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Abstract. It is proved that every LL(k)-linear grammar can be trans-
formed to an equivalent LL(1)-linear grammar. The transformation in-
curs a blow-up in the number of nonterminal symbols by a factor of
m2k−O(1), where m is the size of the alphabet. A close lower bound
is established: for certain LL(k)-linear grammars with n nonterminal
symbols, every equivalent LL(1)-linear grammar must have at least
n · (m− 1)2k−O(log k) nonterminal symbols.

1 Introduction

The LL(k) parsing is one of the most well-known linear-time parsing techniques.
In this method, a parse tree of an input string is reconstructed top-down, along
with reading the string from left to right. A parser selects each rule by looking
ahead by at most k symbol. The family of LL(k) grammars, to which this algo-
rithm is applicable, was introduced and systematically studied in the papers by
Knuth [5], Lewis and Stearns [7] and Rozenkrantz and Stearns [9]. In particular,
Kurki-Suonio [6] and, independently, Rozenkrantz and Stearns [9], proved that
LL(k+ 1) grammars are more powerful than LL(k) grammars, and thus there is
a strict hierarchy of languages defined by LL(k) grammars, with different k.

An important subclass of LL(k) grammars, the LL(k)-linear grammars, was
first studied by Ibarra et al. [3] and by Holzer and Lange [2], who proved that all
languages defined by these grammars belong to the complexity class NC1. Learn-
ing algorithms for LL(1)-linear grammars and related subclasses were studied by
de la Higuera and Oncina [1], and language-theoretic properties of these gram-
mars have recently been investigated by Jirásková and Kĺıma [4].

Whether LL(k)-linear grammars form a hierarchy with respect to the length
of the look-ahead k, remains unexplored. The first contribution of this paper
is a proof that every language defined by an LL(k)-linear grammar, for some
k, is defined by an LL(1)-linear grammar; therefore, in the case of LL(k)-linear
grammars, the hierarchy with respect to k collapses. The proof is constructive:
it is shown how to transform any given LL(k)-linear grammar to a LL(1)-linear
grammar that defines the same language.
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Next, it is shown that the proposed tranformation is close to being optimal in
terms of the number of nonterminal symbols. The transformation of an LL(k)-
linear grammar to an LL(1)-linear grammar increases the number of nonterminal
symbols by a factor of m2k−O(1), where m is the size of the alphabet. A lower
bound of (m− 1)2k−O(log k) on this factor is established.

2 Definitions

Definition 1. A (formal) grammar is a quadruple G = (Σ,N,R, S), where Σ
is the alphabet of the language being defined, N is the set of syntactic categories
defined in the grammar, known as nonterminal symbols; R is a finite set of
rules, each of the form A → α, with A ∈ N and α ∈ (Σ ∪ N)∗, and S ∈ N
is a nonterminal symbol representing all well-formed sentences in the language,
known as the initial symbol.

Each rule A → X1 . . . X` in R states that each string representable as a
concatenation of ` substrings of the form X1, . . . , X`, therefore has the property
A. This is formalized as follows.

Definition 2. Let G = (Σ,N,R, S) be a grammar. A parse tree is a rooted
tree with leaves labelled with symbols from Σ, and with internal nodes labelled
with nonterminal symbols from N . For each node labelled with A ∈ N , with its
successors labelled with X1, . . . , X`, there must be a rule A → X1 . . . X` in the
grammar. All successors are ordered, and if w is the string of symbols in the
leaves, and A is the nonterminal symbol in the root, this is said to be a tree of
w from A.

The language defined by the grammar, denoted by L(G), is the set of all
strings w ∈ Σ∗, for which there exists a parse tree from S.

A grammar is called linear, if each rule in R is of the form A → uBv, with
u, v ∈ Σ∗ and B ∈ N , or of the form A → w, with w ∈ Σ∗. A parse tree for
a linear grammar is a path labelled with nonterminal symbols, with each rule
A→ uBv spawning off the leaves u to the left and v to the right.

A top-down parser attempts to construct a parse tree of an input string,
while reading it from left to right. At every point of its computation, the parser’s
memory configuration is a pair (α, v), where v is the unread portion of the input
string uv. The parser tries to parse v as a concatenation α = X1 . . . X`, where
` > 0 and X1, . . . , X` ∈ Σ ∪ N . This sequence of symbols is stored in a stack,
with X1 as the top of the stack.

At each point of the computation, the parser sees the top symbol of the stack
and the first k symbols of the unread input—the look-ahead string—where k > 1
is a constant. If there is a nonterminal symbol A ∈ N at the top of the stack, the
parser determines a rule A → α for this symbol, pops this symbol, and pushes
the right-hand side of the rule onto the stack.

(Aβ, v)
A→α−−−→ (αβ, v)
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Denote by Σ6k the set of strings of length at most k. Let x ∈ Σ6k be the
first k unread input symbols; if this string is shorter than k, this indicates the
end of the input approaching. The rule is chosen by accessing a look-up table
Tk : N × Σ6k → R ∪ {−}, which contains either a rule to apply, or a marker
indicating a syntax error.

If the top symbol of the stack is a symbol a ∈ Σ, the parser checks that the
unread portion of the input begins with the same symbol, and then pops this
symbol from the stack and reads it from the input.

(aβ, av)
read a−−−−→ (β, v)

For a string w ∈ Σ∗, denote its first k symbols, with k > 0, by

Firstk(w) =

{
w, if |w| 6 k
first k symbols of w, if |w| > k

This definition is extended to languages as Firstk(L) = {Firstk(w) | w ∈ L }.

Definition 3. Let G = (Σ,N,R, S) be a grammar. A string v ∈ Σ∗ is said
to follow X ∈ Σ ∪ N , if there is a parse tree of some string with a suffix v,
containing a subtree with a root X, to the left of which there is a string of leaves
v. For all A ∈ N , denote Follow(A) = { v | v follows A }.

Definition 4. Let k > 1 and let G = (Σ,N,R, S) be a grammar. An LL(k)
table for G is a partial function Tk : N × Σ6k → R that satisfies the following
condition: for all A ∈ N , u, v ∈ Σ∗ if, for every parse tree and for every subtree
in that tree, if A ∈ N is the label of its root and u is the string of its leaves, A→ α
is the rule applied to A, and v follows A, then Tk(A,Firstk(uv)) = A→ α.

If such a table exists, then the grammar is said to be LL(k).

3 General plan of the transformation

The goal is to transform an arbitrary linear LL(k) grammar G to a linear LL(1)
grammar G′ that defines the same language. If there is a nonterminal symbol A
in the original grammar, then choosing a rule for A requires knowing the next
k symbols of the input. The general plan is to use a buffer for up to k − 1 next
input symbols, so that the parser reads them before having to choose a rule
for A. In the new grammar, this buffer shall be attached to every nonterminal
symbol, so that they are of the form uA, with A ∈ N and u ∈ Σ6k−1. The goal
is to have LG′(uA) = {w | uw ∈ LG(A) }.

Upon a closer inspection, there is a certain problem with this plan. If there
is a rule A → s in the original grammar, with s ∈ Σ∗ and |s| < k − 1, then, in
order to choose a rule for A, an LL(1) parser needs to know more symbols than
there are in s and in its own 1-symbol lookahead. If there are k − 1 symbols in
the buffer attached to A as a subscript, and this “short” rule A → s is to be
applied, then what is this nonterminal symbol supposed to do with the surplus
symbols in the buffer?
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Example 1. The following grammar is linear LL(3).

S → aabSa | a

In order to distinguish between these two rules, a hypothetical LL(1) parser
buffers up to two first symbols using the following rules.

εS → aaS

aS → aaaS

Once the parser has aa in the buffer and sees that the next symbol is b, it
continues as planned.

aaS → bεSa

However, if aa is in the buffer and the next symbol is a, then the parser realizes
that the first symbol in its buffer should have been used in the rule A → a,
whereas the second a in its buffer should have been matched by the last symbol
in some earlier rule S → aabSa, and there seems to be no natural way to apply
that rule retroactively.

The cause of this problem is a short rule that defines a substring of length
less than k − 1 in the middle of the input. Accordingly, the first step of the
proposed transformation is to eliminate such rules.

4 Elimination of “short” rules

The first step in the transformation of a linear LL(k) grammar to a linear LL(1)
grammar is the elimination of the so-called short rules, that is, rules of the form
A→ w, with w ∈ Σ∗, |w| < k − 1 and Follow(A) 6= {ε}.

Lemma 1. For every linear LL(k) grammar G = (Σ,N,R, S) there exists a
linear LL(k) grammar G′ without short rules that defines the same language.
The number of nonterminal symbols in G′ is |Σ6k−1| · |N |.

Proof. In the new grammar G′ = (Σ,N ′, R′, S′), nonterminals are of the form
Au, with A ∈ N and u ∈ Followk−1(A). The goal is that every nonterminal Au
defines all strings defined by A in G, with a suffix u appended: LG′(Au) = {wu |
w ∈ LG(A) }.

For every nonterminal symbol Au and for every rule for A in G, the new
grammar has a rule defined as follows. For a rule A→ w1Bw2 ∈ R, let s denote
the first k−1 symbols of w2u, so that st = w2u with |s| = min(|w2u|, k−1). The
corresponding rule in G′ defers the string s to the nonterminal B, and appends
the rest of the symbols in the end; these include all the remaining symbols of u.

Au → w1Bst
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Fig. 1. How a rule A → w1Bw2 in G is simulated by the rule Au → w1Bst in
G′.

This is illustrated in Figure 1.
Once a rule A → s is reached, the corresponding rule in the new grammar

appends the suffix to s.

Au → su

The correctness proof is comprised of several assertions: namely, that G′

defines the desired language, has no short rules and is LL(k).

Claim. If a string w is defined by Au in the new grammar, then w = xu and A
defines x in the original grammar.

Claim. If a string x is defined by A in the original grammar, then Au defines xu
in the new grammar.

Both claims are established by induction on the height of the respective parse
trees. Together, the above two claims establish that LG′(Au) = LG(A)u for
each nonterminal symbol Au. From this, one can infer a similar correspondence
between the languages defined by individual rules.

Claim. Let Au → w1Bst be a rule in G′ obtained from a rule A → w1Bw2 in
G. Then LG′(w1Bst) = LG(w1Bw2)u.

The proof that there are no short rules in the new grammar is given separately
for Au ∈ N ′ with |u| = k − 1 and with |u| < k − 1.

Claim. For each nonterminal symbol Au ∈ N ′ with |u| = k−1, all strings defined
by Au are of length at least k − 1.

This is proved by induction on the height of a parse tree of a string in Au.
Next, assuming that |u| < k − 1 and y ∈ Follow(Au), one can infer that

y = ε.

Claim. For each nonterminal symbol Au ∈ N ′ with |u| < k − 1, the set
Follow(Au) equals {ε}.
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This completes the proof that there are no short rules in the new grammar.
The last claim is that the construction preserves the LL(k) property.

Claim. If the original grammar is LL(k), then so is the constructed grammar.

This completes the correctness proof for the short rule elimination construc-
tion. ut

5 Reduction to one-symbol look-ahead

Once all short rules are eliminated, the following second construction reduces
the length of the look-ahead strings to 1.

Lemma 2. For every LL(k) linear grammar G = (Σ,N,R, S) without short
rules, there exists and can be effectively constructed an LL(1) linear grammar
G′ = (Σ,N ′, R′, εS), with N ′ = { uA | A ∈ N, u ∈ Σ6k−1 }, that describes the
same language.

Proof. In the new grammar G′, nonterminal symbols are of the form uA, with
A ∈ N and u ∈ Σ∗. The left subscript u of a nonterminal uA is a buffer for
up to k − 1 last symbols read by a parser. The goal is to have LG′(uA) = {w |
uw ∈ LG(A) }.

While the buffer is underfull, the parser reads extra symbols and appends
them to the buffer. As soon as the buffer is filled, the parser sees a nonterminal
symbol uA with u ∈ Σk−1, as well as a one-symbol look-ahead. Altogether,
the parser has all k symbols needed to determine a rule to apply to A, which
is given in the entry T (A, u) in the LL(k) table for G. The buffer is updated
along with simulating this rule: the first symbols of the rule for A are removed
from the buffer, and all symbols remaining in the buffer are attached to the next
nonterminal symbol, which is of the form vB.

The initial symbol of the new grammar, εS, is S with an empty buffer.
There are three types of rules in the grammar G′. First, there are rules for

filling the buffer. For each nonterminal uA with |u| < k−1, and for each symbol
a ∈ Σ, there is a rule that appends this symbol to the buffer.

uA → a uaA

Second, there are rules for simulating the corresponding rules in G. For each

uA ∈ N ′ and a ∈ Σ with |u| = k − 1 and with T (A, ua) defined, the new
grammar contains one rule defined as follows. If T (A, ua) = A→ sBt, then one
of u, s is a prefix of the other; there are two cases, depending on which string is
longer.

uA → s′εBt (s = us′, for s′ ∈ Σ∗)

uA → vBt (u = sv, for v ∈ Σ+)
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If T (A, ua) = A→ s, then s = ux, and a is the first symbol of x if x 6= ε. Then
the new grammar contains the following rule.

uA → x

At last, there are rules for the case when the end of the input string is visible.
Namely, for each uA ∈ N ′ with |u| 6 k − 1 and with T (A, u) defined, the
grammar G′ contains a null rule.

uA → ε

The resulting grammar G′ is linear. The proof that it is LL(1) grammar and
defines the same language as G is given in a series of claims.

Claim. If x ∈ LG′(uA), then ux ∈ LG(A).

Claim. If ux ∈ LG(A), then x ∈ LG′(uA).

In each direction, the proof is by induction on the height of the respective
parse trees.

Claim. For each u ∈ Σ6k−1, if y ∈ Follow(uA), then y ∈ Follow(A).

Here the proof considers a parse tree and a subtree followed by y, and is
carried out by induction on the depth of that subtree in the tree.

Claim. The grammar G′ is LL(1).

The proof naturally relies on the LL(k) property of G. ut

Lemma 1 and Lemma 2 together imply the desired result.

Theorem 1. For every linear LL(k) grammar G = (Σ,N,R, S) there exists a
linear LL(1) grammar with |N | · |Σ6k−1|2 nonterminal symbols that describes
the same language.

6 Lower bound

The above construction, applied to an LL(k)-linear grammar with a set of non-
terminal symbols N , produces a new LL(1)-linear grammar with as many as
|N | · |Σ6k−1|2 nonterminal symbols. The next result is that almost as many
nonterminal symbols are in the worst case necessary.

Theorem 2. For every m > 3, k > 4 and n > 1, there exists a language
described by an LL(k)-linear grammar G over an m-symbol alphabet, with n
nonterminal symbols, so that every LL(1)-linear grammar for the same language
has at least n · (m− 1)2k−3−logm−1 k nonterminal symbols.
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Let Σ ∪ {#}, where # /∈ Σ is a special symbol, be an m-symbol alphabet.
The grammar shall have rules of the form A → xAf(x), with x ∈ Σk−1#, for
some function f : Σk−1# → Σ, as well as a rule A → ε. The function shall be
defined in a way that in order to detect where the rule A→ ε should be applied,
an LL(1)-linear parser would have to buffer almost 2k symbols.

Consider the last C arguments of f . Once the parser reads the first k − C
symbols c1 . . . ck−C of a presumed block x ∈ Σk−1#, and has C further
symbols to read, dk−C+1 . . . dk−1#, in order to compute f on this block, it
needs to remember a function g : ΣC−1 → Σ defined by g(dk−C+1 . . . dk−1) =
f(c1 . . . ck−Cdk−C+1 . . . dk−1#). The goal is to choose C and f , so that the num-
ber of these functions g is as large as possible.

Lemma 3. For C = log|Σ| k + 1, there exists a function f : Σk−1# → Σ, for
which all functions with the first k−C arguments substituted, gw(w′) = f(ww′),
for w ∈ Σk−C , are pairwise distinct.

Proof. There are |Σ||Σ|C−1

distinct functions g : ΣC−1#→ Σ. In order to reach
different functions gw upon reading distinct leading prefixes w ∈ |Σ|k−C , the
number of leading prefixes should not exceed the number of functions.

|Σ|k−C 6 |Σ||Σ|
C−1

This inequality holds true, because C = log|Σ| k + 1 implies k − C ≤ |Σ|C−1.

Then, strings w ∈ Σk−C can be injectively mapped to functions
gw : ΣC−1# → Σ, so that the desired function f is defined as f(ws) = gw(s),
for all w ∈ Σk−C and s ∈ ΣC−1#. ut

With f fixed, the grammar G = (Σ ∪ {#}, N,R, S) is defined to have N =
{A1, . . . , An} and S = A1, with the following rules. Each nonterminal symbol
has the rules that match x on the left to f(x) on the right.

Ai → xAif(x) (Ai ∈ N, x ∈ Σk−1#)

In the middle of the string, there are two possibilities. First, there can be nothing,
which shall be detected only k symbols later, when the marker (#) is not found
in its usual place.

Ai → ε (Ai ∈ N)

The other possibility is that the number of the nonterminal symbol is explicitly
written in the middle. This is detected immediately; the reason for having this
case is that it forces a parser to remember this number.

Ai → b#i (Ai ∈ N)

Finally, a parser changes the number of the nonterminal symbol by reading an
explicit command.

Ai → #Ai+1 (Ai ∈ N \ {An})
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In particular, L(G) contains strings of the following form.

#i−1x1 . . . xnf(xn) . . . f(x1), with i, n > 0, x1, . . . , xn ∈ Σk−1#

#i−1x1 . . . xnb#
if(xn) . . . f(x1), with i, n > 1, x1, . . . , xn ∈ Σk−1#

This is the LL(k)-linear grammar promised in Theorem 2. It remains to prove
that every LL(1)-linear grammar G′ for the same language must have at least
as many nonterminal symbols as stated in the theorem.

Consider the stack contents of an LL(1) parser for G′ after reading a string
of the following form, for some i ∈ {1, . . . , n}, x1, . . . , xk ∈ Σk−1#, and
a1, . . . , ak−C ∈ Σ.

u = #i−1x1 . . . xka1 . . . ak−C

Since the grammar is linear, the stack contains some symbols Av, with A ∈ N ′
and v ∈ (Σ ∪ {#})∗. The general plan of the proof is to show that, for a certain
large set of strings u of the above form, the corresponding nonterminal symbols
A must be pairwise distinct.

The first claim is that most of the information the parser stores at this point
is encoded in the nonterminal symbol.

Lemma 4. Let G′ = (Σ∪{#}, N ′, R′, S′) be any LL(1) grammar that describes
the same language as G, and let Av be the stack contents after reading a string of
the form u = #i−1x1 . . . xka1 . . . ak−C , with i ∈ {1, . . . , n}, x1, . . . , xk ∈ Σk−1#,
and a1, . . . , ak−C ∈ Σ. Then, |v| 6 2.

Proof. Let ak−C+1, . . . , ak−1 ∈ Σ be some symbols following u, and consider the
following two blocks.

xk+1 = a1 . . . ak−1#

xk+2 = f(xk+1)f(xk) . . . f(x3)#

Consider the following two strings obtained by extending u with the former
block and with both blocks, respectively.

w1 = #i−1x1 . . . xkxk+1f(xk+1)f(xk) . . . f(x3)f(x2)f(x1)

w2 = #i−1x1 . . . xkxk+1xk+2f(xk+2)f(xk+1)f(xk) . . . f(x3)f(x2)f(x1)

Both strings begin with u and are in L(G), and have the following prefix.

w = #i−1x1 . . . xkxk+1f(xk+1)f(xk) . . . f(x4)

The longest common prefix of w1 and w2 is wf(x3). Let A′v′ be the stack contents
after reading w. At this point, the parser sees the symbol f(x3). There are at least
two strings in L(G) that begin with wf(x3)—namely, w1 and w2—and therefore
the right-hand side of the rule in the LL(1)-table for (A′, f(x3)) begins with a
nonterminal symbol. The sequence of rules applied until f(x3) is finally read is
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then of the following form, for some B1, . . . , B` ∈ N ′, t1, . . . , t` ∈ (Σ ∪ {#})∗
and γ ∈ (Σ ∪ {#} ∪N ′)∗.

A′ → B1t1

B1 → B2t2

...

B`−1 → B`t`

B` → f(x3)γ

While the parser applies these rules, it cannot pop any of the symbols of v
at the bottom of the stack, and hence the resulting stack contents after reading
wf(x3) are γv′′, where v′′ ∈ (Σ ∪ {#})∗ and v is a suffix of v′′.

For the parser to accept the string w1 = wf(x3)f(x2)f(x1), after reading
wf(x3), it must have at most two symbols on the stack: that is, |v′′| = 2. Since
v is a suffix of v′′, this proves the lemma. ut

Now consider any two distinct strings of the same general form as in Lemma 4.
It is claimed that the parser must have different nonterminal symbols in the stack
after reading these strings.

Lemma 5. Let G′ = (Σ ∪ {#}, N ′, R′, S′) be any LL(1) grammar for the same
language as G, and consider two strings of the following form.

u1 = #i−1x1 . . . xka1 . . . ak−C (i ∈ {1, . . . , n}, x1, . . . , xk ∈ Σk−1#, a1, . . . , ak−C ∈ Σ)

u2 = #j−1y1 . . . ykb1 . . . bk−C (j ∈ {1, . . . , n}, y1, . . . , yk ∈ Σk−1#, b1, . . . , bk−C ∈ Σ)

Assume that either i 6= j, or f(x3) . . . f(xk) 6= f(y3) . . . f(yk), or a1 . . . ak−C 6=
b1 . . . bk−C . Let Av and Bv′ be the parser’s stack contents after reading these
strings. Then, A 6= B.

Proof. Suppose, for the sake of a contradiction, that A = B, and accordingly
the stack contents after reading u1 and u2 are Av and Av′, respectively.

Denote ã = a1 . . . ak−C and b̃ = b1 . . . bk−C . If ã 6= b̃, then, by the construction
of f , there is a string z = c1 . . . cC−1# of length C, with c1, . . . , cC−1 ∈ Σ, that

satisfies f(ãz) 6= f (̃bz); if ã = b̃, then let z = c1 . . . cC−1# be any string with
c1, . . . , cC−1 ∈ Σ.

The following two strings are in L(G).

u1zf(ãz)f(xk) . . . f(x1)

u1zb#
if(ãz)f(xk) . . . f(x1)

Since the stack contains Av after reading their common prefix u1, both remaining
suffixes must be in LG′(Av). Denote the substrings in LG′(A) by w1 and w2,
respectively.

w1 = zf(ãz)f(xk) . . . f(x|v|+1)

w2 = zb#if(ãz)f(xk) . . . f(x|v|+1)
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(note that |v| 6 2 by Lemma 4)
By the assumption, u1 and u2 must differ either in the number of sharp signs

in the beginning (i 6= j), or in one of the images of the last k − 2 complete
blocks (f(x3) . . . f(xk) 6= f(y3) . . . f(yk)), or in one of the symbols in the last

incomplete block (ã 6= b̃), There are accordingly three cases to consider.

– Let i 6= j. The parser’s stack contents after reading u2 is Av′, and therefore
the string u2w2v

′ must be accepted.

u2w2v
′ = #j−1y1 . . . ykb1 . . . bk−Czb#

if(ãz)f(xk) . . . f(x|v|+1)v′

However, the mismatch between the prefix #j−1 and the substring b#i in
the middle means that the string is not in L(G). This is a contradiction.

– In the case when f(x3) . . . f(xk) 6= f(y3) . . . f(yk), after reading u2, the
parser has Av′ in its stack, and thus must accept u2w1v

′.

u2w1v
′ = #j−1y1 . . . ykb1 . . . bk−Czf(ãz)f(xk) . . . f(x|v|+1)v′

However, since f(x3) . . . f(xk) 6= f(y3) . . . f(yk), this string is not in L(G)
and cannot be accepted, contradiction.

– Assume that ã 6= b̃. Then, by the construction, f(ãz) 6= f (̃bz). The rest is
like in the previous case: the parser accepts u2w1v

′, which is not in L(G). ut

Proof (of Theorem 2). For all i ∈ {1, . . . , n}, d3, . . . , dk ∈ Σ and a1, . . . , ak−C ∈
Σ, let x1, . . . , xk ∈ Σk−1#, with f(xj) = dj for all j ∈ {3, . . . , n}. Then the
corresponding string ui;d3,...,dk;a1,...,ak−C

is defined as follows.

ui;d3,...,dk;a1,...,ak−C
= #i−1x1 . . . xka1 . . . ak−C

By Lemma 5, upon reading different strings of this form, the LL(1)-linear parser
must have pairwise distinct nonterminal symbols in its stack. Therefore, there
must be at least as many nonterminal symbols as there are such strings, that is,
n · (m− 1)2k−C−2, as claimed. ut

7 Conclusion

The collapse of the hierarchy of LL(k)-linear languages establishes the LL-linear
languages as a robust language family that deserves future investigation.

In particular, the succinctness tradeoff between LL(k)-linear grammars with
different k has been determined only with respect to the number of nontermi-
nal symbols. It would be interesting to know whether the elimination of look-
ahead similarly affects the total length of description. The witness languages
constructed in this paper do not establish any lower bounds on that, and more
research is accordingly needed to settle this question.

Another suggested line of research is investigating LL(k)-linear conjunctive
grammars and LL(k)-linear Boolean grammars [8], and determining whether a
lookahead hierarchy exists for those grammar families.
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Appendix

A Details for the proof of Lemma 1 on page 4

Claim. If a string w is defined by Au in the new grammar, then w = xu and A
defines x in the original grammar.

Proof. Induction on the height of a parse tree of a string w as Au.

Base case: w is obtained by a rule Au → w. By construction, the rule is of
the form Au → xu, obtained from a rule A → x in R, and w = xu. Then,
x ∈ LG(A).

Induction step. Assume that w is defined by a rule Au → w1Bst, which was
obtained from a rule A → w1Bw2, with w2u = st. Then, w = w1yt, where
y ∈ LG′(Bs), and the height of a parse tree of y as Bs is less than that of
the parse tree of w. Then, by the induction hypothesis, y = zs, for some
z ∈ LG(B). Altogether, w = w1zst = w1zw2u, and therefore w ∈ LG(A)u
by the rule A→ w1Bw2.

ut

Claim. If a string x is defined by A in the original grammar, then Au defines xu
in the new grammar.

Proof. Induction on the height of a parse tree of a string x as A.

Base case: x is obtained by a rule A→ x. By construction, grammar G′

contains the rule Au → xu , thus xu ∈ LG′(Au).
Induction step. Assume that x is defined by a rule A → w1Bw2. Then w =

w1yw2 for some y ∈ LG(B). The height of a parse tree of y as B is less than
that of the parse tree of w. Then, by the induction hypothesis, ys ∈ LG′(Bs),
where s is the first k − 1 symbols of the string w2u. The grammar G′ has
a rule Au → w1Bst, obtained from the rule A → w1Bw2 in G, and thus
w1yst ∈ LG′(Au). Since w1yst = w1yw2u = wu, the string wu is in LG′(Au).

ut

Claim. Let Au → w1Bst be a rule in G′ obtained from a rule A → w1Bw2 in
G. Then LG′(w1Bst) = LG(w1Bw2)u.

Proof. Indeed, by the construction, st = w2u, and LG′(Bs) = LG(B)s by the
previous claim. Altogether, LG′(w1Bst) = w1LG(B)st = LG(w1Bw2)u. ut

Claim. If there is a rule Au → w1Bst in G′, then |s| > |u|, and if furthermore
|t| > 0, then |s| = k − 1.

Proof. By the construction of G′, the rule Au → w1Bst was obtained from
some rule A → w1Bw2, with |s| = min(|w2u|, k − 1) and st = w2u. Then,
|s| = min(|w2u|, k − 1) > min(|u|, k − 1) = |u|. If furthermore |t| > 0, then
|s| < |w2u|, and therefore, since |s| = min(|w2u|, k − 1) and |s| 6= |w2u|, it
follows that |s| = k − 1. ut
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Claim. For each nonterminal symbol Bs ∈ N ′ if y ∈ Follow(Bs) then sy ∈
Follow(B). If furthermore |s| < k − 1, then y = ε.

Proof. Let y be a string from Follow(Bs), that is, there exists a parse tree
containing a subtree with the root Bs, and with the string y as the suffix to the
right of this subtree.

The proof is carried out by induction on the depth of the subtree within the
tree.

Base: Bs is the root of whole parse tree, that is Bs = Sε. Since there
are no symbols to the right of the whole tree, y = ε and thus
sy = ε ∈ Follow(S).

Induction step: let Au be the ancestor of the subtree. Let Au → w1Bst
be the rule applied to Au, and let A → w1Bw2 be the rule in G, with
w2u = st, from which it was obtained. Let y′ denote the suffix to the right
of the subtree with root labeled as Au, so that y = ty′ and y′ ∈ Follow(Au).

As the subtree Bs is deeper than the subtree Au, the induction hypoth-
esis can be applied to Au and y′ ∈ Follow(Au), and it asserts that
uy′ ∈ Follow(A). Since w2u = st, the string w2uy

′ is in Follow(B). Fur-
thermore, since w2uy

′ = sty′ = sy, it follows that sy ∈ Follow(B).

Now assume |s| < k − 1. The previous claim states that |s| > |u| and that
if furthermore |t| > 0, then |s| = k − 1. This implies that |u| < k − 1 and
t = ε. Now, the induction hypothesis further asserts that if |u| < k− 1, then
y′ = ε, and therefore y = ty′ = ε.

ut

Claim. For each nonterminal symbol Au ∈ N ′ with |u| = k−1, all strings defined
by Au are of length at least k − 1.

Proof. Let w ∈ LG′(Au). The proof is carried out by induction on the height of
a parse tree of w as Au.

Base: w is obtained by rule Au → w. By the construction of the grammar
G′, the rule Au → w was obtained from a rule A → w′, where w′u = w.
Then the length of w is |w| = |w′u| > k − 1.

Induction step. Assume that w is defined by a rule Au → w1Bst, which was
obtained from a rule A→ w1Bw2, with w2u = st. Then w = w1yt for some
y ∈ LG′(Bs).
The height of a parse tree of y as Bs is less than that of the parse tree of
w. Then, by the induction hypothesis, if |s| = k − 1, then |y| > k − 1, and
therefore |w| = |w1yt| > k − 1.

By construction, |s| = min(|w2u|, k − 1) and since |u| = k − 1 we get |s| =
k − 1, so |w| > k − 1. ut

Claim. If the original grammar is LL(k), then so is the constructed grammar.
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Proof. Let Au be a nonterminal symbol in G′, with the following rules.

Au → α1

Au → α2

...

Au → αn

By definition the grammar G′ has the LL(k) property if and only if, for each
Au, the sets Firstk(αjFollow(Au)) are pairwise disjoint.

By construction each rule αj is uniquely defined from a rule γj of grammar
G. Since grammar G is LL(k), the sets Firstk(γjFollow(A)) are pairwise disjoint.
So to prove that G′ is LL(k) it is sufficient to show that Firstk(αjFollow(Au)) ⊆
Firstk(γjFollow(A)) for each rule αj .

By LG′(αj) = LG(γj)u for each rule αj and by the previous claim
uFollow(Au) ⊆ Follow(A).

Therefore

Firstk(αjFollow(Au)) = Firstk(γjuFollow(Au)) ⊆ Firstk(γjFollow(A))

end the proof is complete.
ut

B Details for the proof of Lemma 2 on page 6

The type of each rule uA → α can be determined from its general form as
follows. If α contains a nonterminal vB and |v| > |u|, then this is a rule for
appending a new symbol to the buffer. If T (A, u) is defined, this is the case
when the end of the input string is visible, and the rule must be uA → ε. In all
other cases, the rule uA → α is obtained from one of the rules in R; the original
rule can be uniquely reconstructed by processing uα as follows: us′εBt becomes
sBt; uvBt = svvB becomes sBt by cancelling v and the buffer of B; ux remains
as it is.

Claim. If x ∈ LG′(uA), then ux ∈ LG(A).

Induction on the length of the derivation of x in G′.

Base case: x is defined by a rule uA → x. By construction there are two
types of rules in G′ with no nonterminals in the right side: rules obtained
from those in grammar G and rules corresponging to the case when the end
of the input string is visible, that is T (A, u).
In the first case the rule uA → x was obtained from some rule A → ux of
grammar G thus ux ∈ LG(A).
Now consider the second case. Then by construction x = ε. Since |u| < k
and the end of the string is visible u = x′t for some t ∈ Follow(A) and
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x′ ∈ LG(A). Therefore |x′| ≤ |u| < k and since grammar G has no short
rules, t = ε.
Then u = x′, so ux = u = x′ ∈ LG(A).

Induction step. Assume x is defined by a rule uA → γ where γ contains a
nonterminal symbol. Then rule γ may be obtained from a rule in grammar
G or be a rule appending new symbol to the buffer:
If γ was obtained from a rule sBt of grammar G, there are two cases de-
pending on which of the strings u and s is longer:

– If |u| > |s| then γ = vBt with u = sv. Then x = yt for some y ∈ LG′(vB).
Height of a parse tree of y as vB is less than that of the parse tree of x.
Then by induction hypothesis vy ∈ LG(B). Hence ux = uyt = svyt ∈
LG(sBt) ∈ LG(A).

– If |u| 6 |s|, then γ = s′εBt with us′ = s. Then x = s′yt with y ∈
LG′(εB).
By the induction hypothesis, y ∈ LG(B). Hence, ux = us′yt = syt ∈
LG(sBt) ∈ LG(A).

Now assume γ is a rule appending new symbol to the buffer. Then γ = auaA
for some a ∈ Σ. Then x = ay with y ∈ LG′(uaA).
Hence by induction hypothesis uay = ux ∈ LG(A).

Claim. Let uA → γ be a rule obtained from a rule A→ α. Then, if x ∈ LG′(γ),
then ux ∈ LG(α).

If α ∈ Σ∗ then by construction γ = x and α = ux. Now assume α = sBt for
some s, t ∈ Σ∗ and B ∈ N .

If |u| < |s| then γ = s′εBt with us′ = s. Then x = s′yt for some y ∈ LG′(εB).
As it was proved if y ∈ LG′(εB) then y ∈ LG(B) so ux = us′yt = syt ∈ LG(sBt).

If |u| > |s| then γ = vBt with u = sv. Then x = yt for some y ∈ LG′(vB).
As it was proved if y ∈ LG′(vB) then vy ∈ LG(vB). Thus ux = svyt ∈ LG(sBt).

Claim. If ux ∈ LG(A), then x ∈ LG′(uA).

Proof. The proof is given separately for strings ux of length less than k with
T (A, ux) defined and for all other strings.

Firstly assume that |ux| < k and T (A, ux) is defined.
Then by construction grammar G′ contains the rule uxA → ε.
Let x = x1 . . . xm. Since u is a prefix of ux, the buffer of uA can be increased

up to ux by the following rules:

uA → x1 ux1
A

ux1
A → x2 ux1x2

A

ux1...xm−1
A → xm uxA

The chain of rules above together with the rule uxA → ε construct the
derivation of x as uA.
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Therefore x ∈ LG′(uA).
Now assume that |ux| ≥ k or |ux| = k − 1 but T (A, ux) is not defined.
If |ux| = k − 1 then Follow(A) 6= {epsilon} and there exists a symbol c ∈

Follow1(A).
Let n = k − |u| − 1 and symbol a denote either xn+1 if |ux| ≥ k or c if

|ux| = k − 1.
Let u′ denote the string ux1 . . . xn.
Then |u′| = k − 1 and T (A, u′a) = γ, where γ is the rule, defining ux as A.
As in the previous case, the buffer of uA can be increased up to u′ by the

rules:

uA → x1 ux1
A

ux1
A → x2 ux1x2

A

ux1...xn−1
A → xn u′A

Then since T (A, u′a) = γ, grammar G′ contains a rule u′A → α, obtained
from the rule A→ γ of grammar G.

It will be proved that α defines the string xn+1 . . . xm and thus the chain
of rules above together with the rule u′A → α construct the derivation of
x1 . . . xm = x as uA.

The proof is carried out by induction on the length of the derivation of ux
as A.

Base: ux is defined by a single rule A→ ux Then γ = T (A, u′a) = A →
ux and by construction α = xn+1 . . . xm. Therefore x ∈ LG′(uA).

Induction step: assume ux is defined by a rule A→ sBt ]
Then ux = syt for some string y ∈ LG(B) and the rule u′A → α is obtained
from the rule A→ sBt of grammar G.
There are two cases depending on which of the strings u′ and s is longer.
If u′ is shorter than s then α = s′εBt with u′s′ = s.
Height of a parse tree of y as B is less than that of the parse tree of ux.
Then by induction hypothesis y ∈ LG′(εB).
Therefore s′yt ∈ LG′(u′A). Note that u′s′yt = syt = ux = u′xn+1 . . . xm.
Thus s′yt = xn+1 . . . xm and xn+1 . . . xm ∈ LG′(u′A) as desired.
If s is shorter than u′ then α = vBt with sv = u′

To apply the induction hypothesis for vB it is necessary to prove that v is a
prefix y.
Since grammar G has no short rules, either |y| ≥ k − 1 or t = ε.
If t = ε then ux = sy and since sv = u′ is a prefix of ux, v is a prefix of y.
If |y| = k − 1 then |sy| ≥ k − 1. Since u′ is a prefix of ux = syt and |u′| < k
it is obtained that u′ = sv is a prefix of sy, thus again v is a prefix of y.
Therefore y = vy′ for some y′ ∈ Σ∗ and by induction hypothesis y′ ∈
LG′(vB).
Hence y′t ∈ LG′(u′A).
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Note that u′y′t = svy′t = syt = ux = u′xn+1 . . . xm. Therefore y′t =
xn+1 . . . xm and thus xn+1 . . . xm ∈ LG′(u′A) as desired.

ut

Claim. For each u ∈ Σ6k−1, if y ∈ Follow(uA), then y ∈ Follow(A).

Since y ∈ Follow(uA), there exists a subtree with root uA with the string y
as the suffix to the right of this subtree. The proof that y ∈ Follow(A) is carried
out by induction on the height of the subtree.

Base: uA is the root of whole parse tree, that is uA = εS In this case
y = ε since there are no symbols to the right of the whole tree. Therefore
y = ε ∈ Follow(S)

Induction step: let vB be ancestor of the subtree Let γ be the rule ap-
plied to vB, and let y′ denote the symbols to the right of the subtree with
root vB, so that y′ ∈ Follow(vB).
The rule γ may either be obtained from a rule of grammar G or it may be
a rule that appends new symbols to the buffer.
In the first case, γ is obtained from some rule B → w1Aw2. The height of
the subtree with root vB is less than that of the subtree with root uA.
Then, by the induction hypothesis, y′ ∈ Follow(vB) entails y′ ∈ Follow(B).
Therefore, the string y = w2y

′ is in Follow(A).
In the second case, since γ is a rule for appending symbols to the buffer,
B = A and u = va for some symbol a ∈ Σ, so actually γ = vA → auA.
Thus, y′ = y, and so y ∈ Follow(vA).
The height of the subtree with root vA is less than that of the subtree
with root uA. By the induction hypothesis y ∈ Follow(vA), and therefore
y ∈ Follow(A).

Claim. The grammar G′ is LL(1).

The grammar G′ has LL(1) property if and only if for any uA ∈ N ′ and
two distinct rules uA → γ1 and uA → γ2 the sets First1(γ1Follow(uA)) and
First1(γ2Follow(uA)) do not intersect.

To prove that there are will be considered two cases depending on whether
|u| < k − 1 or |u| = k − 1.

If |u| < k−1, each of the strings γ1 and γ2 is whether a rule increasing buffer
or a rule uA → ε if T (A, u) is defined.

If one of the rules, say γ1, is a rule uA → ε then u ∈ LG(A).
Then since |u| < k − 1 and grammar G has no short rules Follow(A) = {ε}.

As it was proved Follow(uA) ⊆ Follow(A) thus Follow(uA) = {ε}. Therefore
First1(γ1Follow(uA)) = {ε}.

Since rules γ1 and γ2 differ, γ2 is a rule increasing buffer so γ2 = A→ auaA
for some a ∈ Σ.

Therefore First1(γ1Follow(uA)) ∩ First1(γ2Follow(uA)) = ∅ since ε /∈
LG′(auaA).

If |u| = k − 1 then γ1 and γ2 were obtained from grammar G rules α1 and
α2 correspondingly.
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Let a ∈ First1(γ1Follow(uA)) ∩ First1(γ2Follow(uA)).
As it was proved Follow(uA) ⊆ Follow(A) thus ua ∈ Firstk(α1Follow(A)) ∩

Firstk(α2Follow(A)).
But that contradicts LL(k) property of grammarG so First1(γ1Follow(uA))∩

First1(γ1Follow(uA)) = ∅ and the proof is finished.
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