 3

4
(L,D)

9 / 12

AvgBPP and cryptography

• If (NP,U) ∈ AvgBPP, then there are no one-way functions.

• (Hirsch, Itsykson, 2007) If there exists f , such that problem
(f −1, f (U)) /∈ FAvgBPP then there exists i.o. one-way
function.

• Informally AvgBPP is the class of problems solved by
succsessful cryptographical adversary.

10 / 12

Results

1 Construction of distributional problem (C ,R) that is complete
in (AvgBPP,PSamp) under deterministic Turing reduction.

• If (C ,R) ∈ AvgP, then
(AvgP,PSamp) = (AvgBPP,PSamp)

• R is enough complicated samplable distribution.
• Existence of complete problem with uniform (or uniform-like)

distribution implies some derandomization.

2 Time hierarchy theorem for (AvgBPP,PSamp).

3 Proper inclusions:
• P (AvgP (EXP;
• BPP (AvgBPP (BPEXP.

11 / 12

Intuition: complete problem (C , R)

Sampler R(1n):

1 |(M, y , r ,S , l)| = n is
generated at random;

2 x ← S≤|l |(1|y |);

3 n2 times execute M≤|r |(x):
p answers 1, q answers 0;

4 If max{p,q}
p+q ≥ 0.9 return,

(M, x , 1|r |,S , 1|l |);

5 Else return 0n.

Algorithm C(M, x , 1t ,S , 1s):

1 n2 times execute M≤t(x): p
answers 1, q answers 0;

2 If max{p,q}
p+q ≥ 0.85, return

the most frequent answer;

3 Else execute M(x) with all
random sequences and
return the most frequent
answer.

Reduction

(L,D) ∈ AvgBPP, M solves (L,D) in average time p(n). D is
generated by sampler S in time s(n).

Oracle request: (M, x , 1p(n),S , 1s(n)).

12 / 12

